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We demonstrate the feasibility of exciting long-lived, circular Rydberg states by time dependent weak electric
fields such as might be encountered in typical ZEKE-PES (zero-electron-kinetic-energy photoelectron
spectroscopy) conditions. Through a geometric interpretation of the dynamics, we identify the field
configurations needed for either the stability or the excitation of ultra-long-living Rydberg states and conclude
that nonuniform stray fields could be (partially) responsible for the observed, anomalously long lifetimes
exhibited by ultrahigh Rydberg states, although under typical ZEKE-PES conditions other mechanisms like,
for example, ion-Rydberg collisions constitute the main stabilization agent.

1. Introduction

Zero electron kinetic energy (ZEKE) spectroscopy is a robust
and widely used method for obtaining spectra of molecular ions
or clusters with laser-optical resolution.1-8 The method relies
on producing, and subsequently ionizing, ultrahigh, ultra-long-
living molecular Rydberg states9 (“ZEKE states”) with principal
quantum numbern J 100. An issue that has attracted
considerable attention lately is the enhanced stability of such
states.10-16 It is generally accepted that ZEKE states are a
superposition of angular momentum (l) eigenstates, in which
the high-l states carry more weight than low-l ones. Therefore,
the expectation value of the angular momentum over ZEKE
states is large, and it is understood that ZEKE states owe their
exceptional stability precisely to their large angular momentum.
However, in this paper we focus directly on the dynamics of
high-n, definite-l states in weak external fields. These states
are an acceptable approximation to the long-lived ZEKE states
which occur in the experiments; moreover the understanding
of their dynamics opens the way to the accurate manipulation
of ultrahigh, atomic, or molecular Rydberg states by applied,
weak external fields. Therefore, from the standpoint of ZEKE
the issue is how the initially small-l states, which are prepared
in a few-photon experiment, are stabilized (i.e., how they acquire
large angular momenta). Clearly, a number of mechanisms may
be at work, and recently intramolecular stabilization mechanisms
have also been proposed, in which the nature of the coupling
between the rotation degrees of freedom of the core and the
degrees of freedom of the Rydberg electron plays an important
role.14,15 However, collisions with neighboring ions,12,13,16

which are always present in a molecular beam, are an effective
way for the Rydberg electron to acquire a large angular
momentum, and the effects of uniform dc fields14 (if any are
present) should be considered too. All these mechanisms must
contribute, to a greater or lesser extent, to the excitation of long-
lived ZEKE states. We concentrate here on the effects of one
of the many agents which may contribute to the excitation of
stable ZEKE states, i.e.,nonuniform, weak, stray electric fields.
In fact, under the most typical ZEKE experimental conditions,
the initial small-l states are exposed, among other things, to
weak, stray electric fields. In this article, we address two
questions, namely how stray fields can excite large-l states and
also how these large-l states are affected by weak electric fields.

The problem of the stability of such states in very weak
electric fields is particularly interesting, because it is related to
the intriguing observation that the lifetimes of ZEKE states do
not scale as∼n,3 as was expected by extrapolation from low-n
quantum calculations based on hydrogenic approximations. The
lifetimes observed in the experiments are much longer, probably
scaling as as either∼n4 or ∼n5.1,10-13 However there is no
clear experimental evidence yet of the exactn-dependence of
the lifetimes of ZEKE states.17-19 Most likely, the scaling with
n of the lifetimes of ZEKE states is given by the convolution
of more than one single power law and it depends on the specific
experimental conditions.
It is clear that small-l states are necessarily shorter lived than

large angular momentum states. For small angular momenta,
the Rydberg electron is effectively coupled to the electronic
cloud around the molecular core, which quickly leads to either
autoionization of the electron or dissociation of the molecule.
The matrix elements describing the process scale as∼n-3/2,9

as one can see by applying first-order perturbation theory to
the hydrogenic approximation, and become rapidly negligible
for largerl’s. Therefore, the lifetimes are expected to scale as
∼n,3 and also to be much longer for Rydberg states with large
angular momenta.
Ultrahigh Rydberg states, however, are in an anti-Born-

