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Model calculations indicate that chaotic current oscillations during anodic electrodissolution of copper into
phosphoric acid may be controlled by applying a simple map-based algorithm. In the experiments, the unstable
period-one and period-two orbits embedded in the chaotic attractor have been stabilized by small perturbations
of the anodic potential. We present the results of an experimental test for a power law relating the average
chaotic transient time to the size of maximum perturbation allowed during control. The reported experimental
results are in good agreement with the theoretical predictions by Ott, Grebogi, and Yorke.

I. Introduction

Due to advances in the field of nonlinear dynamics, the
interest in electrochemical systems exhibiting a variety of
nonlinear phenomena ranging from simple oscillations to chaos
has been renewed. Comprehensive reviews on electrochemical
reaction dynamics have been published recently by Hudson and
Tsotsis1 and Koper.2 Despite the prevalence of chaos in
electrochemical systems, most of the experiments are designed
to avoid parameter ranges where such “complications” may
arise. However, since the advent of the celebrated Ott-
Grebogi-Yorke (OGY) theory3 of chaos control, it has been
realized that operating in a chaotic regime may be even
advantageous.
Following OGY several control methods have been developed

and applied to control chaos in different experimental settings,
e.g., magneto-elastic and hydrodynamic systems, electric cir-
cuits, lasers, chemical reactions, and tissues of heart and brain
in vitro. For a review on different control strategies and their
applications we refer to a recent paper by Shinbrot.4 The most
often applied OGY algorithm is based on the sensitivity of a
chaotic system to initial conditions and utilizes the short-term
predictability of the deterministic dynamics: a desired periodic
orbit embedded in the chaotic attractor is being stabilized by
applying small, time-dependent perturbations to a control
parameter.
Surprisingly, there are only few experimental examples of

chaos control in chemical systems.5-9 This might be due to
the hardship involved in such experiments because of the high
level of internal noise and the relatively large period of chaotic
oscillations in the homogeneous chemical systems studied so
far.5-7 Electrochemical systems, on the other hand, seem to
be an ideal playground for the chaotically inclined. The
reproducibility of electrochemical experiments is good, the level
of internal noise is low, the period of chaotic oscillations may
be very short, the behavior can be monitored by simple current
or voltage measurements, and the control parameter (potential

or current) is easily attainable. The idea has been put into
practice first by Parmanandaet al.8,9 They reported on
controlling the chaotic current oscillations during the anodic
dissolution of a rotating copper-disk electrode in sodium acetate-
glacial acetic acid buffer.
In this paper, we report the control of chaotic current

oscillations in the copper-phosphoric acid system under po-
tentiostatic conditions. The dynamics of this system has been
extensively studied earlier by Schellet al.10-12 They showed
that for an appropriate range of control parameters the system
exhibits a variety of interesting behavior, such as simple
oscillations, period-doubling cascades, mixed-mode transitions,
and chaos. First we attempt to control chaos in a simple
skeleton model for the system. The three-variable model, which
simulates the dynamics in good agreement with the experiments,
has been developed by Koper and Gaspard.13 Our aim with
the model calculations is to test if a simple proportional feedback
(SPF) algorithm introduced by Peng, Petrov, and Showalter14,15

can be used to control chaos in this electrochemical system.
(In an earlier publication16 one of the authors of this paper (P.P.)
has studied a somewhat similar model17 simulating the chaotic
reduction of indium(III) at a hanging mercury electrode in the
presence of thiocyanate and found that control in that skeleton
model can be achieved by using the SPF algorithm.) After
briefly describing the Koper-Gaspard model13 and the applied
map-based strategy, we present the numerical results. Next we
attempt to apply the algorithm to the experimental system. We
show that the unstable period-one and period-two orbits
embedded in the chaotic attractor can, indeed, be stabilized by
small perturbations of the anodic potential as control parameter.
We then present the results of an experimental test for a power
law relating the average chaotic transient time to the size of
maximum perturbation allowed during control. We conclude
by summarizing the results and discuss the advantages of the
studied system for testing different control strategies.

