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A numerical method to analyze the topology of the electronic density regardless of how it was obtained
(analytically or numerically) was implemented for the Extreme 94 program. The method allows the study of
a complex system by density functional theory where the electronic correlation is important, regardless of the
kind of basis set used, and allows the analysis of the resulting charge density with the topological theory of
Bader.

1. Introduction

Density functional theory (DFT) plays a role of increasing
importance in the calculations of ground states of molecules
and solids.1-9 The inclusion of the electron correlation effects
is necessary for an accurate description of many-electron
systems.2 By standard methods such as configuration interac-
tion, perturbation, or Green’s function theory, the inclusion of
the electron correlation for an extended system is a very difficult
matter.2 However, this problem is lessened with the appearance
of DFT, in which the correlation is included by introducing a
local (or nonlocal) approximation for a functional of the
electronic density that describes the correlation effects. The
practical implementations of DFT lead to the Kohn and Sham
(KS) equations.2 Their solution allows us to handle complex
systems such as solids, surfaces, interfaces, transition metals,
and organometallic compounds.6,8 Additionally, DFT methods
are not restricted to traditional Gaussian basis set functions6

since it is possible to use different basis sets such as muffin tin
orbitals, multiple scattering, plane waves, or numerical functions.
The topological theory of Bader et al. is very useful to extract

the chemical information from the charge density.10-21 A recent
study,22 using molecular orbital Hartree-Fock, post-Hartree-
Fock at MP2 and QCISD levels, and DFT calculations, has
confirmed that the DFT methods provide a good description of
the topology of the electronic density,F(r ). Unfortunately, the
available algorithms for the topological analysis ofF(r )
(EXTREME,23 Gaussian 94,24,25MORPHY,26 and TOPOND27

program in Crystal 9528) have been usually implemented for
analytical Gaussian basis sets. To our knowledge, only one
case (Guo29 et al. performed DF calculations and topological
analysis of the charge density on Ni clusters using a purely
numerical basis set) of a nonanalytical basis set exists. This
limits the applicability of the topological analysis ofF(r ) in
many interesting systems in which the correlation effects play
an important role. Due to the existence of a large variety of
software employing different basis sets and the unavailability
of the source code in commercial cases, in the present work, a
numerical method that is able to analyze the topology of the
electronic density regardless of how it was generated (analyti-
cally or numerically) is described. The method allows one to
study complex systems by DFT regardless of the basis set used
and to analyze the resulting density with the topological theory
of Bader. In the present study, this method was implemented
as a modification to the EXTREME 9423 program and applied
to CO, NaF, NO, and HCCH molecules, Na4F4, Cu13, and Cu45
clusters plus Cu bulk. Cu45was studied with DMOL30 program
using a numerical basis set while Cu bulk was studied with

WIEN 9531 program using muffin tin orbitals and plane waves.
The other systems were done with GAUSSIAN 94 using an
analytical Gaussian basis set.

2. Theory
The topological properties of a molecular charge distribution

are summarized by its critical points (CP).10 These are points
where the gradient vector field,∇ F(r ) vanishes, and they are
classified by theF(r ) curvatures or three eigenvaluesλi (i ) 1,
2, and 3) of the Hessian matrix (Hij ) ∂2F(r )/∂xi ∂xj). There
are, in molecules and crystals, four types of these extremes that
are labeled by their rank (number of nonzero eigenvalues) and
signature (excess number of positive over negative eigenvalue).
These are maxima (3,-3), minima (3,+3), and saddle points
(3,+1) and (3,-1). The (3,-3) points occur generally at the
nuclear positions so that each nucleus is a three-dimensional
point attractor in the vector field∇F(r ). The region traversed
by the gradient paths which terminate at a given attractor is
called thebasinof the attractor. A (3,-1) CP is found between
every pair of neighboring nuclei. It represents both local
maxima in two directions and a local minimum in a third and
is called abond critical point. The gradient paths associated
with the negative eigenvalues at the (3,-1) point define the
zero-flux surfaces that partition the molecule or crystal into
unique fragments. Therefore, the set of surfaces formed by all
(3,-1) points partitions the system into a collection of chemi-
cally identifiable regions called atomic basins.32 These are the
most transferable pieces one can define in an exhaustive
partitioning of the real space.10 The unique pair of trajectories
associated with the positive eigenvalue at the (3,-1) point define
a line linking the nuclei, along which the charge density is a
maximum with respect to any neighboring line. It is called a
bond path, and its presence provides the necessary and sufficient
conditions for the existence of a bond.10 The network of bond
paths defines a graph that describes the structure of a molecules
or a crystal. A bond path determines and characterizes all of
the atomic interactions in a given system15,16 and has proven
useful in the analysis of physical properties of insulators, pure
metals, and alloys.15-18 The bond path provides a general
concept of a chemical bond in ionic, covalent, metallic, and
van der Waals solids, allowing the definition of a novel theory17

of cohesion and adhesion.

3. Methodology

Extreme 9423 determines the critical points ofF(r ) based on
the Newton-Raphson (NR) technique.33 The NR algorithm
starts from a truncated Taylor expansion at a pointr ) r0 + h,
aboutr0 of a multidimensional scalar function:
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whereF is the charge density andg andH are the gradient and
Hessian (matrix) at pointr0, respectively. The best steph to
get from the initialr0 to the critical point ish ) -H-1g. This
correction is then used to obtain a vectorrnew and the process
is iterated to∇F(r ) ) 0. The NR algorithm requires the
evaluation of the first and second partial derivatives ofF, at
arbitrary pointsr . The EXTREME 94 program evaluates these
derivatives analytically, using a Gaussian basis representation
for the electronic density.
In the present work, we projectF onto a homogeneous grid

of interval sizeh and use standard numerical methods33 to

calculate the partial derivatives ofF, which are then used in
the NR algorithm. In a simple approach, we have used finite
difference approximations to the first and second derivatives,
for equally spaced base points. We have developed derivative
expressions with sixth-order error (O(h6)) and backward,
forward, and central interpolation. For example, using the
stencil form,33 centered-difference approximation formulas, to
determine the noncrossed first and second derivatives ofF and
the mixed partial derivatives such as∂2F/∂x ∂y (due to the fact
that the sixth-order expression is just too large to fit the page,

TABLE 1: Topological Properties (au) of G(r) at the Bond Critical Point for the CO and NaF Molecules

CO

stepa rCb λ1 ) λ2 λ3 F(rc) ∇2F(rc)

analytic 0.736 722 61 -1.555 016 47 3.491 418 99 0.478 741 35 0.381 386 05
0.04 0.736 748 29 -1.565 560 36 3.488 143 44 0.478 745 09 0.357 022 73

0.736 721 91 -1.554 884 43 3.491 625 10 0.478 741 26 0.381 856 25
0.736 722 30 -1.555 018 70 3.491 423 54 0.478 741 35 0.381 386 14

0.03 0.736 751 10 -1.570 343 16 3.480 072 47 0.478 745 44 0.339 386 14
0.736 722 93 -1.555 287 06 3.491 217 30 0.478 741 37 0.380 673 19
0.736 722 57 -1.555 016 68 3.491 419 77 0.478 741 35 0.381 386 41

0.02 0.736 720 30 -1.557 260 29 3.496 655 79 0.478 743 85 0.382 135 20
0.736 723 18 -1.555 146 86 3.491 307 04 0.478 741 35 0.381 013 32
0.736 722 61 -1.555 016 52 3.491 418 99 0.478 741 35 0.381 385 99

NaF

stepa rNab λ1 ) λ2 λ3 F(rc) ∇2F(rc)

analytic 1.723 673 96 -0.071 214 25 0.533 838 32 0.04792425 0.391 409 82
0.04 1.723 464 2 9 -0.066 987 30 0.538 054 31 0.047 922 16 0.404 079 71

1.723 675 48 -0.071 180 99 0.533 888 10 0.047 924 24 0.391 526 13
1.723 673 95 -0.071 214 25 0.533 838 29 0.047 924 25 0.391 409 81

0.03 1.723 355 79 -0.061 971 24 0.547 506 08 0.047 920 09 0.423 563 60
1.723 671 16 -0.071 219 09 0.533 99 265 0.047 924 22 0.391 554 47
1.723 673 96 -0.071 214 25 0.533 83 829 0.047 924 25 0.391 409 78

0.02 1.723 099 62 -0.046 304 05 0.550 428 62 0.047 919 96 0.457 820 52
1.723 677 31 -0.071 524 58 0.533 791 15 0.047 924 25 0.390 741 97
1.723 673 96 -0.071 214 25 0.533 838 29 0.047 924 25 0.391 409 80

a The properties were calculated usingF stored with 5, 7, and 12 figure numbers for first, second, and third row, respectively. The analitical
values were calculated with EXTREME 94 and the others with the EXCUBO program. In each caseF was determined using KOs orbitals calculated
with GAUSSIAN 94 and a 6-31G** basis set.b rC and rNa are the distances from the critical point to the C or Na atom, respectively.

TABLE 2: Topological Properties (au) of G(r) at the Bond Critical Point for the NO, and HCtCH Molecules

NO

step rNb λ1 λ2 λ3 F(rc) ∇2F(rc)
analytic 0.920 171 09 -1.470 061 68 -1.376 216 93 1.131 338 30 0.562 513 69 -1.714 940 31
0.04 0.920 171 46 -1.470 013 53 -1.376 226 61 1.131 445 34 0.562 513 65 -1.714 794 80

0.920 171 00 -1.470 061 74 -1.376 216 90 1.131 337 77 0.562 513 69 -1.714 940 87
0.03 0.920 172 33 -1.470 071 18 -1.37 6339 07 1.131 210 22 0.562 513 75 -1.715 200 03

0.920 171 08 -1.470 061 68 -1.376 216 93 1.131 338 15 0.562 513 69 -1.714 940 47
0.02 0.920 168 99 -1.470 002 57 -1.376 399 03 1.131 922 24 0.562 513 70 -1.715 479 37

0.920 171 09 -1.470 061 68 -1.376 216 93 1.131 338 34 0.562 513 69 -1.714 940 27
HCCH C-C bond

stepa rCb λ1 ) λ2 λ3 F(rc) ∇2F(rc)
analyytic 1.133 228 28 -0.673 762 47 0.106 230 10 0.411 756 18 -1.241 294 81
0.04 1.133 228 26 -0.673 891 69 0.106 101 69 0.411 756 20 -1.244 168 17

1.133 228 28 -0.673 762 47 0.106 230 08 0.411 756 18 -1.241 294 83
0.03 1.133 228 26 -0.673 675 80 0.106 22111 0.411 756 20 -1.241 130 45

1.133 228 28 -0.673 762 47 0.106 230 08 0.411 756 18 -1.241 294 83
0.02 1.133 228 26 -0.673 468 65 0.105 880 16 0.411 756 20 -1.241 057 14

1.133 228 28 -0.673 762 47 0.106 230 09 0.411 756 18 -1.241 294 81
a The properties were calculated usingF stored with 7 and 12 figure numbers for first, and second row, respectively. The analytical values were

calculated with EXTREME-94 and the others with the EXCUBO program. In each caseF was determined using KOs orbitals calculated with
GAUSSIAN 94 and a 6-31G** basis set.b rN and rC are the distances from the critical point to the N or C atom, respectively.

TABLE 3: Topological Properties (au) of G(r) at the Critical Pointsa,b for One of the Regular Tetrahedron in Na4F4
rAc λ1 λ2 λ3 F(rc) ∇2F(rc)

Na-F 1.891 329 80 -0.035 891 14 -0.035 745 33 0.256 832 39 0.027 479 43 0.185 195 92
1.891 329 78 -0.035 891 19 -0.035 745 70 0.256 833 23 0.027 479 43 0.185 196 33

F-F 2.904 234 32 -0.006 244 56 -0.000 924 76 0.038 281 11 0.008 555 22 0.031 111 79
2.904 234 32 -0.006 244 26 -0.000 924 56 0.038 281 77 0.008 555 22 0.031 111 94

ring -0.006 325 72 0.001 900 57 0.037 082 21 0.008 543 42 0.032 657 06
NaFF -0.006 326 16 0.001 900 21 0.037 081 91 0.008 543 42 0.032 655 90
cage 0.005 071 24 0.005 071 24 0.005 071 24 0.003 817 78 0.015213 73

0.005 071 14 0.005 071 14 0.005 071 14 0.003 817 78 0.015 213 42
aCritical points are labeled by rank, number of nonzeroλi, and signature, sum of algebraic signs ofλi. A bond critical point is (3,-1), ring

(3,+1) and cage (3,+3). b In each line, the first and second rows give the EXTREME and EXCUBO (h) 0.04 au and FN) 12) results, respectively.
In each caseF was determined using KOs orbitals calculated with GAUSSIAN 94 and a 6-311+G(d,p) basis set.c rA is the distances from the
critical point to the left atom of the bond.
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we have chosen one with an error ofO(h3) as illustrative) are

Such expressions include only the coefficients of the functional

values present in the derivative formulas. The double circles
indicate the position of the base point where the derivative is
being evaluated and the adjacent circles are separated by the
intervalh.
Our methodology consists of performing all calculations as

though the electronic density was on a uniform grid. If the
source code is available, we work on a virtual grid and the
program evaluatesF only at the necessary points. That is, the
values ofF need not be stored and need only be calculated at
the appropriate points. If the source code is unavailable, a grid

Figure 1. Na4F4 cluster. Large and medium spheres denote Na and F
atoms while the small ones mark the bond critical points. The structure
defined by the cluster graph results from packing one F4 graph similar
to that highlighted in (a, top) and four NaF3 graphs as that highlighted
in the right corner of (b, bottom).

Figure 2. Cu13 cluster modeling a (100) Cu surface. (a, top) Top view.
(b, middle) Side view with the graph of one inverted square pyramid
highlighted. (c, bottom) Side view highlighting the graph of one
tetrahedron. The structure results from packing four square pyramids
and four regular tetrahedra between them. The small white spheres
denote the bond critical points.
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of stored values ofF must be prepared. In this case, the
computational load can be larger than that required by the
analytical approaches. Once that grid is built, one needs to
calculate the derivatives ofF at the same number of arbitrary
points r i in both methods. The analytical method calculates
the values of the derivatives only at ther i points using the basis
functions while the numerical method uses equations such as
(2)-(4). Such equations involve several points around each
r i, and our program has to interpolate when the points are not
on the grid. Thus, when the code is unavailable, the additional
computational load of the proposed method corresponds to the
number of points on the grid whereF has to be calculated plus
the interpolation at the points that are not on that grid.

4. Results and Discussion

The accuracy of the numerical evaluation of the topological
properties of theF(r ) at the critical points with the modified
version of EXTREME 94 (that we call EXCUBO) was tested
by comparing the results of Gaussian 94 analytic KSOs (Kohn-
Sham orbitals) using the original EXTREME 94 program, and
the results using a numerical grid ofF, calculated with the
CUBEV program of the AIMPAC 94 package.23 CUBEV
builds a homogeneous grid ofF of step sizeh. The analytic
KSOs were calculated using the gradient-corrected Becke
exchange potential34 together with the correlation potential of
Lee, Yang, and Parr35 (BLYP) and the 6-311G Gaussian basis
set.36 An error of order ofh6 is expected for the first and second
derivatives associated with the difference approximation used.
Therefore, forh around 0.03 au a precision of 10-12 au should
be expected. However, this also depends on the precision of
the calculation and, when the grid is built, of the number of
figures used by commercial software in the storage of the
density. This is an important point because in most of the
software currently used, the density is stored only for plotting
purposes with three to five significant figures (FN).
To study the effect of the size ofh and FN of F on the

localization and topological properties at the critical points of

F, we have analyzed the bond critical point in CO and NaF
molecules using different values ofh andF. The results of the
distance from the critical points to the A atom,rA, the
perpendicular curvatures to the bond path,λ1 andλ2, the parallel
curvatures to the bond path,λ3, the density value,F(r c), and
Laplacian,∇2F(r c), for selectedh values and FN levels used in
the storage ofF, are given in Table 1. Clearly, the properties
converge toward the analytic results only whenF is given with
12 significant figures. In this case, a step size ofh ) 0.04 au
is enough to obtain a precision of 6 FN in all the calculated
properties. However, we can also see that the storage ofF with
a FN value between 7 and 12 guarantees a precision from 4 to
6 FN in the topological analysis ofF. A FN equal to 5, on the
other hand, allows the localization of the critical point and the
correct determination of its type, (3,-1) while the remaining
properties are not well reproduced, i.e., it generates results of
qualitative value only.
In a second example, we have done a similar study on the

NO and HCCH molecules. The ground state of NO (Π2) has
the open-shell configuration (1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)
so that the extra electron in the 2π molecular orbital, that is
mostly localized in a plane, destroys the axial symmetry andλ1
* λ2. The results for a FN of 7 and 12 inF are collected in
Table 2. They confirm that a value ofh around 0.03 au and a
FN of 12 in F produces a good precision (around 10-7 au) in
the location and the topological properties at the critical points
of F.
To consider more complex cases, we have studied also the

Na4F4 and Cu13 clusters. Na4F4 is a small model of the bulk
NaF ionic solid. The most stable phase37 of NaF is a cubic fcc
and belongs to theFm3m space group witha ) 4.62 Å. In
Na4F4 (see Figure 1), in addition to the Na-F bonds, we found
bond critical points between the F atoms so that each Na atom
forms a regular tetrahedron with its three closest F neighbors,
which in turn form a regular tetrahedron between themselves.
The structure of this cluster is the result of packing four NaF3

and one F4 regular tetrahedra. The graph of one of these
tetrahedra is also shown in Figure 1. The results obtained for
that graph with a value ofh) 0.04 au are collected in Table 3.
The number and type of critical points defining the graph (four
nuclear attractors, four bond critical points, two four-membered
rings, and one cage) obey the Poincare´-Hopf10 relationship for
a stable structure of molecules or cluster, n- b + r - c ) 1,
wheren, b, r, andc are the numbers of nuclear attractors, bond,
ring, and cage critical points, respectively.
Cu13 (Figure 2) is a model of the Cu (100) surface with the

geometrical parameters of the bulk. Previous results22 have
shown that the structure of that cluster is a truncated form of
that found for the bulk Cu with bond paths linking each surface

TABLE 4: Topological Properties (au) of G(r) at the Critical Pointsa,b for One of the Square Pyramid in the Cu13 Cluster

Bondc

A-B rA λ1 λ2 λ3 F(rc) ∇2F(rc)
C-B 2.414 370 0 -0.028 911 2 -0.027 158 2 0.143 707 5 0.031 245 8 0.087 638 2
B-B 2.42 9048 7 -0.031 117 9 -0.028 669 9 0.137 123 3 0.031 099 4 0.07 7335 4
C-D 2.424 047 1 -0.028 231 6 -0.025 660 9 0.144 508 9 0.031 693 2 0.090 616 4
B-D 2.422 122 0 -0.028 971 0 -0.026 348 3 0.141 9806 9 0.030 947 5 0.086 661 4
B-D 2.434 190 9 -0.029 993 2 -0.028 447 2 0.134 5724 1 0.031 572 6 0.076 13 20

Rings

ABC λ1 λ2 λ3 F(rc) ∇2F(rc)
C-D-B -0.011 293 9 0.038 536 1 0.0406487 0.0203799 0.0678909
B-C-B -0.014 761 1 0.038 210 3 0.0402063 0.0199296 0.0636556

a See footnotea of Table 3.b In this case, with a presicion of 7 significant figures, EXTREME and EXCUBO (h ) 0.04 au and FN) 12) give
exactly the same results.F was determined using KOs orbitals calculated with GAUSSIAN 94 and a 6-311+G(d,p) basis set.cC, D, B denote
central, lower, and border atoms on the square pyramid (see Figure 2).

TABLE 5: Topological Properties (au) of G(r) at the Critical
Points for Bulk Cu Fm3m (No. 225)

Wyckoff
lettera critical point λ1 λ2 λ3 F(rc) ∇2F(rc)
e 24 Cu-Cu bond -0.0233 -0.0180 0.1339 0.0403 0.0926
f 32 ring -0.0074 0.0175 0.0175 0.0338 0.0275
b 4 octahedral

cage
0.0134 0.0134 0.0134 0.0222 0.0402

c 8 tetrahedral
cage

0.0064 0.0064 0.0064 0.0332 0.0193

a Except for the cage, the octahedra and tetrahedra graphs have
exactly the same value for the remainder critical points.

Electronic Charge Density in Molecules J. Phys. Chem. A, Vol. 101, No. 37, 19976979



Cu atom to its first neighbors. The top atoms form square
pyramids (in slabs of three or more layers the top atoms are
capping octahedra) with the lower atoms and tetrahedra between
them which at the same time form inverted square pyramids.
Each of those tetrahedra is capped by a bond path on the first
layer of atoms. The graph of one of the inverted square
pyramids and tetrahedron are also shown in Figure 2 and the
topological properties ofF at the critical points forh) 0.04 au
are collected in Table 4. In accordance with the Poincare´-
Hopf relationship there are eight bond critical points and four
three-membered rings for the five nuclear attractors forming
the square-pyramid graph. Tables 3 and 4 show that, even in

these complex cases, a value ofh around 0.03 au and 12 FN
(in principle, if one had access to the source code, the
computational cost could be independent of FN; however, if
this is not the case, one pays for one’s decimals) onF offer a
good compromise between computational cost and numerical
precision (around 10-6) in the location of the critical points and
the calculations of the topological properties of the electronic
density at these sites.
The previous results show that EXCUBO can be applied with

confidence to any numeric density regardless of the method
employed in its determination. As an example of its capabilities,
we will apply it to calculate the topological properties of
electronic densities determined using two very different methods
of solving the KS equations and different atomic basis sets. In
this final application, we will investigate the topological
properties ofF and the crystal structure of the Cu bulk and the
Cu (100) surface. The bulk was studied using the WIEN 95
program and the correlation and exchange functional of Perdew
et al.38 to generateF. That program uses the full-potential
linearized-augmented-plane-wave (FLAPW) method,39 which
is among one of the most accurate methods available for energy
band-structure calculations. In the FLAPW method the unit
cell is divided into nonoverlapping spheres (with radiiRi) and
in interstitial regions; in the former region the wave function is
expressed in atomic-like functions and in the latter region in
plane waves. The charge density inside the spheres is written
as a linear combination of radial functions multiplied by
symmetrized spherical harmonicsYlm(r ) and as a Fourier series
in the interstitial region. The source code is available so the
grid storage and computation is not required.
The most stable phase of bulk Cu is cubic fcc40 and belongs

to theFm3m space group witha ) 3.577 Å. Each atom has
12 nearest neighbors at 2.56 Å. Previous studies17,41have found
bond critical points midway between nearest neighbors sug-
gesting the formation of two types of polyhedra sharing its
faces: octahedra and tetrahedra with a cage critical point at the
center and eight- and four-ring critical points at the faces,
respectively. However, that study reported only the topological
properties of the charge density at the bond critical point. In
the present work we have located all CPs and the parameters
that characterize them are given in Table 5. Table 5 identifies
the critical points within a unit cell with the corresponding
Wyckoff letter in theInternational Tables for Crystallography,42

which serve as an aid in determining the topology of the electron
density of an extended system. Additionally, the topologically
defined elements of the Cu bulk structure are illustrated in
Figures 3 and 4. The results confirm that the crystal graph of
the bulk Cu is the result of packing octahedra and tetrahedra.
Those graphs for a Cu unit cell are also shown in Figure 4.
The Cu (100) surface was studied using the Cu41 cluster

modeling a periodic slab of two layers and the DMOL program
to generateF. This program uses the method of linear
combinations of atomic orbitals, or LCAO method to solve the
KS equations. A set of atomic numerical orbitals,30 given as
values on an atomic-centered spherical-polar mesh, are used as
a basis set so the KS orbitals andF are numerical functions. In
this case, a grid-based plot of (h ) 0.03 au and FN of 10) was
built using the BLYP functional and a double-numerical basis
set (DNP).30 The Cu41 cluster, unlike Cu13, allows one to model
the polyhedra that form the structure of the surface without
nuclear attractors in the border. Thus, we have found that in
Cu41, the set of CPs that define those tetrahedra previously
mentioned, have the right symmetry for the graph of the periodic
slab, i.e.,C4V in the cluster model andP4mm in the slab. The
topological properties at the CPs that generated the tetrahedra

Figure 3. Trajectories traced out by gradient vectors of the electron
density calculated using WIEN 95 program: trajectories of∇F(r ), in
the (100) (a, top) and (110) (b, bottom) planes of Cu. The region of
space traversed by trajectories that terminate at a given nucleus (denoted
by a large filled dots) whereF(r ) is a local maximum, defines the basin
of the atom. Each atom is bounded by sets of trajectories that terminate
at (3,-1) or bond critical point (denote by small filled dots). Only one
pair from such a set, indicated by dotted lines, appears for each bond
critical point in (a) and (b). A unique pair of trajectories also originates
at each bond critical point defining a line of maximum electron density
linking bonded nuclei, the bond path, as also indicated in (a) and (b).
The remaining critical points in those planes are (3,+3) or cage critical
points located in the octahedral holes (denote by open dots) and the
tetrahedral holes (denoted by a dot inside a circle).
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(five bond critical points, four three-membered rings, and one
four-membered cage) are collected in Table 6. Despite the very
different methods used to determine the electronic density in
the bulk and cluster cases, the values of the parameters for the

bond critical points on the slab are extraordinarily similar to
the bulk ones. The most interesting changes in the BCP
parameters from bulk to the surface are observed in the two
negative curvatures at the critical point of the bonds on the top.
In the bulk case, the principal axes of the Hessian tensor of the
charge density with negative curvatures extend from the BCP
toward the octahedral (λ2) and tetrahedral holes (λ1). Those
octahedral holes disappear in the top of the surfaces; conse-
quently the bonds now cap the tetrahedra graphs in a more
symmetrical way around the tetrahedral holes. Thus,λ2
increases its value and now the negative curvatures have
comparable magnitude.

Figure 4. Crystal graph characteristic of the Cu fcc topology. The white cube denotes the unit cell. Blue and pink spheres mark, respectively, the
Cu atoms and the bond critical points defining one of the tetrahedral graphs. There are in the cell eight tetrahedra similar to that, sharing one face
with the central octahedral graph. Additionally, the basin (just the Wigner-Seitz cell) of two atoms, denoted by yellow and green regions, are
superposed to show in 3D the topological structure elements ofF(r ) drawn in Figure 3 on the (110) plane. Open circles mark the octahedral cage
critical points while a square inside a circle denotes a tetrahedral cage critical point.

TABLE 6: Topological Properties (au) of G(r) at the Critical
Points for One Central Tetrahedron in the Cu41 Cluster

critical point λ1 λ2 λ3 F(rc) ∇2F(rc)
Cu-Cu in layer -0.0255 0.0227 0.1234 0.0440 0.0752
Cu-Cu between layers-0.0322 0.0265 0.1583 0.0500 0.0997
ring -0.0121 0.0285 0.0393 0.0390 0.0558
cage 0.0134 0.0180 0.0192 0.0378 0.0506
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5. Conclusion

A simple numerical method for the topologic analysis ofF-
(r ) (regardless of how it was generated) is implemented for the
EXTREME 94 program. The method allows, for example, the
study by DFT of complex systems where the electronic
correlation is important, regardless of the kind of basis set and
the method used to solve the KS equations, and allows the
analysis of the resulting density with the topological theory of
Bader.
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