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Resonance Raman enhancements yield reorganization energies and displacements of individual modes in
electron-transfer (ET) spectra when modeled as displaced harmonic oscillators. The same approximations
suffice for quantitative simulations of linear absorption, electroabsorption, or Raman excitation profiles (REPs)
through the time autocorrelation function for an arbitrary number of displaced modes. Asymmetric absorption
profiles in charge-transfer complexes provide both the reorganization energy and solvent broadening. The
unusual ET spectra of the trinuclear title compound are associated with nearly localized valences, two excited
states, and symmetry-breaking solvent perturbations. Displaced oscillators and diabatic states rationalize
broad absorption, structured REPs, and second-derivative electroabsorption with reorganization energies and
displacements found in related binuclear complexes. Both ag and bu modes are displaced in the centrosymmetric
complex and excited-state splitting is related to small polarons. The 1800 cm-1 reorganization energy is an
order of magnitude smaller than suggested for a single absorption. Raman enhancement data and displaced
harmonic oscillators clarify special features of ET or solvents in centrosymmetric complexes.

1. Introduction

Electron transfer (ET) in charge-transfer complexes has been
extensively studied1 in terms of theories developed by Marcus2

and Hush.3 The canonical DA complex of a donor and acceptor
is inherently polar. Thermal and photochemical ET processes
are related by ground (DA) and excited state (D+A-) potentials
that cross in the limit of no overlap. The central role of
potentials leads naturally to electron-vibration coupling and
relates ET to charge transport or excitation transfer. Solid-state
examples are polarons in ionic crystals, Frenkel excitons in
molecular solids, CT excitons in ion-radical salts, and solitons
or other self-localized states in conjugated polymers. The
Holstein model,4 a chain with linear coupling of a molecular
vibration to an electronic excitation, is the basis for transport
theories. Painelli and Girlando5 discuss the widely different
conventions used in various fields.

The shared features of analytical models are a few electronic
states, identical harmonic potentials in the ground and excited-
state, and linear coupling of electronic and vibrational degrees
of freedom. We refer to these approximations collectively as
displaced oscillators. The slope of the excited-state potential
for a vertical excitation is the linear coupling that defines the
curve. Displaced oscillators entail severe approximations that
limit molecular applications: anharmonicity, normal mode
interactions, quadratic coupling, and additional electronic states
are certainly important. Displaced oscillators are nevertheless
a robust first approximation for comparing ET or transport in
systems that are too complex for complete treatment. They have
sharp spectroscopic consequences discussed below. As shown
by Hupp6 and Myers,7 analysis of Raman enhancements leads
directly to geometrical changes accompanying ET. They follow
the time-domain formulation of Tannor and Heller,8 whose
coherent state consists of displaced harmonic oscillators.

In this paper, we first extend ET analysis in terms of displaced
harmonic oscillators to include solvent broadening. The absorp-
tion and Raman excitation profiles (REPs) follow quantitatively
and yield more accurate displacements without additional
approximations. We then model ET in the centrosymmetric
complex [Fe(CN)6Pt(NH3)4Fe(CN)6]4-, and we apply displaced
oscillators to REPs and electroabsorption. The complex’s many
coupled modes illustrate the predictive and organizational
capabilities of simulations using displaced oscillators. Indeed,
their limitations can only be identified from detailed compari-
sons.

Resonance Raman spectra provide input frequencies and
enhancements of coupled modes, which lead6 to displacements
for assumed harmonic potentials with equal ground and excited-
state frequencies. Table 1 contains such data9 for the cen-
trosymmetric complex. Depolarization ratios were used to
identify ag modes whose assignments follow a related binuclear
complex. Relative enhancements are proportional to the
displacement or the linear coupling constant. The indicated
displacements based on our analysis are considerably smaller* Corresponding author.