II. Numerical Studies

Model. The first-order differential equations of the Koper-
Gaspard model13 are given in a dimensionless form,
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whereV is the applied (circuit) potential,e is the “true” electrode
potential appearing across the interfacial double layer,r is an
adjustable series resistance,d is the rotation rate, andk(e) is
the heterogeneous rate constant determining the rate of electron
transfer. To account for the mass-transport from the solution
to the rotating disk a simple two-diffusion-layer model13 is
applied. Variablesu andw are the normalized concentrations
of the electroactive species, respectively, in the so-called
“surface” and “diffusion” layers, whilem is the concentration
in the bulk. Equations 1 are studied under potentiostatic
conditions with circuit potentialV as the control parameter. For
monitoring the behavior we use the total currenti ) (V - e)/r
which is an easily measurable function of the system variables.
Since the model equations are not stiff, a simple fourth-order
Runge-Kutta method with constant time step (∆t ) 0.01) has
been applied for integration.
The potential-dependent rate constantk(e) is given by a

prototype function,

whereeo is the dimensionless standard potential,R is the transfer
coefficient, andθ is related to the surface coverage by some
electroactive species. The value ofθ is approximated by a
sigmoidal function,

Equations 2 and 3 give rise to a potentially unstable
electrochemical flux and also account for the experimentally
observed negative slope of the polarization curve in some
potential intervals (compare with Figure 3 discussed later).
The dynamics of model eqs 1-3 have been studied in detail

by Koper and Gaspard.13 For an appropriate range of param-
eters, the model exhibits a variety of nonlinear behaviors such
as simple oscillations, period-doubling cascades, mixed-mode
transitions, and chaos as different control parameters (e.g., circuit
potentialV, rotation rated, and series resistancer) are systemati-
cally varied. The agreement with the experiments by Schellet
al.10-12 is remarkable. For the parameter values given in the
legend of Figure 1, the system exhibits a simple period-doubling
route to chaos. The bifurcation diagram shows the maxima of
total current as a function of control parameterV. Using the
control strategy discussed in the next subsection the chaotic
behavior observed atV ) 36.74 has been converted to different
periodic oscillations.
Map-Based Algorithm for Controlling Chaos. From the

chaotic time series calculated with the just defined parameter
values, a return mapxn+1 vs xn was constructed by plotting the
successive maxima of the total current. Since the dynamical
behavior is represented by a one-dimensional (1D) next-return
map, a single proportional feedback algorithm11,12 is applied to
controlling chaos. Control is achieved by perturbing the control
parameterV such that the fixed pointxf of the map is targeted
on each return. (Note that the fixed point corresponds to an
unstable periodic orbit sincexn+1 ) xn.) In the linear range
around the fixed point, the next iterates are given by,

where|µ| > 1 is the slope of the map. When the value of the
control parameter is changed fromV to V + δ V, the map shifts.
For simplicity, we assume thatµ remains constant in a small
rangeδ Vmax aroundV. Applying the control condition to the
linearized equation of the shifted map as well, the potential
perturbationδ Vn required to place the next iterate on the original
fixed pointxf can be calculated by the following control formula,

whereg ) δ xf/δ V * 0 is a constant scalar relating the change
in the value of the fixed point to the size of the applied
perturbation. When control is desired the potential is changed
according to eq 5 whenever the maximum current falls within
a small range of fixed pointxf. If, however, eq 5 requires a
large change in the potential such thatδ Vn g δ Vmax, the
perturbation is not applied and the system is allowed to relax
to its original chaotic attractor until the current maxima again
visits the neighborhood of the fixed point.
The parameter values in control formula 5 have been

determined from chaotic time series calculated atV1 ) 36.7400

de
dt

) V - e
r

- mk(e)u

du
dt

) -1.25d1/2k(e)u+ 2d(w- u) (1)

dw
dt

) 1.6d(2- 3w+ u)

k(e)) k1θ
2 + k2 exp[nR(e- eo)] (2)

θ ) {1 for ee ed
exp[-b(e-ed)2] for e> ed} (3)

Figure 1. Bifurcation diagram of the skeleton model eqs 1-3. Maxima
of anodic current are plotted vs circuit potentialV as control parameter.
Dimensionless parameters arer ) 0.02,m) 120,d ) 0.11915,k1 )
2.5, k2 ) 0.01,nR ) 0.5,eo ) 30.0,ed ) 35.0, andb ) 0.5.

Figure 2. Maxima of anodic current are plotted vs iteration numbern
over an interval when the control for period-one oscillations is switched
on and off followed by the control of period-two unstable orbit. For
the uncontrolled systemV ) 36.74. Other model parameters are given
in Figure 1.

xn+1 ) xf(V) + µ[xn - xf(V)] (4)

δ Vn ) µ
(µ - 1)g

(xn - xf) ) K(xn - xf) (5)
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andV2 ) 36.7399 constant potentials applied to the uncontrolled
system. The fixed pointsxf1 ) 47.13 andxf2 ) 47.21, and the
slopes of the mapsµ1 ) -1.98 andµ2 ) -2.02, were calculated
by linear least-squares fit to the next return data collected in a
small range around the fixed points. Note that the small change
in the potential resulted in only negligible change in the slope.
This procedure allowed us to calculate the value ofg ) - 800
andK ) - 8.31× 10-4.
Controlling Chaos in the Numerical Model. Figure 2

shows the current maxima over an interval when the control
algorithm to stabilize period-one oscillations has been switched
on and off. As targeting is never perfect due to errors in
determinations of fixed pointxf and constantK, continuous
corrections to the control parameterV are required to maintain
control.
The same control strategy can be implemented to stabilize

any desired unstable periodic orbit embedded in the chaotic
attractor. For example, in Figure 2 we also show the control
of period-two oscillations. The parameters in eq 5 have been
recalculated by the earlier algorithm but using the second return
mapsxn+2 vs xn of the uncontrolled system atV1 ) 36.7400
andV2 ) 36.7399. The fixed pointsxf1 ) 54.78 andxf2 ) 55.04
and the slope of the mapµ1 ) -2.25 give us the constantsg)
-2600 andK ) -2.66× 10-4. To achieve control of period-
two, however, the size of perturbation has to be recalculated
only at every second return to the map. The successful
application of a simple proportional feedback algorithm to
controlling chaos in the skeleton model has greatly motivated
us to try out the same strategy in the experimental system as
well.

III. Experimental Section

Experimental Setup. Experiments were performed by using
a standard three-electrode electrochemical cell equipped with a
rotating disk electrode (RDE), a Radelkis OH-0933P saturated
calomel electrode (SCE) as reference, and a Radelkis OH-9437
Pt-sheet counter electrode (area 5 cm2). A small cut of a copper
rod (5 mm diameter) was fixed in the Teflon holder of the RDE
apparatus (EDI 101, Radiometer). Before each experiment the
surface of the copper sample (99.99% purity) has been freshly
polished by a series of wet sanding. The cell contained 70 cm3

ortho-phosphoric acid (85%, Merck or Spektrum-3D) and was
thermostated at-17.5( 0.1 °C by using a Lauda RM6B. All
measurements reported in this paper were made with the depth

of the rotating copper disk electrode (penetrating the solution)
and the distance between it and the reference electrode set at
10 and 25 mm, respectively. The distance between the copper
and platinum electrodes was set at 15 mm.
The cell was connected to a computer-controlled potentiostat

(Electroflex EF451). The potential between the RDE and SCE
was measured and set with a resolution of 0.2 and 0.01 mV,
respectively, for simple potentiostatic and chaos control experi-
ments. In this report, all potentials are given with respect to
the SCE. The output current signal between the RDE and
platinum electrode was fed into a 12-bit A/D converter built in
the potentiostat. Sampling frequencies of 100 and 200 Hz were
applied, respectively, for data acquisition and control experi-
ments. The digitized current data were stored on the PC for
on-time calculations and later plotting. The rotation rate was
controlled via a 12-bit D/A converter (Labcard PCL-818L) also
built in the PC.
Procedures. To remove the oxide layer from the surface of

the copper electrode, the potential is first set to 500 mV for 2
min and then swept in several cycles between 0 and 750 mV
with a scan rate of 10 mV s-1. Next the series (ohmic)
resistanceRs of the solution is determined from impedance
measurements in the frequency range of 5-10 kHz at 40 mV
rest potential. The value ofRs is calculated by linearly
extrapolating the impedance spectrum to infinite frequency
where the imaginary part of the total impedance is zero. For
details on application of impedance spectroscopy to this system
we refer to our earlier report.18 The series resistance of a given
system has been determined by averaging the results of at least
three impedance measurements. If theRs value was out of the
range between 70.0 and 74.0Ω, or the voltammogram of the
system was much different from that shown in Figure 3, the
copper electrode was replaced with a new sample. We note
that when the treatment was successful the electrode surface
has been electropolished homogeneously, while in case of failure
few concentric rings of different “gray” levels could be always
observed on the copper electrode.
In agreement with the results of numerical studies by Koper

and Gaspard,13 we have found that the chaotic range of the
experimental bifurcation diagramssspanned by the rotation rate
and circuit potentialsis widening and shifts to lower rotation
rates as the total ohmic resistance of the circuit is increased.
After a trial-and-error procedure we decided to connect an
external resistance of 130Ω in series with the copper electrode
resulting in a total resistanceRΩ of 200-204 Ω for all
experiments reported here.
Before a series of experiments with a successfully treated

electrode the potential was set to 540 mV for 1-2 h. During
this period the current oscillations have generally stabilized.
With this procedure the bifurcation diagrams were reproducible
within ( 100 rpm and( 10 mV. All bifurcation diagrams were
measured by increasing the anodic potential. After a stepwise
potential jump a waiting period of 60 s was applied during which
the current oscillations stabilized. Minima and maxima of
current were determined from data collected in the next 60 s
interval.
According to literature accounts,19 oxygen does not affect

the dynamics of the copper-phosphoric acid system. We have
also found that bubbling nitrogen through the cell does not
modify the bifurcation diagram. Therefore, no special care was
taken to prevent the diffusion of air-oxygen into the cell.

IV. Experimental Results

Conditions for Period-Doubling Route to Chaos. In the
numerical section, the SPF algorithm was successfully applied

Figure 3. Polarization curve (current vs true electrode potential) of a
copper RDE in phosphoric acid electrolyte. The solution resistanceRs
is 72Ω, rotation rate is 1800 rpm, and scan rate is 10 mV s-1. The
small wiggling of the curve near 450 mV is due to an unidentified
instability of the circuit.
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to control chaos which originated from a period-doubling
cascade of bifurcations. To find the right conditions for the
same type of chaos in the experimental system, we first explored
the parameter space in detail. Two parameters, the rotation rate
and the applied potential have been systematically varied.
Table 1 summarizes the dynamical states exhibited by a given

copper-phosphoric acid system (RΩ ) 200 Ω) at several
different rotation rates when the applied potential was increased
with a stepsize of 1 mV from 430 to 520 mV. At 600 rpm
only steady-states have been found. At larger rotation rates,
however, complex waveforms developed. The current oscilla-
tions observed in the range between 1600 and 2000 rpm clearly
indicated a period-doubling route to chaos. At 2000 rpm we
detected a period-three window indicative of chaos. As the
rotation rate was increased even further (not shown in Table
1), more and more chaotic bands appeared in the bifurcation
diagram. These bands were separated by regions of mixed-
mode transitions. The overall behavior is the same as that found
by Schellet al.10-12 at much larger rotation rates (approximately
4000 rpm). With the application of an external resistance in
our experiments, the bifurcation diagram has been shifted to
lower rotation rates hence our system is more “user-friendly”
from a technical point of view.
Our goal was to control chaotic current oscillations at such

rotation rates where chaos develops through simple periodic-
doubling bifurcations. Figure 4 shows both the minima and
maxima of current oscillations for such sequence of bifurcations
as the potential is varied. The chaotic region in the middle of
the diagram spans over an approximately 3 mV range. When
control is attempted, the anodic potential of the uncontrolled
system is always set near the middle of the chaotic range making
sure that the system is not shifted out of chaos when maximum
of 0.5 mV potential perturbations are applied during control.
Chaos Control. Preliminary experiments indicated that the

algorithm applied in the numerical studies should be slightly
modified. In the control experiments instead of current maxima,
which are hard to measure with great accuracy, we rather used
the next-return values on a Poincare´ section of the reconstructed
chaotic attractor as defined in the legend of Figure 5. The
correlation dimension of the chaotic attractor is 2.25( 0.1. This
value is in good agreement with that determined by Hudsonet
al.20 (2.3( 0.2) at quite different experimental conditions (4400
rpm, no external resistance, and 20°C). Since the attractor is
almost two-dimensional, the dynamics of the copper-phosphoric
acid system may be represented by a 1-D next return map

(shown in the inset). Thus we hoped that the SPF algorithm
can be applied to controlling chaos in the experimental system
as well.
The value of control constantK in eq 5 has been determined

by using the next return data shown in Figure 6. Note that the
slope did not change significantly by shifting map. The slope
of the maps given in the legend were calculated by linear least-
squares fit. This gave usK ) -17 ( 4 mV/mA for period-
one control. In Figure 7 we plotted time series current data for
an interval when control for stabilizing period-one oscillations
has been switched on and off. Note that the longer the control
is on, the smaller is the potential perturbationδ Vn that should
be applied at the successive returns to the Poincare´ section.
Toward the end of the control interval the perturbation is less
than 0.1 mV (approximately 0.02% of the applied potential).
We may say that instead of shifting the system out of the chaotic
range, we only forced the trajectories to remain in the neighbor-
hood of the unstable periodic orbit. Consequently, when control
is turned off, the behavior is almost periodic for a couple of

TABLE 1: Dynamical States and Bifurcations in the
Copper-Phosphoric Acid Systema

fixed rotation
rate (rpm)

dynamical states and
bifurcations in the potential range

from 430 to 520 mV

600 SS
700 SSf P1f MMO f SS
800 SSf P1f MMO f SS
1550 SSf P1
1600 SSf P1f P2f P1
1650 SSf P1f P2f P1
1700 SSf P1f P2f P1
1800 SSf P1f P2f P4f P2f P1
1850 SSf P1f P2f P4f P2f P1
1900 SSf P1f P2f Cf P2f P1
1950 SSf P1f P2f Cf P2f P1
2000 SSf P1f P2f Cf P3f Cf P2f P1

a At a fixed rotation rate, the applied potential is increased from
430 to 520 mV with a stepsize of 1.0 mV. The total series resistance
is 200Ω. Annotations are as follows: steady state: SS, period-one:
P1, period-two: P2, period-three: P3, period-four: P4, mixed-mode
oscillations: MMO, and chaos: C.

Figure 4. Bifurcation diagram of the copper RDE-phosphoric acid
system showing both maxima and minima of current oscillations as a
function of the applied anodic potential. Total ohmic resistance of the
circuit is 202Ω and rotation rate is 1850 rpm.

Figure 5. Reconstructed chaotic attractor of the copper-phosphoric
acid system in the phase space of time-delay coordinatesI(t) andI(t -
0.5 s), wheret is real time (s). The next return mapxn+1 vs xn has been
generated by using successive current values on the Poincare´ section
(thick line) defined asI(t) ) I(t - 0.5 s) anddI(t)/dt > 0. The applied
anodic potential is 532.0 mV, total ohmic resistance is 202Ω, and
rotation rate is 1800 rpm.
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cycles but then the trajectories wind off to land at the stable
chaotic attractor again.
The same control strategy has been implemented to stabilize

period-two oscillations shown in Figure 8. The value of control
constantK has been determined as before but usingsecond-
return mapsxn+2 vs xn of the uncontrolled system measured at
two, slightly different potential values (527.0 and 527.2 mV).
The inset shows the next return map of the uncontrolled system
at 527 mV. Superimposed on the map are the next-return values
while control is being implemented with control constantK )
-11 mV/mA. Note that the size of perturbation is recalculated
only at every second return to the map. We point out that during
period-two control the perturbations are generally larger (the
value ofδVn varied within a range of( 0.25 mV) than those
applied during period-one control. This can be interpreted by
the fact that after two cycles (one small and one large) the
trajectory is repelled to a greater distance from the unstable orbit.
Experiments for stabilizing period-one or period-two oscil-

lations have been repeated several times. For every new session

we have determined the actual value ofK as described earlier.
The K values always varied between-10 and-30 mV/mA,
most probably, due to small changes (noise) in external
parameters such as rotation rate, temperature,etc. We should
also note that determination ofK may also be somewhat
inaccurate because of a continuous, though small shift of the
next-return map. This shift is unavoidable and originates from
the drift of the closed system toward its equilibrium. Fortu-
nately, the SPF algorithm is so robust that a small error in the
value ofK does not really matter. In addition, as perturbations
are applied at every (or every second) return to the map, the
imperfect targeting is repeatedly corrected (to a certain limit)
by the algorithm itself.
Occasionally, we have encountered failures during the control

process. This generally happened when after many hours of
experimentation the dynamics of a given system changed into
what can be described as “banded chaos” thus the fixed point
of the next-return map was not visited for extremely long
intervals.
Chaotic Transient Time vs Maximum Perturbation.

Knowing something about the nature of chaotic transients after
the control algorithm has been turned on is of great interest,
especially, from the point of view of real-world applications.
For example, it would be desirable to be able to predict the
length of transient periodτ, the time to achieve control.
Noticing that during these transients the orbit is similar to those
of the uncontrolled chaotic attractor, and taking also into account
that the time to achieve control depends sensitively on the initial
conditions, OGY formulated a simple power law,3

relating the average length of chaotic transients〈τ〉 to the size
of maximum perturbationδ Vmax. The value of the exponentγ
is given in terms of eigenvaluesλs andλu, respectively, in the

Figure 6. Return maps for parameter valuesV1 ) 532.0 (squares)
andV2 ) 532.1 mV (circles) with fixed points ofxf1 ) 0.9008( 0.0002
andxf2 ) 0.8966( 0.0002 mA, respectively. The slopesµ1 andµ2 are
-2.31( 0.5 and-2.34( 0.5, respectively. Experimental conditions
are given in Figure 5.

Figure 7. Current (left axis) vs time for an interval when control for
stabilizing period-one oscillations has been switched on at 35.2 s and
then switched off at 99.3 s. The control constantK for stabilizing period-
one oscillations is-17( 4 mV/mA, whileδ Vmax was set to 0.5 mV.
The potential perturbationsδ Vn (right axis) applied at the successive
returns to the Poincare´ section are shown in the insert. For experimental
conditions see Figure 5.

Figure 8. Stabilized period-two orbit (xf ) 0.7726 mA) embedded in
the chaotic attractor (dots). The next-return mapxn+2 vs xn has been
generated by using successive current values on the Poincare´ section
(thick line) as defined in Figure 5. The control parameterK for period-
two control is-11 mV/mA andδ Vmax is 0.5 mV. Superimposed on
the map are the next-return values (filled squares) while control is being
implemented. The applied anodic potential in the uncontrolled system
is 527 mV, total ohmic resistance is 202Ω, and rotation rate is 1900
rpm.

〈τ〉 ∝ (δ Vmax)
-γ (6)
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stable and unstable directions of the fixed pointxf by the
following formula,

Numerical experiments for testing eq 6 have been carried
out by using the Henon map.3 After calculating the average
length of chaotic transients determined at large number of
randomly selected initial conditions for many different values
of δ Vmax, the experimental data (plotted in a log-log plot) fitted
well to the theoretical straight line.
To our best knowledge the power law predicted by OGY has

never been tested experimentally. This may be due to the
hardship involved in the required experiments; for example,
quite a large number of measurements should be done, the
waiting period between perturbations could be extremely long,
the noise-to-signal ratio could be too large,etc. The copper-
phosphoric acid system, however, seems to be an ideal tool for
testing the power law. The average period of oscillations varies
in the order of seconds and the noise-to-signal ratio is small
enough. The only drawback is the slow drift of the ever aging
system. This problem was circumvented by the following
“validating” procedure. In principle, we track the shift of the
dynamical state in the bifurcation diagram and readjust the
control parameters in such a way that the system is again placed
in the desired chaotic range. To minimize the number of
measurements for tracking the drift, we have chosen a reference
point in the bifurcation diagram that can be easily checked upon.
Our choice was the bifurcation point corresponding to the
transition from period-two to period-four oscillations.
The validating procedure was applied to a given system as

follows. After finding the parameter values (rotation rate and
potential) giving the desired chaotic behavior, we also deter-
mined the potential valueVR corresponding to our reference
point. In every 15 min of a typically 7-h-long series of
experiments, we decreased the potential toVR and adjusted the
rotation rate such that the system showed a transition from
period-four to period-two oscillations. Then the potential was
set back to its original value giving us again the desired chaotic
behavior. We note that by the end of a day-long series of
experiments only a total of 60 rpm correction had to be applied
to compensate for the drift of the system.
The average length of chaotic transients〈τ〉 for a given value

of δ Vmax has been calculated fromτ values determined for
fifteen randomly selected initial conditions. The value ofτ for
one control session, the time elapsed between turning on and
achieving control is determined as follows. We declare that
control has been successful if the next-return values remain
within a small region of the fixed point for at least five
successive cycles. The transient timeτ is then calculated as
the number iterates on the map (or the number of cycles) taken
between turning control on and achieving the first successful
iterate. Once the unstable period-one orbit has been stabilized
for five cycles, we turn control off and let the system wander
chaotically for the next fifteen cycles before control is turned
on again. This procedure is repeated fifteen times at a given
value ofδ Vmax. Since the orbit on the uncontrolled chaotic
attractor is ergodic, we may assume that the thus determinedτ
values correspond to chaotic transients from randomly selected
initial conditions.
The average transient time〈τ〉 has been determined for eight

different δ Vmax values varied between 0.13 and 0.5 mV. In
Figure 9 we show the results in a ln-ln plot. The value of
exponentγ ) 1.37( 0.05 is the slope of the line calculated by

a linear least-squares fit. Although, the error bars indicate small
variations about the general power-law trend, one may say that
the agreement is good. Such variations have also been found
in numerical calculations3 and are, most probably, due to the
fractal nature of the chaotic attractor.
Application of the SPF algorithm assumes that the system

dynamics can be represented by a 1D next-return map for which
λs ≈ 0 and thusγ ≈ 1. This has been tested for the logistic
mapxn+1 ) axn(1 - xn) with a ) 3.8 by using a total of 30000
randomly selected initial points for an appropriate range of
δ amax values. The calculated data fitted well to a straight line
of slopeγ ) 1.09( 0.04. The fact that the experimentally
determinedγ value is considerably larger than one is indicative
of the fractal dimension of the map, which also follows from
the fractal nature of the chaotic attractor (correlation dimension
is 2.25). However, our experiments prove that the fractal
character of the next-return map does not preclude the successful
application of the control algorithm to the copper-phosphoric
acid system.

VI. Conclusion

In conclusion, we have shown first numerically and then
experimentally that a simple proportional feedback algorithm
can be successfully applied to control the chaotic current
oscillations during electrodissolution of a rotating disk copper
electrode into phosphoric acid electrolyte. We have stabilized
the unstable period-one and period-two orbits embedded in the
chaotic attractor by applying small perturbations to the anodic
potential as the control parameter. We have done extensive
experiments to test for a power-law formula relating the average
chaotic transient time to the size of maximum perturbation
allowed during control. To our knowledge this has been the
first experimental verification of the predicted power law.
Applicability of different control algorithms to chaotic

chemical systems has not yet been fully tested. The copper-
phosphoric acid system appears to be an ideal playground for
the following reasons: (i) the reproducibility of the experiments
is good, (ii) the level of internal noise is low, (iii) the frequency
of chaotic oscillations is high, (iv) the dynamical behavior can
be monitored by simple current measurement, while the control
parameter (potential) is easily attainable, (v) the system shows
a variety of nonlinear phenomena such as simple oscillations,
period-doubling cascades, mixed-mode transitions, and chaos,
and (vi) the experiments can be directly compared to the results
of numerical modeling based on a simple three-variable model.

γ ) 1+ 1
2

ln|λu|
ln(1/|λs|)

(7)

Figure 9. Average time to achieve control〈τ〉 as a function of
maximum perturbationδ Vmax allowed during control. The anodic
potential applied to the uncontrolled system is 509 mV and total ohmic
resistance is 203Ω. The rotation rate has been varied between 1724
and 1752 rpm as required by the so-called “validating” process
described in the text.
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The only drawback of the system is its drift toward equilibrium,
which, however, can be dramatically slowed by applying low
temperature. In addition, we have shown that a validating
procedure can be effectively applied to compensate for the
unavoidable shift. We plan to investigate the application of
different control algorithms to the present system. Experiments
to achieve control of higher periodic orbits or mixed-mode
transitions and to stabilize unstable fixed points using derivative
control strategy21 are also underway.
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