Oppenheimer20 regime (the electron frequency is the slowest
in the system, slower even than core rotation) and the quantum
numbers involved are so large that classical (and semiclassical)
methods givequantitatiVe agreement with experiments16 and
full quantum treatments.21 Moreover, a classical approach
constitutes the most practical way of investigating the dynamics
of these states, because the very high density of states (and also
the large degeneracy, for largen’s, of hydrogenicn-manifolds)
means that the computational demands of an accurate quantum
calculation escalate dramatically, posing formidable challenges
to contemporary computers. In any case, classical mechanics
leads to the same conclusions on the stability of large vs small
angular momentum states: the expected scaling of the lifetimes
of low-L (in this paper we indicate the classical angular
momentum byL and the corresponding quantum number byl)
classical orbits obeys the same∼n3 law as low-l quantum states.
In the classical picture the Rydberg electron, being exposed to
a potential which is almost exactly Coulombic, follows a Kepler
ellipse22 to a good approximation, and can exchange energy with
the core electrons only when it is in the proximity of the
molecular or atomic core i.e., once per orbit). The period of a
Kepler orbit scales as∼n3,22 which yields the same prediction
for the scaling of the lifetimes of Rydberg electrons as a
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quantum mechanical analysis. Moreover, if the Rydberg
electron moves along a large-L orbit, i.e., a Kepler ellipse with
small eccentricity, then it senses a strong centrifugal barrier and
it cannot approach the molecular core closely; therefore, energy
exchanges with the core are quenched and the orbit becomes
stable.
Since ultra-long-living ZEKE states are (in our approximation,

as we will tacitly assume in the rest of the paper) Rydberg states
with large angular momentum, amechanismwhich can populate
high-l Rydberg states will consequently enhance the ZEKE
signal. It has been argued (and experiments confirm14,17,18) that
weak dc fields increase the lifetimes of Rydberg states by mixing
different angular momentum states. In the hydrogenic ap-
proximation, a small-l state, when placed in a uniform dc field,
mixes with all the othern - 1 angular momentum states, and
since the large-l states are stable, the probability of decay of
the state becomes diluted by a factor∼n. However, dc fields
cannot change the magnetic quantum numberml, because the
projection of the angular momentum along the axis of the
external field is a constant of motion, and high-l states carry
the same weight as low-l states, despite their larger degeneracy
(gl ) 2l + 1). Therefore, uniform, dc fields cannot account for
all of the proposed extra∼n2 factor in the lifetimes.12,13 On
the other hand, weak fields with time dependent orientation can
changeml, and nonuniform stray fields23 (as well as fields due
to neighboring moving ions) are conjectured to be the cause of
the unaccounted diffusion inml space. Ifml is not conserved,
high-l states become statistically favored, and∼n2 stable states
become available to the Rydberg electron, which leads to a
greater dilution of the decay probability and to the extra∼n2
factor in the lifetimes. In this paper we examine the effect of
stray electric fields of varying orientation on Rydberg states
and answer the question of how and when they can significantly
contribute to the extended lifetimes of ZEKE states. The
strength of our study is that most of the results may be obtained
analytically. The price we pay is that we restrict our analysis
to a simple, but representative hydrogenic model. Indeed, our
classical model captures the essence of the excitation and
stabilization mechanism and we prefer to confine our study to
this idealized problem reserving our study of dipolar and
quadrupolar effects in alkali atoms for a another publication.24

This paper is organized as follows. In section 2 we briefly
review our classical model of the dynamics of Rydberg electrons
in weak, slowly varying electric fields; in section 3 we present
our explanation of the experimental results of Gross and Liang21

and generalize their numerical results on the stability of very
high-l states (“circular states”), providing a complete analysis
of the dynamics of such states in weak, slowly varying electric
fields. In the same section we also discuss the excitation of
high-l ZEKE states by stray electric fields. We finally draw
some general conclusions in section 4.

2. The Model

In this section we briefly review our classical model, which
we described in detail elsewhere.16 We begin our analysis by
considering an uniform dc field (Stark effect). The corrections
to the pure hydrogenic eigenenergies are linear in the field,20

which means that physically the external field is coupled to the
permanent electric dipole of the Rydberg state. Clearly,
hydrogenic states do not have a permanent electric dipole
moment in the usual{n,l,ml} basis, but the Hamiltonian of the
hydrogen atom can also be diagonalized in parabolic coordi-
nates,20 and in that basis the eigenstates exhibit a permanent
electric dipole moment. Classical mechanics provides a more
intuitive picture of the origin of such dipole: the electron spends
a much longer time at the aphelion of the Kepler orbit (see

Figure 1), where it moves much more slowly, and itsaVerage
charge distribution is therefore skewed toward the aphelion of
the ellipse, thereby yielding a permanent electric dipole
moment.25-27 The Stark frequency20ωS (in atomic units, which
we use throughout this paper,ωS ) 3/2nF, whereF is the
external field) of typical, weak stray fields (F ∼ 5 V/m) is
usually much smaller than the Kepler frequency,22 ωK ) n-3,
of the Rydberg electron. This means that the electron revolves
around the Kepler orbit many times before the external field
can change the angular momentum of the electron significantly.
Under such conditions the Kepler orbit itself can be treated as
a dynamical object,21,25,26in the sense that the parameters which
determine the characteristics of the ellipse change in time, and
precisely those parameters become the dynamical variables of
the motion. Essentially, by a direct application of classical
perturbation theory, we study the effects of the external field
on theelements(in the sense of celestial mechanics28) of the
Kepler ellipse. Also, if the Stark frequency is larger than the
precession frequency due to the quantum defect (this is generally
satisfied if lRydberg > lcore, where lcore is the largest possible
angular momentum of the core electrons), the analysis of the
hydrogenic model not only encapsulates the dominant dynam-
ics14,16,17,29 but is also capable of providing aquantitatiVe
explanation of the experimental results.19,30 The dynamical
variables of the model are the angular momentumL and the
Runge-Lenz vectorA of the orbit,22 which fully describe a
Kepler ellipse. The angular momentum is orthogonal to the
plane of the ellipse and also defines the sense of the motion
along the orbit, while the Runge-Lenz vector points in the
direction of the perihelion and its magnitude is equal, in atomic
units, to the eccentricity of the ellipse. The equations of motion,
however, turn out to be particularly simple when expressed in
terms of thescaledRunge-Lenz vectora) nA, which has the
dimensions of an angular momentum, is obviously orthogonal
to L and satisfies a constraint equation with it:

Note that the scaled Runge-Lenz vector may range between 0
andn, just like the angular momentum of a Rydberg electron
in ann-manifold, so that we may speak of “large” or “small”
a’s in the same sense in which we speak of “large” or “small”
angular momenta. It is next convenient to introduce two new
vectors, which are simple combinations ofL anda and are the

Figure 1. A Kepler ellipse and the two orthogonal conserved vectors,
the angular momentumL and the Runge-Lenz vectorA (not to
scale): these two vectors define uniquely both the shape of the Kepler
ellipse and its orientation in space and also the sense of the motion of
the Rydberg electron along the orbit.

L2 + a2 ) n2 (1)
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generators of SO(4) (i.e.,

The equations of motion ofê andη are particularly simple:

where ωS is the Stark frequency mentioned before. Not
surprisingly, eqs 3 were derived originally by Born.26 The
solution of these equations is easy in the case of a time
independent external field: in that case the two vectorsê and
η simply precess, clockwise and counterclockwise respectively,
aroundωS, as was pointed out already by Percival.27 In typical
experimental settings, however, Rydberg atoms or molecules
travel in a beam and they sense any spatially nonuniform field
as a time dependent field, which makes the dynamics more
complicated. To a first approximation, however, a time varying
stray field can be modeled by a field rotating uniformly (around
they-axis) with frequencyωR,21 i.e., a circularly polarized (CP)
field:

Gross and Liang21 studied the special case of the stability of
very high-l states under the action of the field in eq 4). This
seemingly idealized problem reveals interesting clues about the
stability of circular Rydberg states in time dependent, weak
electric fields. Gross and Liang, however, confined themselves
to the case in whichL is initially aligned with the external field
and integrated eqs 3 numerically; their results agree well with
their full quantum treatment (showing that for very largen’s
eqs 3) are very accurate, whereas the computational demands
of a quantum treatment escalate dramatically). Those authors
also checked their results experimentally, thus verifying the
accuracy of the classical predictions and quantum calculations.
The emphasis of the work in ref 21 was on the study of the

stability of high-l states, and their results, both numerical and
experimental, show that for slowly varying fields the long-living
circular states remain essentially circular, if the angular mo-
mentum of the Rydberg electron is initially aligned with the
external field. We reproduced their calculations and we show
the results in Figure 2], where curves a, b, and c are essentially
identical with the plots in ref 21. It is clear that very different
dynamical behaviors are possible (see Figure 2). We can
explain the dynamics analytically and our approach can also
make sense of the strange trajectory of curve d, so that, in what
follows, we explain and alsogeneralizethe results of ref 21.

3. Results

It is convenient to treat the problem of a Rydberg electron in
a rotating electric field by viewing the dynamics in a frame
rotating with the field, so that in the new frame the field (and
therefore also the Stark frequencyω, associated with it) becomes
a time independent field. It is also useful to observe that since
the field in eq 4 rotates in the{x,z}-plane, the axis of rotation
is directed along they-axis and it is also time independent both
in the inertial and rotating frame. By transforming to the
rotating frame the following operator equation holds22

and the equations of motion become

whereωRĴ. These equations can be solved analytically, by
introducing the propagators forê andη respectively, so that
the time evolution is given by

Introducing the precession frequencyω and the total angle of
precessionφ as

the exact propagators in the rotating frame are16

where the upper and lower signs of eq 4 give the propagators
for ê andη, respectively. However, the exact, complicated form
of the propagators in eq 9 is not particularly useful in providing
physical insight into the dynamics and in identifying the

ê ) 1/2 (L + a) (2)

η ) 1/2 (L - a)

dê
dt

) - ωS× ê (3)

dη
dt

) ωS× η

F ) F [cos(ωRt)k̂ + sin(ωRt)ı̂] (4)

Figure 2. These curves show howL responds to the action of a weak
electric fieldF rotating with frequencyωR. F andL are initially aligned
along thez -axis, and the evolution of the projection ofL onto the
{x,z}-plane is shown for up to a timet ) π/ωR. Curves a, b, c, and d,
correspond toωS/ωR ) 10, 1, 0.2, and 10 again (but with a different
initial angle betweenL and the field), respectively. The magnitude of
L is normalized to 1.

( ddt)rotating) ( ddt)fixed - ωR× (5)

dê
dt

) -(ωS + ωR) × ê (6)

dη
dt

) (ωS - ωR) × η

ê(t) ) Urot
+ (t,t′)ê(t′) (7)

η(t) ) Urot
- (t,t′)η(t′)

ω ) xωS
2 + ωR

2 (8)

φ ) ω(t - t′)

Urot
( (t,t′) )

(cosφ (ωS

ω sinφ - ωR

ω sinφ

-
ωS

ω sinφ
ωS
2

ω2
cosφ +

ωR
2

ω2

(ωSωR

ω2
[1 - cosφ]

ωR

ω sinφ (ωSωR

ω2
[1 - cosφ] ωR

2

ω2
cosφ +

ωS
2

ω2

) (9)
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mechanismbehind the process. We prefer to present here a
clear,geometricview of the motion which not only explains
the numerical and experimental results of ref 21 at theintuitiVe
level, but also allows us to estimate the conditions under which
nonuniform stray fields become important in the excitation of
ZEKE states. One can best understand the dynamics ofê and
η in the inertial frame by observing that it consists of of two
components: a pair of precessions around different axes, which
yields the dynamics in the rotating frame, and a rotation around
they-axis, which maps the two vectors back to the inertial frame.
It is worth spending a few lines to clarify the relationship
betweenê andη and the angular momentum, and therefore also
the stability and lifetime, of Rydberg states. A small-l, short-
lived state corresponds to the two vectorsê andη being almost
opposite, becauseL ) ê + η. On the other hand, a large-l,
long-lived state will be excited if, during their motion,ê andη
approach each other, and become approximately parallel (i.e.,
if their differencea becomes small, since the magnitude ofa,
which is proportional to the eccentricity of the orbit, is connected
to the magnitude ofL by eq 1). Finally, a circular, stable state
remains (quasi) circular if the differencea) ê - η remains
small throughout the motion. We will consider three typical
cases. First, whenωR , ωS, the two axes of precession are
very close Figure 3]); ifL is initially close to its maximum
value (circular state) and originally aligned with the field, as in
the experiments of Gross and Liang,21 thenê andη are initially
almost parallel and they are also oriented approximately along
the Stark frequency vectorω. During their motionê andη
describe two cones of small amplitude, so that they are never
distant from their own axes of precession which are almost
coincident (see Figure 3): thereforeê andη do not separate
significantly during their precessionand the state remains
essentially circular. The rotation aroundĵ simply reverses the
direction ofL , at the same rate of rotation as the external field,
so that the angular momentumL tracks theF-vector, as is shown
in curve a of Figure 2. This analysis provides a simple, intuitive
explanation of both the numerical result and the experimental
observation that under these conditions circular states maintain
their circularity while the direction of the angular momentum
is reversed.21 A moment’s thought shows that, by the same
geometrical argument, a smallL , largea state will follow a
similar dynamics. A smallL state, in which the scaled Runge-
Lenz vector is initially aligned with a slowly rotating field, does
not acquire a large angular momentum, while the scaled Runge-

Lenz vector remains maximal and tracks the rotating electric
field. These special results, however, depend on the choice of
the initial conditions and a completely different outcome ensues
from a different initial orientation ofL (Figure 2, curve d, which
could also be explained, albeit in a more complicated way, by
the same approach). Therefore, we are able to conclude that
the stability of circular states observed in ref 21 is strictly
contingent to the initial orientation of the angular momentum
relative to the external field.
Notice that the dynamics of Figure 2, curve a, and Figure 3

seems to contradict our statement that the external fields couple
with the permanent electric dipole moment of the Rydberg orbit.
Although the corrections to the energy levels of a hydrogen
atom in an external electric field (Stark effect) can be calculated
exactly by considering theclassical energy shift due to an
electric dipole in a dc field20,25and quantizing the Runge-Lenz
vector, the dynamics of Figures 2 and 3 is not the same as for
an electric dipole in a rotating external field. The effective
electric dipole of a Kepler ellipse is oriented alonga, which is
always orthogonal to the angular momentum, so that the initial
configuration in which the angular momentum and the field are
aligned is a configuration of unstable equilibrium for the dipole
(orthogonal to the field, which is a hyperbolic point31). As the
electric field begins to rotate, one expects the dipole to move
away from the hyperbolic point and to oscillate around the
equilibrium point, namely, in alignment with the slowly rotating
electric field. This, however, does not happen: the dipole
rotates with approximately the same frequency as the field and
remains essentially orthogonal to it. The reason for this
unexpected dynamical behavior is that the effective dipole of
the orbit of a Rydberg electron does not have any inertia term.
Therefore, although the dipole analogy explains well the shift
of the energy levels, the equations of motion are intrinsically
different from the one of a real, physical dipole in a time
dependent electric field, and new dynamical behavior appears,
like curve a in Figure 2.
Next, consider the case in whichωR ∼ ωS Figure 4: now

the two axes of precession are well separated, and no longer
aligned with thez-axis; therefore,ê andη, although initially
aligned with one another, describe two cones of large amplitude
and drift apart during their motion. This implies that the
eccentricity of the orbit grows and the state loses its circularity

Figure 3. Trajectories ofê andη in the rotating frame;ωS/ωR ) 10.
Both vectors precess on two narrow cones, shown in the figure, which
have almost coincident axes, and thereforeê andη never separate much,
so that the state remains circular.

Figure 4. Trajectories ofê andη in the rotating frame;ωS/ωR ) 1.
The two cones of the previous figure are no longer aligned, and the
axes of precession have significant components alongωR. ê andη are
still initially aligned with F (i.e., thez-axis of the figure, so that the
amplitude of the precession cones becomes much larger than in the
previous case.
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Figure 2, curve b). The final result, after half a period,1/2TR,
depends strongly upon the ratio betweenω andωR, as resonant
effects become dominant, sinceê andη can eventually come
together again.16 Obviously the rotation aroundĵ , which maps
all variables back into the inertial frame, does not influence the
dynamics of the magnitudes ofL anda. Finally we consider
the limit in whichωR . ωS Figure 5: in this case the two axes
of precession are determined essentially byωR and are almost
opposite to each other. However,ê precesses clockwise because
of the minus sign in eq 6 whileη precesses counterclockwise
so that the two vectors, which now describe almost a pair of
back-to-back disks, remain very close to each other during their
precessions and the state remains essentially circular. Also,ω
∼ ωR, and therefore the rotation aroundω is almost exactly
balanced by the precession aroundω, so that also the direction
of L remains essentially unchanged. This explains curve c in
Figure 2 and was also observed experimentally.21 We have so
far clarified the problem of one of the two issues relevant to
ZEKE, namely, the stability of circular states in weak, time
dependent electric fields, and we have demonstrated that the
stability of such states in slowly rotating fields, which was
observed in the experiments21 depends on the initial, relative
orientation of the angular momentum and the external field. We
will now show that our analysis of the results in ref 21, thanks
to its greater generality, sheds some light also on the excitation
of ZEKE states. In fact, in contrast with the first two cases,
our argument for the stability of circular states whenωR . ωS

applies toall possible initial conditions, not only to the special
case of circular states withL initially oriented along the field.
This generalizesthe results by Gross and Liang,21 and applies
to initial conditions with smalll, which constitute the second
issue relevant to ZEKE, namely how small-l states acquire large
angular momenta. As we mentioned before, several mecha-
nisms are at work, and we concentrate here on the role played
by nonuniform stray fields.
It is clear that in the situation of Figure 5, the relationship

betweenê andη does not vary significantly as the two vectors
rotate around their respective axes of precession,regardless of
their initial configuration. We conclude that the properties of
all Rydberg states do not change significantly in a relatively
rapidly varying, weak external field (as long as the conditions
under which the model remains a good approximation are
satisfied16). Our analysis also makes clear that the relevant

parameters are not the absolute value of the field strength and
rotation frequency as separate quantities, but rather their ratio,
which determines the relative orientation of the axes of
precession, in the rotating frame, forê andη.19,30 This key
observation allows us to derive some estimates of the conditions
under which nonuniform stray fields can or cannot significantly
enhance the lifetimes of Rydberg states. Remember that
Rydberg electrons are usually prepared by a laser pulse, and
are initially in a small angular momentum state, due to the usual
selection rules and if such electrons can be promoted to large-l
states, they will avoid close collisions with the core, which are
responsible for the decay of Rydberg states via either autoion-
ization of the electron or dissociation of the molecule. A weak
dc field can only changel, because in a Stark field the projection
of L along the field is a constant of motion. Therefore, only
one value of the magnetic quantum number is accessible and
low-l and large-l states are equally probable, and, as we
discussed before, a uniform distribution inl space can account
only for an extra factor∼n in the lifetimes. However, we have
shown (curves b and d in Figure 2 that fields with time
dependent orientationdo change ml: an uniform distribution in
ml space greatly favors large-l states, thanks to the 2l + 1
degeneracy factor; this in turn makes collisions with the core
even less likely and provides a dynamical mechanism which
accounts for the proposed∼n2 factor in the scaling of the
lifetimes of ZEKE states.12,13,16 In a typical ZEKE experiment,
the atoms or molecules whose spectra are being investigated
undergo a supersonic free jet expansion and then travel in a
well collimated beam. Clearly, these atoms or molecules which
are rapidly moving in the experimental beam, will sense any
nonuniformstray field present in the experimental apparatus as
a time dependentfield. While a realistic stray field is not the
same as a CP field, the analysis above can nevertheless give
some useful results. Any time dependent field can be decom-
posed in a Fourier series, and each Fourier component contrib-
utes independently to the total transition matrix element
(neglecting interference effects). We may then concentrate on
the “typical” Fourier component of a stray field and study the
effects of a field that rotates with that frequency. In fact, this
is exactly the case of the field configuration studied experi-
mentally by Gross and Liang:21 those authors obtain good
agreement between theoretical predictions and experimental
results, even if the CP field of eq 4 is only an approximation to
the actual field which they used in the experiments. The typical
period of a CP field approximating a nonuniform stray field
field should be equal to the ratio between the spatial correlation
lengthλ of the stray field to be modeled, and the speedV of the
supersonic molecular beam, so that we may consider a typical
field frequency to be

The condition under which a rotating field can changeml

effectively and excite the highest-l states is that the rotation
frequency is not much larger than the Stark frequency of the
field, namely,16

At the same time,λ cannot be too large, otherwise the field
will become almost uniform: this leads to the requirement that

where τ is a time shorter than the delay between the laser
excitation of the Rydberg state, and the pulsed electric field

Figure 5. Trajectories ofê andη in the rotating frame;ωS/ωR ) 0.2.
The two precession cones are now almost opposite and they have
become very large, almost degenerating to a pair of disks;ê andη
point initially along thez-axis (i.e., they are initially almost orthogonal
to their axes of precession).

ωR
Typical∼ 2πV

λ
(10)

ωS

ωR
J 1/2 w λ J

2πV
3nFstray

(11)

λ j Vτ (12)
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which ionizes the Rydberg molecules or atoms, and also collects
the ionizing electrons which constitute most of the ZEKE signal.
Typically, such delay is∼1 µs,32 and one may reasonably set
τ ≈ 100 ns. Using typical values of the other experimental
parameters,32 namelyV ∼1000 m/s andFstray∼5 V/m the two
conditions yield

It follows that forn J 50 there is scope for nonuniform stray
fields to enhance Rydberg states lifetimes. Clearly, a shorterτ
would imply a higher constraint on principal quantum number
n. However, ZEKE experiments are performed exciting Ryd-
berg states with principal quantum numbers which do satisfy
the conditionn J 50 (in typical experiments,n is often much
greater than such lower limit); therefore, nonuniform stray fields
constitute aViablemechanism for the excitation of long-lived,
high-l states, andmayhave been playing a nonnegligible role
in the success of ZEKE. Under typical experimental conditions,
stray fields are thought to be rather uniform, and they are
probably not the most important agent in the stabilization
process, in which many other mechanisms are involved;
however, we have just shown that they cannot be totally
neglected. In fact, typical ZEKE molecular beams also contain
ions which move at a speed∼δV relative to the Rydberg atoms
or molecules, whereδV is the spread in the distribution of beam
speeds. Since for typical experimental settingsδV , 1/n ion-
Rydberg collisions become tremendously effective in extending
Rydberg lifetimes because of the very large cross section of
slow {nl} f {nl′} collisions.16 Recent experiments18 were
aimed at determining the mechanism of the enhancement of
Rydberg lifetimes and great care was taken in reducing stray
fields; in these experiments, in which extra ions were injected
in the interaction region and long lifetimes were observed,
indicate that ionic fields are indeed an important mechanism
for lifetime enhancement. These results, however, do not
necessarily contradict our analysis, which relates totypical
ZEKE conditions, in which the goal of the experiment is a really
the spectroscopic measurement and no special effort is made
in reducing stray field beyond a reasonable value (and indeed
we argue that itshould not be done, since such fields may well
contribute to the excitation of the useful, long-lived ZEKE
states).

4. Conclusions

In this paper we have developed an analytic interpretation of
so far unexplained, merely numerical and, most importantly,
experimental results21 on the stability of circular Rydberg states
in time dependent, vanishing electric fields. Moreover, we have
also derived a geometric and intuitive picture of the dynamics,
which uncovers the mechanism for the stability of large-l states,
and shows that the stability of such states, which was observed
in the experiments,21 is contingent to the specific, initial
orientation of the angular momentum of the state relative to
the external field. By the same approach, we have derived an
estimate of the principal quantum numbers of Rydberg states
beyond which, in the hydrogenic approximation, nonuniform
stray electric fieldsmaybecome effective in the excitation of
ultra-long-living ZEKE states, which are the reason for the
success of ZEKE-PES as a spectroscopic technique. Our
conclusions on the role of nonuniform stray fields could be
tested experimentally by measuring then-dependence of the
lifetimes of Rydberg states around the critical valuenc∼ 50 in
a ion free enVironment. However, the role of the quantum defect
should be first quenched by a microwave field,16 so that the

hydrogenic model would become more accurate. We expect
that nonuniform stray fields should be able to enhance Rydberg
lifetimes for sufficiently largen’s, and that long lifetimes should
be observable even in ion free environments. Finally, our work,
thanks to the clear geometric picture of the dynamics, suggests
a simple way to prepare specific angular momentum states, in
the quasidegeneraten-manifold, by selecting both the appropriate
configuration of external fields and the time during which the
Rydberg electron is exposed to such fields. In fact, a Rydberg
electron in a weak, CP electric field in the rotating frame is
equivalent to a Rydberg electron in crossed electric and magnetic
field33,34 in the inertial frame, as long as the magnetic field is
weak enough ( i.e., the rotation frequency of the CP electric
field is small), and the diamagnetic term, which is quadratic in
the field, can be neglected.
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