TABLE 1: Dimensionless Displacements of ag Modes of
[Fe(CN)6Pt(NH3)4Fe(CN)6]4- Based on Raman Frequencies
(cm-1), Relative Enhancements, and Assignments in
Reference 9

ω(cm-1) enhancementa assignment displacement,g

2125 0.80 ν(CN) bridge 0.096
2107 0.20 ν(CN) radialb 0.049
624 2.26 ν(Fe-CN) axial 0.54
586 1.00 ν(Fe-CN) radial 0.38
566 2.03 ν(Fe-CN) bridge 0.57
506 0.51 ν(Pt-NH3) 0.32
472 0.58 δ(Fe-CN) 0.36
420 0.72 δ(Fe-CN) 0.45
366 1.43 ν(Pt-NC) bridge 0.74
299 0.69 δ(H3N-Pt-NH3) 0.63

a Relative to the 586 cm-1 mode.b Table 3.1, ref 11.
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than reported9 using the 8000 cm-1 width of the absorption.
Displaced oscillators can readily be applied to any complex for
which there is Raman enhancement data, and they bring out
special features of multiple ET.

The ground state of [Fe(CN)6Pt(NH3)4Fe(CN)6]4- has metals
with formal oxidation2/4/2. ET is consistent10,11with localized
valences and oxidation3/3/2or 2/3/3. Photoinduced ET from
Fe(II) to Pt(IV) triggers a second, thermal ET leading to Pt(II)
and weak axial bonds in the3/2/3 complex. Crystal data12

showsD4h complexes with staggered ligands about the FeC-
NPtNCFe (z) axis. A direct ET pathway is provided by the
overlap of filled Fe(dxy) orbitals at either end with the empty
Pt(dx2-y2) orbital. The complex resembles a head-to-head DA
pair (DAAD) in which Pt(IV) can accept two electrons.
Localized valences break inversion symmetry and suggest
coupling to bu as well as ag vibrations. Centrosymmetric
complexes have special features that extend to REPs, absorption
and electroabsorption. In addition to broadening the spectrum,
the solvent can also lift the degeneracy of3/3/2and2/3/3. These
special features motivate our study and show the need for
quantitative analysis.

The paper is organized as follows. We relate the vibrational
autocorrelation function to Raman data in section 2 and obtain
general results for linear absorption and REPs of DA complexes.
The 2/4/2 absorption spectrum is modeled in section 3 using
Franck-Condon factors for diabatic states. Linear combinations
of 3/3/2and2/3/3 lead naturally to transitions in two potential
wells, thereby increasing the width for the same electron-
vibration coupling. We simulate the unusual REPs and elec-
troabsorption of2/4/2in section 4 and estimate its reorganization
energy, solvent broadening, and excited-state splitting. Quan-
titative application of displaced oscillators reduces the displace-
ments and revises the interpretation of the first ET in2/4/2.
We conclude in section 5 with extensions of the model and
open questions.

2. Absorption and REP of Displaced Oscillators

We consider ET to a state whoseM vibrational modes have
dimensionless displacementsg ) (g1,g2,...,gM) from the ground
state. The frequenciesω ) (ω1,ω2,...ωM) are the same as in
the ground state by hypothesis. The vibrational statep )
(p1,p2,...pM) has pj quantapωj and frequencyω‚p relative to
0-0. The inner-sphere reorganization energyλi for a vertical
transition is

The sum is over∆j
2/2 in spectroscopic studies using linear

coupling constants∆ ) gx2. Reorganization involves all
displaced modes and applies equally to allowed and forbidden
transitions. The absorption maximum is aroundλi.

The Franck-Condon (FC) overlaps M(p) with the ground
vibrational state|0〉 are

The relative intensity|M(p)|2 at ω00 + ω‚p is fully specified
by g. The sum over (2) is normalized and partitions an
electronicµe

2 among vibrational states. We setµe ) 1 and
introduce normalized Lorentzians with equal width,Γ, for each
p to obtain

wherex ) ω - ω00 is measured from the 0-0 transition. The
Γ f 0 limit of (3) gives δ-function absorptions atx ) ω.p.
The sum hasrM terms whenr vibrations are kept for each mode,
including all overtones and combinations. Direct simulation
of I(x) is consequently laborious even in the Condon ap-
proximation for displaced oscillators.

Tannor and Heller8 showed thatI(x) is conveniently evaluated
in the time domain. This is a special case of linear response
theory. We use finiteΓ instead ofδ-functions to bring out
additional similarities to Raman scattering. The denominator
of (3) is converted to a time integral and the sum over virtual
statesp is carried out using the propagator

The boson operatorsbj
+ (bj ) create (annihilate) a quantumpωj.

The matrix element in (4) is the time autocorrelation function.
Zero-point contributions cancel for equal ground and excited-
state frequencies and|0〉 usually suffices for intramolecular
modes. Its projection on the excited-state surface is

Taylor expansion of the exponential generates allp. Sinceb+(t)
) b+exp(iωt) for harmonic oscillators, the autocorrelation
function is

Second quantization yields particularly compact and transparent
results for displaced harmonic oscillators in the ground state.
The generalization of (5) and (6) to excited oscillators forkT
> pωj is straightforward. The autocorrelation function is
completely specified by the frequenciesωj and displacements
gj, which follow within a scale factor from resonance enhance-
ments.

At small t, the reorganization energy (1) is the linear
coefficient of t in the exponent in (6), while that of-t2/2 is the
sum overgj

2ωj
2. These terms are kept in steepest descent, when

substitution into (4) gives a Gaussian centered atx ) λi with
width related to gj2ωj

2. This limit holds when largeM, g, or Γ
cuts off the time integral and is a useful estimate when the
excited-state frequencies or displacements are not known. The
approximation is superfluous for displaced oscillators, as
assumed to obtain relativegj from resonance enhancements,
since the time integral forI(x) is readily evaluated using (6). In
addition, we represent solvent shifts by a normalized Gaussian
distribution aboutω00 with varianceσs

2. I(x,σs) is simply (4)
with an extra factor of exp(-σs

2t2/2) in the integrand. Displace-
ments based onI(x) with σs ) 0 are upper bounds and accurate
absorption profiles or solvent contributions require no additional
assumptions.

Doorn et al.13 studied ET in [Fe(CN)6Os(NH3)5]1- and report
λi ) 2660 cm-1 using a Gaussian approximation for the width
of I(x). The complex’s 9 displaced modes (their Table 2) closely
match the frequencies in Table 1 and were used9 to assign the
vibrations. The published∆j and Γ ) 50 cm-1 lead to the
asymmetric I(x) profile in Figure 1a with partly resolved

I(x) ) Im∑
pb

|M(pb)|2

π(x - ω‚pb - iΓ)
) ∑

pb

|M(pb)|2Γ/π

(ωb‚pb - x)2 + Γ2
(3)

I(x) )

- Re∫0

∞
dtπ-1〈φ0|exp(it∑

j

ωjbj
+bj)|φ0〉exp(-ixt - Γt) (4)

|φ0〉 ) [exp(-gb‚gb/2 + ∑
j

gjbj
+)]|0〉 (5)

〈φ0|φ0(t)〉 ) exp(∑
j

gj
2(eiωjt - 1)) (6)

λi ) ∑
j)1

M

pωjgj
2 (1)

|M(pb)|2 ) ∏
j)1

M

F0pj
(gj)

2 ) e-gb‚gb∏
j)1

M

gj
2pj/p! (2)
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vibronics; the peak is∼1800 cm-1 above 0-0 for these
parameters, some 40% below 2660 cm-1. IncreasingΓ washes
out the vibronic structure, adds intensity below 0-0 and shifts
the peak to higher energy;Γ ∼ 250 cm-1 or larger appreciably
increases the width in Figure 1a. Essentially the same broaden-
ing is achieved withσs ) 500 cm-1. The curves in Figure 1b
are the linear absorption of [Fe(CN)6Os(NH3)5]1- (Figure 7 of
ref 13) and a fit based onλi ) 1800 cm-1, σs ) 1250 cm-1,
and negligibleΓ (5 cm-1). The fit perceptively improves for
smaller λi and significantσs, although these values are not
unique. The width and asymmetry ofI(x) are a balance between
reorganization and solvent contributions, and this suffices for
extracting bothλi andσs.

Kulinowski et al.14 analyzed the absorption, emission, and
reorganization energy of the DAf D+A- transition in the CT
complex hexamethylbenzene/tetracyanoethylene, which has 11
enhanced Raman modes and a broad, symmetricI(x). The
decomposition intoλi and σs then requires the extra effort of
absolute Raman intensities. The complex also has intermo-
lecular modes7 whose frequencies are too low to appear in the
Raman spectrum and are consequently lumped with the solvent.
An asymmetricI(x) simplifies the separation ofλi for resolved
Raman modes from unresolved solvent or low-frequency
contributions.

Resonance Raman scattering8 is closely related to (3) when
a single electronic state dominates. We consider 0-1 excitation
of modeωj at laser frequencyωL ) xL + ω00,

The constantC is independent ofp and is omitted below, as is
the nonresonant part and scattering by other electronic states.
Resonance enhancements are proportional to|R(ωj,xL)|2. The
FC factors in (7) involvinggj are (dropping the subscript for
simplicity)

Resonant scattering from|0〉 involves partial derivatives,

The sum is again the integral (4) over the autocorrelation
function (6). The partial leads to

The real and imaginary parts of (10) give the exact dependence
on xL. We evaluate|R(ωj,xL)|2 as a double integral over time
for each displaced oscillator and convolve with a normalized
Gaussian whose variance isσs

2. The first factor in (10) goes
as ωjt at the short times of interest for appreciableλi and Γ.
REPs then scale asgj

2ωj
2, the approximation used6 for the

relative displacements. In principle, the complete expression
(10) yields more accurate enhancements atxL.

SinceI(x) is normalized, its shape depends onΓ andσs but
the integrated area is fixed; the value ofΓ is then irrelevant
whenΓ , σs. The convolution of|R(ωj,xL)|2 with a normalized
Gaussian for the solvent also preserves the integrated area as a
function ofxL. The total scattering from one or two Lorentzians
can readily be shown to increase asΓ-1 with decreasingΓ, but
only the relative scattering is used for the displacementsg. Thus
convolved|R(ωj,xL)|2 profiles may depend onΓ even whenΓ
, σs due to interference between vibronics.

3. ET in a Symmetric Complex with Localized Valences

Two electronic states, DA and D+A-, are traditionally used
for CT complexes. Three are needed for the title compound:
the 2/4/2 ground state and excited states3/3/2 and 2/3/3 that
we call |L〉 and |R〉, respectively. Their minima are shown
schematically in Figure 2 for degenerate ag, bu modes with
displacement g from the ground state at the origin. The final
state3/2/3 enters in the second, thermal ET and is not used
below. In the ground-state geometry, we have splitting 2J
between even and odd linear combinations

The usual approximation of neglecting overlap is particularly
good here because|L〉 and|R〉 have different occupancy in Fe
orbitals separated by a CNPtNC bridge. In addition to〈L|H|R〉,
which corresponds to excitation transfer, there are second-order
contributions to J due to configuration interaction. Mixing of
|2A〉 with the ground state places it above|1B〉, while the head-
to-head orientation of transition moments suggests that|1B〉 is
higher. We exclude strict degeneracy on physical grounds for
the approximate states (11). We start with localized valences
and finite J for an isolated complex and then generalize to
symmetry breaking by the solvent.

The Fe(CN)64- modes in Table 1 are closely related to those13

of Fe(CN)6Os(NH3)5
1-; the second metal center is a small

perturbation. It follows that ag modes of2/4/2have bu partners
with almost the same frequency, displacement, and out-of-phase
Fe(CN)64- motions. Table 1 leads to M) 18 displaced modes,
since in-plane Pt(NH3)4

4+ modes have no bu partners. We
choose modes (ωj, gj), drop the subscriptj, and define operators
b1

+,b1 for |L〉 andb2
+,b2 for |R〉. The transformation

Figure 1. Absorption spectrum of [Fe(CN)6Os(NH3)5]1- relative to
0-0, normalized to equal peak heights. (a) Simulation using (4) and
(6) for the 9 displaced modes from Table 2, ref 13, withΓ ) 50 cm-1,
250 cm-1, and solvent broadeningσs ) 500 cm-1. (b) Experiment
from Figure 7, ref 13, and simulation with reoganization energyλi )
1800 cm-1, σs ) 1250 cm-1, andΓ ) 5 cm-1, for displacements 25%
smaller than in (a).

R10(ωj,xL) ) C∑
pb

|M(pb)|2F1pj
(gj)/F0pj

(gj)

xL - ωb‚pb - iΓ
(7)

F0p(g)F1p(g) ) e-g2
g2p-1(g2 - p)/q! ) -dF0p(g)2/2dg (8)

R10(ωj,xL) )
∂

2∂gj
∑

pb

|M(pb)|2

xL - ωb‚pb - iΓ
(9)

R10(ωj,xL) )

-2igj∫0

∞
dt(1 - e-iωjt)〈φ0|φ0(t)〉exp(-Γt - ixLt) (10)

|2A〉,|1B〉 ) (|L〉 ( |R〉)/x2 (11)
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resolves them into symmetric (ag) vibrations alongy in Figure
2 and antisymmetric (bu) vibrations alongx, with displacements
(-g,g) and (g,g). The two modes contribute 2pωjgj

2 to (1) in
either the localized or delocalized representation.

Displaced harmonic potentials are sketched in Figure 3 for
an ag, bu pair. Vibrations in thex ) 0 plane resemble standard
ET curves for an excited state with minimum aty ) g.
Antisymmetric vibrations in they ) 0 plane have minima atx
) ( g for |R〉 and |L〉; the intersection at x) 0 becomes an
avoided crossing, 2J, when excitation transfer is included. The
harmonic potentials in Figure 3 differ from ET curves for free
energy changes,λ ) λi + λs, that include solvent. Free energies
involve a generalized reaction coordinate, a one-dimensional
representation of a collective motion, rather than individual
normal modes. The fullλ ) 14700 cm-1 for 2/4/2 is
estimated10b,11directly from the absorption peak and the thermal
barrier for the first ET.

Vertical excitation to|1B〉 is dipole allowed and gives a
superposition of diabatic states. The generalization of (5) for a
single ag, bu pair is an odd-parity state

where the displacement isgx2 in either|L〉 or |R〉 and theg )
0 limit is |1B〉|0〉 . The corresponding even-parity function|Y,g〉
is the even linear combination of (13) and reduces to|2A〉|0〉 at
g ) 0. We use (11) and (12) to resolve the local excitations
into symmetric and antisymmetric parts, expand the operators
and collect terms to obtain

The first term is even vibrationally, restricted to an even numbers
of bu quanta, and is odd electronically. The second term
necessarily has an odd number of bu quanta and consequently
appears with an even electronic state. The generalization toM
modes is to sum overbs andba in (14). The vibronicp appears
in the first (second) term if the total number of quanta in bu

modes is even (odd).
The linear absorption contains evenp of |1B〉 and oddp of

|2A〉. The time autocorrelation function (6) for|1B〉 vibronics
becomes

for the ground vibrational state. We insert in (4) and integrate
to obtainI1(x). The corresponding expression for odd vibronics
of |2A〉 is

and there in an additional factor of exp(2iJt/p) in (4) for the
I2(x). The full spectrum,I1(x)+I2(x), is illustrated in Figure 4
for 2J ∼ λi and may be resolved forJ > λi.

The linear absorption10 of 2/4/2 in Figure 4 has a broad peak
whose∼8000 cm-1 width is almost twice that of the FeOs
complex in Figure 1. Comparableλi is expected on physical
grounds for closely related vibrations. The solid line in Figure
4 is a fit based on Table 1 andλi ) 1800 cm-1, σs ) 1500
cm-1, Γ ) 5 cm-1, J ) -1800 cm-1. NegativeJ places|1B〉

at higher energy, as expected for head-to-head transition dipoles,
and 0-0 is the sharp central spike in the high-resolution
simulation. The|2A,p〉 vibronics of the lower state contain at
least one bu quantum. Quantitative fits require largerσs ∼1900
cm-1, smallerJ ) -1600 cm-1, and correcting the high energy
data for a nearby metal-to-ligand CT.10 The dashed line in
Figure 4 is a simulation with the same parameters except forJ
) -1900 cm-1 and 10% changes of bu displacements as
described in the Discussion. The simulatedI(x) are quite similar
and more structured than experiment; they lead to different REP
profiles in section 4.

The displacements in Table 1 are smaller by a factor of 5.75
from the∆ in Table 1 of ref 9. Ax2 reduction is simply due
to the definitiong ) ∆/x2 and another factor of 1.3 is due to
bu contributions toI(x), instead of attributing the full width to
ag modes. The remaining factor of 3.1 reflects the assumption
of a single electronic absorption. Broader lines exacerbate the
error of using a Gaussian width rather than the autocorrelation
function (6). The estimated9 reorganization energy of 16,500
cm-1 from the width does not reproduceI(x) in Figure 4, but
in fact places 0-0 so far below the measuredλi + λs that the
excited-state minimum fallsbelow the ground state. Substan-
tially smaller displacements are clearly required even forJ )
0, when the entire width is assigned toλi andσs. We takeJ *
0 partly because localized valences suggest nearby|1B〉, |2A〉
states in centrosymmetric complexes and partly to understand
REP and electroabsorption spectra.

Solvent broadeningσs represents the modulation ofω00 as
discussed in section 2. In the three-level2/4/2 system, the
solvent also lifts the degeneracy of3/3/2 and2/3/3 whenever

bs,a
+ ) (b1

+ + b2
+)/x2 (12)

|X,g〉 ) 2-1/2(|L〉exp(-g2 + gx2b1
+) -

|R〉exp(-g2 + gx2b2
+))|0〉 (13)

|X,g〉 ) e-g2+gbs
+
(|1B〉cosh(gba

+) + |2A〉sinh(gba
+))|0〉 (14)

〈φ1|φ1(t)〉 ) (exp[-gb‚gb + ∑
s

gs
2eiωst])cosh(∑

a

ga
2eiωat) (15)

〈φ2|φ2(t)〉 ) (exp[-gb‚gb + ∑
s

gs
2eiωst])sinh(∑

a

ga
2eiωat) (16)

Figure 2. Displacementsgx2 of a local mode of3/3/2or 2/3/3relative
to the ground state,2/4/2, and their resolution into symmetric (ag) and
antisymmetric (bu) modes of the complex; a second ET leads to3/2/3.

Figure 3. (a) Schematic potential of the ground and excited state for
a displaced ag mode; the reorganization energy, linear absorption, and
resonance Raman scattering are indicated. (b) Diabatic potentials for a
displaced bu mode, with excited-state crossing forJ ) 0.
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the surrounding ions preferentially stabilize|R〉 or |L〉. We
define 2∆ as the solvent-induced splitting and choose|1B〉 to
be the upper state at|J| when∆ ) 0. The mixing of|R〉 and
|L〉 is a standard problem. The electronic energies are( ε,
with ε2 ) (∆2 + J2); the eigenfunctions depend onJ/∆; |R〉
and|L〉 have identical vibronics for any admixture. The dipole
operator connects the ground state to|X,g〉, as indicated in (13),
and the resolution of local modes into ag, bu pairs goes through
as before. Only the electronic states are different for∆ > 0.
Following the previous development, we obtain

The sum is over both ag and bu modes. We regain the∆ ) 0
results when|1B〉 is the upper state, with only evenp, while
only oddp occurs in the lower state. The∆ . J limit leads as
expected to equal intensity for|R〉 and |L〉 vibronics of the
uncoupled system. The integrated absorption does not depend
on ∆.

4. Resonance Excitation Profiles and Electroabsorption

We useR(ωs,xL) in (10) to calculate REPs of ag modes. The
contribution to R(ωs,xL) from the |1B〉 surface contains the
autocorrelation function (15). The|2A〉 contribution is based
on (16) and has a factor exp(2iJt/p) in (10). The amplitude is
found before introducingσs, since the solvent is static on the
Raman time scale;Γ ) 5 cm-1 gives a convenient upper limit
of integration in (10) without appreciable broadening.

Representative|R(ωs,xL)|2 curves for ag modes in Table 1
are the resolved REPs in Figure 5, withJ ) -1800 cm-1 and
otherI(x) parameters in Figure 4. Resolved REPs become the

solid curves on convolving with a Gaussian withσs ) 1500
cm-1. The dashed curves haveJ ) -1900 cm-1, σs ) 1500
cm-1, and 10% changes of bu displacements. The two simula-
tions lead to different profiles and vary from mode to mode.
The solvent reduces, but does not suppress, the electronic
splitting. We find similar REPs for∆ > 0 and comparable
splitting, 2ε ) 3600 cm-1. The calculated REPs have broad
maxima ∼3000 cm-1 below the absorption peak for low-
frequency modes and∼1000 cm-1 below the peak for CN
stretches.

The experimental REPs in Figure 3 of ref 9 are based on the
eight laser frequenciesωL, marked as arrows at the top of Figure
5. The two CN modes are similar and differ from low-frequency
modes that resemble the calculated REPs in having a broad
maximum ∼3000 cm-1 below the absorption peak and a
(deeper) minimum at the peak. The reported9 CN features are
much sharper, with a minimum at the peak and a maximum
∼500 cm-1 lower in energy. The observed REP minima at the
peak are emphasized9 and several qualitative explanations are
sketched in terms of additional electronic states. Localized
valences and displaced harmonic oscillators account for REP
minima directly in terms of excited-state splitting and properly
locate the maxima of the low-frequency modes in Table 1. The
CN profiles are not reproduced and such sharp features seem
incompatible with our parameters. We defer possible improve-
ments of the model to the Discussion and note that REP spectra
indicate thatJ or ε is at least as large asλi.

We turn next to electroabsorption (EA) and the implications
of the identical vibronic structure of|X,g〉 and|Y,g〉, the many-
mode generalizations of (13). A static electric field F mixes
states of opposite parity. To order F2 in the differential
absorption, we have shifts and bleaching of dipole-allowed states
and induced absorption at two-photon states. A fieldF along
z splits the degeneracy of|L〉 and |R〉 in (11) by 2µLF, where
µL is the dipole moment of3/3/2 in the ground-state geometry.
The electronic dipole operatorµz givesµz|1B〉 ) µL|2A〉, and
vice versa, as verified from (11) and (13). We neglect any field

Figure 4. Linear absorption of [Fe(CN)6Pt(NH3)4Fe(CN)6]4- relative
to 0-0 of |1B〉: experiment from Figure 1, ref 10a, simulations using
(4), (15), and (16) for displacements in Table 1. The resolved spectrum
hasJ ) -1800 cm-1 and becomes the solid line for solvent broadening
σs ) 1500 cm-1; the dashed line has the sameσs, J ) -1900 cm-1,
and 10% changes in displacements as discussed in the text.

I(x,∆) ) Im∑
pb

|M(pb)|2

2π { 1 - (-1)pJ/ε

ωb‚pb - ε - x - iΓ
+

1 + (-1)pJ/ε

ωb‚pb + ε - x - iΓ} (17)

Figure 5. Simulated Raman enhacement profiles, in arbitrary units,
for six of the ag modes in Table 1 and the parameters in Figure 4 for
the resolved, solid and dashed lines. The arrows (top) indicate the laser
frequencies used in ref 9 to measure enhancements.
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dependence for the vibrations. Displaced oscillators simplify
the analysis enormously. The mixing is diagonal inp for states
with identical vibronic structure; eachp of |1B〉 mixes exclu-
sively with the samep of |2A〉.

Dipole-allowed absorptions toeVen p of |1B〉 lead toI1(x),
while odd p of |2A〉 give I2(x). Since EA is a linear process,
we can treat contributions separately and start witheVenp and
I1(x). Mixing of |1B,p〉 and|2A,p〉 produces a Stark shift and
transfers intensity to the two-photon state.15 The EA spectrum
is the differential absorption,

Herex(p) ) x - ω‚p is the absorption (3) relative toω00, δω1

is the Stark shift, andæ is the field-induced mixing,

Since sin2æ goes asF2, we can neglect the Stark shift in the
second term of (18). The polarizability differenceR1B - RG in
(19) describes all other electronic states. