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The efficient evaluation of electrostatic energies of macromolecules in aqueous solutions is useful for many
problems in theoretical structural biology. A continuum method based on the generalized Born (GB)
approximation is implemented here. It is shown that the choice of the dielectric discontinuity surface is
critical for obtaining correct electrostatic energies of molecules in solution. In addition, it is demonstrated
that an electrostatic model validated on solvation energies (vacuum to water transfer) might not be appropriate
for energies in solution and might not yield correct energy ranking of ligand/protein complexes. The agreement
between the GB approach and the finite difference solution of the Poisson equation is shown to be very good
for both the molecular and the solvent accessible surface. The discrepancies between the GB and the finite
difference approach are much lower than the ones due to the use of different surfaces.

1. Introduction

Accurate electrostatic energies in aqueous solution are needed
to discriminate between near-native and nonnative conforma-
tions of a protein or to find the most probable binding mode of
a ligand/protein or protein/protein complex. In most force fields,
the electrostatics of the solute-solvent system are described as
a distribution of point charges. An exact approach to the
problem should consider the interactions among all possible
pairs. This is computationally very expensive, not only because
of the high number of interactions involved but also because
of the computational costs due to the equilibration of the water
molecules. Continuum electrostatic models were introduced to
overcome such difficulties.1-4

A continuum model usually describes the solute as a region
with low dielectric constant (between 1 and 4) with a certain
spatial charge distribution usually obtained from the partial
charges of the solute, and the solvent as a region with high
dielectric constant (∼80). Assuming these conditions, an exact
solution of the problem is obtained by solving the Poisson
equation, or, in the presence of diluted salts, the Poisson-
Boltzmann equation. These equations can be solved on a spatial
grid with a finite difference approach. Results originating from
this simplified model for electrostatics seem to agree well with
molecular dynamics simulations that include explicit water
molecules.5 Even if the gain in computation time is remarkable
with respect to explicit water calculations, for certain applica-
tions it is still too slow.
A continuum electrostatics method inspired by the work of

Still et al.6 is presented in this paper. Different descriptions of
the solute-solvent boundary are allowed in the present imple-
mentation and this distinguishes it from previous studies.6-9 The
choice of the solute-solvent boundary is shown here to be
extremely critical for obtaining accurate electrostatic energies.
It is also shown that for continuum models of the solvent a

validation based on thesolVation energy(vacuum to water
transfer) might not be sufficient. Such validation is insufficient
whenever an electrostatic continuum model of the solvent is
used to supplement a vacuum Coulomb term in a force field to
obtain the electrostaticenergy in solution(i.e., solvation plus
vacuum Coulomb energy) of a (macro)molecule. In cases where
the solvation energy anticorrelates with the vacuum Coulomb

energy, as in many molecular complexes analyzed in this study,
it is necessary to validate the model also on energies in solution
to obtain accurate energy rankings. Hence, a continuum
electrostatic treatment that approximates well the solvation
energies does not necessarily yield accurate electrostatic energies
of macromolecules in aqueous solution. The latter are more
relevant and by far the most critical in simulations of biologically
relevant systems.

2. Theory

The electrostatic energyE of a continuum system can be
expressed in terms of the electric displacement vectorDB(xb) and
of a location-dependent dielectric constantε(xb) as an integral
over three-dimensional spaceR3:10

SinceDB(xb) is additive, for point charges it can be rewritten as
a sum over all chargesi in the solute molecules:

In this way eq 1 can be split up into the self-energy and
interaction energy terms:11,12

The self-term originates from the energy stored in the electric
field due to the charge itself, while the interaction term accounts
for the interactions of all pairs of charges. Equation 4 gives
the Born formula for the solvation of a spherical ion in water
by assuming uniform dielectric constants for vacuum and water.
If ε(xb) is supposed to be constant overR3, eq 5 yields the simple
Coulomb law between chargesi andj. In the case of molecules
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in solutionε(xb) can be assumed to be equal toεw in the solvent
region andεp in the solute region.13-15 Within this assumption
eq 3 has been solved by a semianalytical approach6 and by a
completely analytical approach.12

In their semianalytical approach Still et al. neglected the
reaction field (see below) and calculated the self-energies of
every charge numerically.6 For the interaction term they derived
an analytical expression of the GB formula16-18 (in the following
this analytical expression will be referred to as the GB formula).
It yielded the interaction energy of two charges as a function
of their distance and the product of their self-energies.
In the analytical approach Schaefer and Karplus also ne-

glected the reaction field in the calculation of the self-energies.12

By introducing Gaussian functions to describe the atomic
volumes, they obtained a formula for the self-energy of each
atom as a function of the coordinates of all the other ones. It is
an integral that does not have an analytical solution, but the
authors provided an analytical approximation to its numerical
solution (eq 22 in ref 12). For the interaction term they used
the GB formula.
The main difference between the two methods is that the

electrostatic energy in the analytical approach is fully dif-
ferentiable and yields electrostatic forces that are consistent with
the energy function, while the semianalytical approach assumes
that the variations of the total electrostatic energy due to
variations of the self-energies are small and can be discarded
in the derivatives. However, the solute description in the
semianalytical approach is more precise and different choices
of the low dielectric volume are possible, while the volume
description through the introduction of Gaussians does not allow
a detailed representation of the solute-solvent boundary. In
this paper it is shown that the choice of the solute-solvent
boundary is critical for the correct evaluation of the electrostatic
energy of molecules in solution.

3. Method

In the present implementation, eq 3 is treated in a semi-
analytical way within the Coulomb field approximation and the
GB approach. In subsection 3.1 the Coulomb field approxima-
tion is used for the self-energy term (eq 4) and a numerical
evaluation of the self-energy is presented. The GB formula is
introduced in subsection 3.2 to evaluate the interaction energy
term (eq 5).
3.1. Self-Energy.As mentioned in section 2,ε(xb) can be

assumed to be equal toεw in the solvent region andεp in the
solute region. In this way eq 4 for the self-energy of a charge
i can be rewritten as12

whereτ ) (1/εp) - (1/εw).
In the presence of a spatial discontinuity in the dielectric

constant, each chargei induces a polarization charge distribution
at the discontinuity surface between solute and solvent. The
field generated by this charge density, called reaction field and
denoted in the following asRBi(xb), should be added to the
Coulomb field of the chargei itself to obtain the actual dielectric
displacement:

In the self-energy term (eq 6) eachDB i(xb) will be approximated
by the Coulomb field; i.e., the reaction field will be neglected
(Coulomb field approximation). This approximation relies
mainly on the short-range character of the Coulomb field energy
density, that is proportional to 1/r4. The applicability of this
approximation to the first and second integral in eq 6 has been
addressed in refs 11 and 12, respectively. Neglecting the
reaction field is more critical for large molecules, but for these
the interaction term is dominant. In the case of a low dielectric
molecule in a high dielectric medium, the Coulomb field
approximation leads to an overestimation of the self-energies.12

In the Coulomb field approximation, eq 6 can be rewritten
as

where for each atomic chargei in the solute, a spherically
symmetric distribution has been assumed inside its own van
der Waals sphere. The integration domain in eq 8 is all of the
solute volume apart from the volume of atomi. Contributions
originating from the integration inside the spherei itself can be
discarded, since each individual charge distribution is assumed
not to change during the system evolution.
In this way the evaluation of the electrostatic self-energy of

molecules in solution in the Coulomb field approximation is
reduced to the evaluation of the integral in eq 8 over the solute
volume. This is done on a three-dimensional grid, as explained
in the next sections.
3.1.1. Solute Volume.The definition of the solute volume

is not unique. The most common definitions describe the
molecular volume as the volume enclosed by the van der Waals
surface (vdWS), the solvent-accessible surface (SAS), or the
molecular surface (MS).
The vdWS is simply the external surface resulting from the

convolution of all the van der Waals spheres of each atom. The
SAS is obtained in the same way by previously increasing the
van der Waals radii by an amount that can be interpreted as the
radius of a hypothetical water sphere rolling over the van der
Waals surface. The surface spanned by thecenterof such a
rolling sphere describes the solvent-accessible surface.19 The
MS is spanned by thesurfaceof this rolling sphere in contact
with the vdWS.20

The first two volumes can be described by scanning every
atom sphere (with radiusRvdW or RvdW + Rprobe, respectively)
over a cubic grid and looking at which cube centers fall into
such spheres. The procedure adopted for the MS consists of
three steps. The first one is the same as for the SAS; in the
second one a spherical grid is generated on the surface of each
sphere (of radiusRvdW + Rprobe) and all of the spherical grid
points that do not fall inside any of these spheres are labeled
(they describe the SAS). Finally, a sphere of radiusRprobe is
placed over each of the labeled points and all the cubic grid
points falling inside the probe sphere are assigned to the solvent
region. This procedure is also used in the program UHBD
(University of Houston Brownian Dynamics).21-23

The volume enclosed by the vdWS appears to be unphysical
for electrostatic calculations, since many small cavities between
the atoms in the interior of a molecule would be assigned to
the high dielectric region, even if they are not accessible to water
molecules. It is still a matter of discussion whether in
electrostatic continuum models the most appropriate volume to
describe the solute region is the one enclosed by the MS or by
the SAS. The present implementation allows the user to choose
between any of the aforementioned surfaces, while in previous
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implementations of the GB approach6-9 it was not possible to
define the dielectric discontinuity surface by the MS.
3.1.2. Numerical Evaluation of the Self-Energy.For the

numerical evaluation of the integral in eq 8, a three-dimensional
grid is used. Points inside the solute volume are labeled and a
map of the solute grid points is built. Then the contribution of
each of them is assigned to the self-energy of every charge:

whereKi contains all of the grid points occupied by all atoms
but atomi (Figure 1). This definition ofKi will apply in all
the following equations. The grid points belonging toKi and
falling at a distance fromxbi larger than a fixed cutoff (a
reasonable value is around 5 Å) are grouped in cubes containing
27 units each. This creates a second coarse grid beyond the
given cutoff. Hence, in this region the grid spacing is 3 times
larger than in the region inside the cutoff. This leads to a speed
up of the calculations without loss of accuracy, since the main
contribution to the integral are evaluated on the fine grid
(without any grouping). In this way the self-energy of every
chargei on a grid is

It follows that, for the transfer from a medium with dielectric
constantεp to a medium with dielectric constantεw, the solvation
energy of the chargei is

It is possible to define a quantity directly correlated to the
integral in eq 9, the effective Born radius,Ri

eff:

The Born formula for the solvation energy of a spherical ion
(with chargeq and radiusR) in water is

Equations 12 and 13 show that the definition of the effective
Born radius originates from the Born formula. By substituting
eq 11 into eq 12 it is possible to rewriteRi

eff as

It is important to note that the effective Born radius of a charge
does not depend on the dielectric constants or the charges of
the system, but is just a geometrical parameter.Ri

eff will be
used to calculate the interaction energy as explained in the next
section.
3.2. Interaction Energy.The interaction term includesN2

contributions and its numerical evaluation on a grid would be

computationally too expensive, even in the Coulomb field
approximation. A much more efficient way to evaluate the
interaction term is provided by the GB formula.6 It implies
that the interaction energy between two charges in a molecule
changes upon transfer from a medium of dielectric constantεp
to a medium of dielectric constantεw according to:

where

For Monte Carlo or molecular dynamics simulations in implicit
water the electrostatic energy rather than the solvation energy
is needed. Hence, it is necessary to add the interaction energy
in the medium of dielectric constantεp to eq 15:

In the caserij2 . Ri
effRj

eff, eq 17 yields the Coulombic
interaction energy in a medium with the dielectric constant of
the solvent. In the opposite caseRi

effRj
eff . rij2, it yields the

Coulombic interaction energy in a medium with the dielectric
constant of the solute. Equation 15 can be extended to the case
i ) j, where one obtains the solvation energy of the chargei
(eq 12). In the intermediate cases, eq 15 gives an estimation
of the screening on thei ∼ j interaction by the solvent.
3.3. Total Electrostatic Energy.From eqs 3, 10, and 17 it

is possible to express the electrostatic energy of a solute of
dielectric constantεp in a solvent with dielectric constantεw
as:
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Figure 1. Schematic representation in 2D of the numerical evaluation
of the integral in eq 9. The shaded region represents the molecule
volume that contributes to the determination of the self-energy of an
atom described by the white spherical region. Cubic grid elements are
assigned to the integration domain if their center falls inside the solute
volume and outside the sphere of the charge whose self-energy is
evaluated.
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When the energy of different conformations of the same
molecular system is evaluated the term∑i qi2/(2Ri

vdW
εw) is

constant and can be neglected. The solvation energy for the
transfer from a medium with dielectric constantεp to a medium
with dielectric constantεw can be derived from eqs 3, 11, and
15:

Using eq 12 one can rewrite eq 19 in a compact form

Equations 18 and 19 have been introduced in the CHARMM
force field and provide the electrostatic energy in solution and
the solvation energy, respectively.

4. Test Systems

The approximations which have led to the expression for the
electrostatic energy in solution (eq 18) and for the solvation
energy (eq 19) generate both a systematic and a statistical error.
The former originates from the Coulomb field approximation
introduced to calculate the self-energy and from the GB formula
used for the interaction energy. The statistical error due to the
discrete grid in the self-energy evaluation can be asymptotically
eliminated by reducing the grid spacing.
To check the systematic error, the electrostatic energies in

solution and the solvation energies of different chemical
compounds evaluated by eqs 18 and 19 are compared with the
corresponding values calculated by the finite difference solution
of the Poisson equation, provided by the program UHBD. The
distinction between solvation energy and energy in solution is
important and in the following they will be analyzed separately.
The test systems consist of a set of 40 small organic

compounds, and a set of structures of proteins or ligand/protein
complexes generated independently of this work. They include
a set of complexes between small ligands and one monomer of
HIV-1 aspartic proteinase (ligand/HIV PR; Caflisch, A., un-
published results), a set of complexes between small ligands
and thrombin (ligand/thrombin; ref 24), a series of snapshots
taken every 5 ps of a molecular dynamics (MD) trajectory of
barnase at 300 K (barnaseT300; ref 25), and a series of snapshots
of the same protein taken every 10 ps of an MD denaturation
simulation at 360 K in an 8 M urea solution (barnaseT360;
Caflisch, A., unpublished results). For the small organic
compounds the comparison between the present method and
the finite difference calculation is done for the solvation
energies, while for all other test cases it involves also the
energies in solution.
Charges and van der Waals radii for the ligand/HIV PR and

ligand/thrombin complexes, and for the barnaseT300 trajectory
are assigned according to the polar hydrogen parametrization
of CHARMM (param19).26 The all-hydrogen parametrization

of CHARMM (param22),27 was employed for charges and radii
of the small organic compounds and of the barnaseT360
trajectory. As already mentioned, these structures were gener-
ated independently of this work, and this is the reason for the
different parametrizations. In all the calculations the solvent
dielectric constant is assumed to be 78.5 and the one of the
solute 1. The value for the solute is consistent with the partial
charges of the two aforementioned parameter sets that were
derived fromab initio calculations with a dielectric constant of
1. The radius of the probe water molecule used to generate the
MS or the SAS is 1.4 Å. The grid spacing of the final focusing
in the finite difference calculation was 0.25 Å for the small
organic compounds and 0.5 Å for the other test cases. The
grid spacing used for the evaluation of the self-energies in the
present method was 0.06 Å for the small organic compounds
and 0.35 Å for the other test cases. The difference in the CPU
time required by the two electrostatic methods for every energy
evaluation of the macromolecular systems ranged from a factor
of 31 for the ligand/HIV PR complexes (800 s for UHBD, and
26 s for the present method) to a factor of 14 for the
barnaseT360 trajectory (1000 and 71 s for the two calculations,
respectively). The calculations were performed on SGI work-
stations (processor R4400, clock frequency 200 MHz). As
shown in subsection 5.5 the grid spacing in the self-energy
calculation can be increased to values of 0.5-0.6 Å without
significant loss in accuracy but with a major gain in speed.
In the next sections, the continuum electrostatic model which

led to eqs 18 and 19 will be called MS/GB, SAS/GB, or vdWS/
GB, according to the surface used to define the solute boundary.
Following the same convention, the finite difference solution
of the Poisson equation will be referred to as MS/FDP, SAS/
FDP, or vdWS/FDP.

5. Results

The solvation energy values of the small organic compounds
are discussed in subsection 5.1, while the results for the ligand/
HIV PR complexes, the ligand/thrombin complexes, and the
barnase trajectories are presented in subsection 5.2, 5.3, and
5.4, respectively. Unless otherwise specified, thex-axis in the
plots refers to the present method and they-axis to the finite
difference calculations. The error due to the grid approximation
in the self-energy evaluation is estimated in subsection 5.5 for
a conformation of barnase from the barnaseT360 trajectory.
5.1. Solvation Energies of Small Organic Compounds.

This is a typical test case for electrostatic continuum
models.6,12,28-30 The main reason is that experimental values
of solvation free energies are available.31-33 In addition, their
structure does not undergo large rearrangements during solva-
tion. The solvation free energy of a molecule can be divided
into an electrostatic contribution and an apolar contribution that
is due to the free energy needed for the cavity formation and to
the solute-solvent dispersion energy. In the present calculations
only the electrostatic term is evaluated. The apolar term is
positive and of the order of 1-2 kcal/mol for the small
molecules analyzed in this work. It accounts for almost the
entire solvation energy of the apolar compounds.
Forty small organic molecules are analyzed. They include

10 charged (acetate, ethanolate, methanolate, phenolate, pro-
lineamide, guanidinium, imidazolium, methylammonium, eth-
ylthiolate, methylthiolate), 15 polar (acetic acid, acetamide,
formamide,N-acetylproline-NH2, methylamine, imidazole, in-
dole, ethanol, methanol, phenol, 2-propanol, (Z)-N-methyl-
acetamide, alanine dipeptide in the C7eq, C5, andRR conforma-
tions), and 15 apolar compounds (two conformations of
1-butene, two conformations of 2-butene, ethene, propane,
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benzene, butane, isobutane, two conformations of ethane, ethyl
sulfide, methyl ethyl sulfide, dimethyl disulfide, methanethiol).
In Table 1 the electrostatic contributions to the solvation energies
calculated by the MS/FDP and SAS/FDP methods are compared
with the experimental solvation energies for 14 of the 40 small
molecules for which experimental data are available. The apolar
contributions are not evaluated but they are always positive. In
the MS/FDP calculations, the electrostatic contribution to the
solvation energy is in general more negative or close to the
experimental solvation energy, while in the SAS/FDP calcula-
tions the electrostatic solvation energy is always larger than the
experimental solvation energy. The larger volume enclosed by
the SAS reduces the electrostatic effects significantly and does
not seem to be appropriate to describe the electrostatics of
molecules in solution, at least for the CHARMM parametriza-
tions.
Figure 2a shows the results for the electrostatic contribution

to the solvation energy, calculated by the MS/FDP and MS/
GB methods for the 40 small organic compounds. The
agreement is very good. The slope of the fitting line is 1.06
and the correlation coefficient (R) is 0.998 with all the
compounds. Including only the nonionic compounds, one
obtains a slope of 1.47 and anRof 0.986. The MS/GB solvation
energies are shifted on average by 2.7 kcal/mol with respect to
the ones from the MS/FDP calculations. This effect is due
mainly to the Coulomb field approximation. It is possible to
reduce this shifting to around 0.8 kcal/mol by using in eq 19 a
solute-solvent boundary defined by a surface similar to the
vdWS (it is defined as the vdWS, with vdW radii decreased by
0.1 Å; in the following it will be referred as vdWS-01). This
choice is similar to the one of Still et al. (they reduced the vdW
radii by 0.09 Å to reproduce solvation energies calculated by
free energy perturbations)6 and even if it can appear unphysical
for the reason given in subsection 3.1.1 it yields solvation energy
values close to the MS/FDP ones as shown in Figure 2b. The
correlation coefficients are 0.999 and 0.992, and the slopes of
the fitting lines 0.99 and 1.15, with and without the ions,
respectively. In the following it will be shown that in general
this agreement does not hold for the energies in solution.
5.2. Ligand/HIV PR Complexes. The second test case

consists of a set of 1050 conformations of small molecules
docked in the dimerization interface of the HIV-1 aspartic
proteinase monomer by minimization of the CHARMM energy
with a distance-dependent dielectric. Minimized positions of
the ligands on the surface of the rigid proteinase monomer had

been generated with the program MCSS (Multiple Copy
Simultaneous Search).34 For all of them the solvation energies
and the energies in solution calculated by UHBD and by eqs
18 and 19 are compared. Different surfaces are used to define
the solute volume. The ligands are benzene, cyclohexane,
N-methylacetamide, benzamidine, imidazole, diketopiperazine,
acetate ion, and methylammonium ion.
5.2.1. Choice of the Solute-Solvent Boundary Surface.

The choice of the solute-solvent boundary surface strongly
affects the electrostatic energies in solution. Figure 3a compares
the energies in solution of the diketopiperazine/HIV PR
complexes calculated by the MS/FDP and SAS/FDP methods,
respectively. The correlation coefficient between the two sets
of data is very low (0.269). Low correlations can be observed
also in theN-methylacetamide/HIV PR (R ) 0.463) and
imidazole/HIV PR (R ) 0.398) complexes. This shows that
different descriptions of the solute-solvent boundary yield
completely different ranking of the energies in solution for this
kind of ligand/protein complexes.
5.2.2. Solvation Energies and Energies in Solution.The

solvation energies of the diketopiperazine/HIV PR complexes
calculated by MS/FDP and SAS/FDP show a correlation of

TABLE 1: Comparison of Experimental Solvation Energies
with Finite Difference Calculations

∆Gsolv (kcal/mol)

molecule MS/FDPa SAS/FDPa experimentsb

ethane -0.20 -0.082 1.8
n-butane (anti) -0.26 -0.12 2.3
ethene -1.8 -0.14 1.3
propane -1.5 -0.15 1.3
1-butene -1.5 -0.13 1.4
methanethiol -1.9 -0.30 -1.2
benzene -2.0 -0.28 -0.9
ethanol -7.0 -0.99 -5.0
methanol -7.3 -1.1 -5.1
2-propanol -6.4 -0.89 -4.8
phenol -7.3 -0.97 -6.6
acetic acid -8.0 -0.82 -6.7
acetate ion -76 -44 -75
methylammonium ion -80 -46 -68
aElectrostatic contribution to the solvation energy.bAll experimental

data were taken from Cabani et al.31 except acetate ion and methyl-
ammonium ion which were taken from Pearson.33

Figure 2. (a, top) Electrostatic contribution to the solvation energy of
40 small molecules calculated by the MS/GB and the MS/FDP methods.
The fit has been done with the ionic compounds (full plot), and without
the ionic compounds (inset). (b, bottom) Same as in (a), for the vdWS-
01/GB and the MS/FDP methods.

8102 J. Phys. Chem. A, Vol. 101, No. 43, 1997 Scarsi et al.



0.819 (Figure 3b). Also the solvation energies of theN-
methylacetamide/HIV and imidazole/HIV PR complexes show
good correlations (R) 0.874 andR) 0.854, respectively). Yet,
as shown in the previous subsection, the energies in solution
calculated by MS/FDP and SAS/FDP show a poor correlation.
The reason for this is an anticorrelation between the solvation
energies (calculated with any surface) and the energies in vacuo
(correlation coefficients of-0.771 with both the SAS and the
MS), as it can be seen in Figure 4, a and b. Interestingly, a
multiplicative factor times the vacuum Coulomb energy could
well reproduce the solvation energies of these systems. This
means that the correlation between the MS/FDP and SAS/FDP
solvation energy values is determined mainly by the contribution
of the energy in vacuo and only marginally by the energy in
solution. Consequently, in general it will not be sufficient to
check the solvation energy to validate an electrostatic model.

5.2.3. Comparison with the Finite Difference Calculations.
Electrostatic energies calculated by the vdWS/GB method are
not in agreement with the corresponding values obtained by
the vdWS/FDP calculations. When the solute-solvent boundary
is defined by the vdWS charges are much more exposed to the

solvent than in the case of the MS or the SAS and the Coulomb
approximation is not valid any more.
By contrast, both solvation energies and energies in solution

calculated by the MS/GB method correlate well with the results
from the MS/FDP method. Results of the fits for these
quantities are shown in Table 2. The energies calculated by
the two methods are plotted in Figure 5 for the methylammo-
nium ion/HIV PR complex. The slopes of the fitting lines for
energies in solution of different complexes are between 0.51 (
N-methylacetamide) and 0.83 (diketopiperazine) and the cor-
relation coefficients vary between 0.701 (N-methylacetamide)
and 0.966 (methylammonium ion). Hence, the ranking of the
energies in solution is preserved. The slope can eventually be
corrected analytically by means of an appropriate scaling factor.
The solvation energies show a better correlation than the
energies in solution. Both solvation energies and energies in
solution calculated by the present method are significantly
shifted in magnitude with respect to the finite difference
calculations. This is an effect of the Coulomb field approxima-
tion that overestimates the self-energies. If the MS/FDP results
are compared with the ones from the vdWS-01/GB method,
solvation energies are not shifted any more and show satisfactory

Figure 3. Electrostatic energies of the diketopiperazine/HIV PR complexes evaluated by the SAS/FDP (x-axis) and the MS/FDP (y-axis) methods.
Energies in solution (a, left) and solvation energies (b, right) show a different behavior.

Figure 4. Electrostatic solvation energies calculated by a finite difference approach vs electrostatic energies in vacuo (Coulomb law) for the same
complexes as in Figure 3. In (a, left) the SAS is assumed as the dielectric discontinuity surface in the solvation energy calculations, while in (b,
right) the MS is used.
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correlations (in the example of the ligandN-methylacetamide,
R has a value of 0.546). Also the energies in solution are not
shifted any more, but for many ligand/protein complexes they
do not correlate with the finite difference calculations (for
N-methylacetamide,R is 0.151). This means that, although the
choice of a smaller solute volume in eq 18 yields accurate
solvation energies for the small organic compounds (see Figure
2b) and for many ligand/protein complexes, in the general case
of large molecules it is not suited for reproducing the MS/FDP
energies in solution.
When compared with the finite difference calculations, the

MS/GB energies in solution are shifted up and their scaling is
slightly enhanced with respect to MS/FDP. The enhancement
of the scaling is reflected in the value of the slope, which is
lower than 1. As already mentioned the shifting is of no
importance, while the slope can be corrected analytically, since
it is similar for the different complexes.
The results from the SAS/FDP method have been reproduced

by the SAS/GB calculations with a very good correlation. The
mean value ofR for the energies in solution of all the ligand/
HIV PR complexes is 0.88( 0.13 and the one for the solvation
energies is 0.83( 0.10. The reason for this good agreement is
that, in the case of the SAS, the induced polarization charge
density is lower than in the case of smaller solute volumes, like
the ones enclosed by the MS or the vdWS.
5.3. Ligand/Thrombin Complexes.The calculations of the

last subsection were performed also on a set of 395 ligand/
thrombin complexes involving the ligands benzene, propane,
methanol, pyrrolidine, imidazole, and methylammonium ion.
The minimized positions of the ligands on the surface of the
rigid thrombin molecule had been generated by MCSS with a
distance dependent dielectric and have been described in detail.24

As shown in Table 2, the MS/FDP and MS/GB calculations
show a reasonable correlation with correlation coefficients

varying from 0.556 (imidazole) to 0.920 (benzene). The
solvation energies and the energies in solution calculated by
the two methods are plotted in Figure 6 for the methylammo-
nium ion/thrombin complexes. The slopes of the fits vary more
than in the ligand/HIV PR complexes, but for thrombin the
number of minima of each ligand type is in general smaller
and this leads to poorer statistics. The shift in the energy is
enhanced and seems to grow proportionally with the number
of atoms of the complex (922 atoms in the HIV PR monomer
and 2559 in thrombin).
For the ligand/HIV PR and ligand/thrombin complexes the

energy ranking obtained by MS/GB is substantially correct
(Table 2) and can be used for structure-based ligand design.24

If more accurate energies are needed, for the ligand/HIV PR
complexes one could scale the energies calculated by the MS/
GB approach by a factor corresponding to the average value of
the slope of the fitting lines. This might be accurate enough
because the slopes have similar values (ranging from 0.51 to
0.83) for different ligand types. For the ligand/thrombin
complexes the slopes of the fitting lines show a larger variability
(from 0.56 to 1.32) and it might be more difficult to reparam-
etrize the model with a simple scaling factor. The larger
variability in the slope might be a consequence of the smaller
number of conformations as mentioned above.
5.4. MD Trajectories of Barnase.In the test cases presented

above, the structures of the different complexes were the result
of energy minimizations. However, the actual conformation
of a molecule in solution is determined by the free energy. For
this reason, snapshots from MD trajectories of barnase with
explicit solvent molecules are considered (barnaseT300 and
barnaseT360). BarnaseT300 is a control trajectory of 310 ps
at 300 K, pH 7 with explicit water, saved every 5 ps.25

BarnaseT360 is a simulation of 1.25 ns at 360 K, pH 7 with
explicit water and urea (8 M), saved every 10 ps (Caflisch, A.,
unpublished results).
For every barnase conformation the electrostatic energy in

solution and solvation energy are evaluated by the MS/FDP and
MS/GB methods. The results of the fits are shown in Table 2.
There is a linear correlation between the results of the two
methods. The correlation coefficient for energies in solution
is 0.814 and 0.931 for barnaseT300 and barnaseT360, respec-
tively. Thus the present method approximates well the con-
tinuum electrostatic energies in aqueous solution for structures
minimized with a distance-dependent dielectric as well as for
conformations obtained from MD simulations with explicit
solvent molecules.
5.5. Estimation of the Grid Error. The error due to the

grid approximation in the evaluation of the self-energies is
estimated by subsequently rotating the protein barnase by half
a degree for a total of 720 rotations (360°). The conformation
of barnase is the one assumed after 600 ps of the barnaseT360
MD trajectory. For every orientation the electrostatic energy
is evaluated by the MS/GB method. This procedure is repeated
with different grid spacing of 0.3, 0.4, 0.5, and 0.6 Å.
The analysis has been done on the solvation energy, since

this quantity is directly affected by the statistical error. The
electrostatic energy in vacuo is not calculated on a grid and is
consequently independent of rotations or translations. The
results are shown in Table 3. The average solvation energy is
approximately the same for the three different grid spacings,
while the standard deviation ranges from 1.2 kcal/mol for a grid
spacing of 0.3 Å to 3.4 kcal/mol for a grid spacing of 0.6 Å.
The CPU time required for one energy evaluation ranges from
about 86 s (spacing of 0.3 Å) to about 38 s (spacing of 0.6 Å).

TABLE 2: Comparison of Electrostatic Energies Calculated
by the MS/GB and the MS/FDP Methods

energy in solution solvation energy

Na Rb Rc ∆d Rb Rc

Ligand/HIV PR Complexes
benzene 58 0.812 0.80 442-e -
cyclohexane 117 0.812 0.80 445- -
N-methylacetamide 192 0.701 0.51 446 0.901 1.04
imidazole 178 0.718 0.61 445 0.877 1.00
diketopiperazine 183 0.832 0.83 445 0.929 1.02
acetate ion 88 0.942 0.61 452 0.969 1.15
benzamidine 163 0.937 0.78 454 0.956 1.13
methylammonium ion 71 0.966 0.82 458 0.966 1.10

Ligand/Thrombin Complexes
benzene 32 0.920 1.15 1269- -
propane 84 0.871 1.32 1270 - -
methanol 78 0.572 0.56 1272 0.862 1.51
imidazole 81 0.556 0.92 1268 0.856 1.22
methylammonium ion 52 0.728 0.90 1234 0.936 1.28
pyrrolidine 68 0.803 0.82 1229 0.919 1.30

Barnase MD Trajectories
barnaseT300 63 0.814 0.54 591 0.995 1.21
barnaseT360 126 0.931 0.68 498 0.947 1.27

a N: number of conformations analyzed.b R: correlation coefficient
for the fit of the MS/GB to the MS/FDP energies.c R: slope of the
fitting line of the MS/GB to the MS/FDP energies.d ∆: difference (in
kcal/mol) between average energy from the MS/GB and from the MS/
FDP calculations.eApolar compounds such as benzene, cyclohexane,
and propane have no partial charges in the polar hydrogen parametriza-
tion of CHARMM param19. For all the ligand/protein complexes
involving these molecules the parameters for the fit of the solvation
energies are exactly the same as for the fit of the energies in solution.
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6. Conclusions

An efficient method for the evaluation of electrostatic energies
of molecules in pure solution in the continuum approximation
has been presented. The effect of the introduced approximations
has been evaluated by comparison with finite difference
calculations. It has been shown that the errors originating from
them are low and the present method yields a correct description
of the electrostatics of macromolecules in solution. These errors
are smaller than the differences originating from various
descriptions of the dielectric discontinuity surface. There is a
significant gain in speed with respect to the finite difference
calculations.

The molecular systems used for the validation included not
only the standard case of the solvation energies of small organic
compounds but also some macromolecular complexes in order
to investigate the possible applications of the method. These
test cases have highlighted two important features: The
fundamental role of the discontinuity surface between the two
dielectrics, and the importance of a distinct analysis of solvation
energies and energies in solution. In this sense the typical test
case of the solvation energies of the small molecules cannot be
considered sufficient. It would suggest to use the vdWS-01/
GB method in order to reproduce the results obtained by the
MS/FDP calculations, which are the closest to the experimental
values. But this choice is shown to be inadequate for
macromolecules, where only the use of the same surface in
UHBD and in eq 18 provides energies in solution that correlate
well, even if shifted. Such a shift is not problematic, since in
general one is interested in energy differences. The analysis
of the solvation energies is not sufficient to validate an
electrostatic model. When compared with an exact calculation,
solvation energies and energies in solution behave differently.
This is particularly evident for molecular complexes that show
a strong anticorrelation between solvation energies and energies
in vacuo.

Figure 5. Electrostatic solvation energies (a, left) and energies in solution (b, right) calculated by the MS/GB and the MS/FDP methods for the
71 methylammonium ion/HIV PR complexes.

Figure 6. Electrostatic solvation energies (a, left) and energies in solution (b, right) calculated by the MS/GB and the MS/FDP methods for the
52 methylammonium ion/thrombin complexes.

TABLE 3: Statistical Error Due to the Grid
Approximation: Electrostatic Solvation Energy of Barnase

∆E [kcal/mol]

grid spacing (Å) average std dev min max CPU time (s)

0.3 -860.0 1.2 -863.0 -856.9 85.9
0.4 -859.9 1.8 -864.3 -854.4 54.2
0.5 -859.9 2.5 -866.6 -852.9 42.8
0.6 -860.1 3.4 -870.9 -848.7 37.5
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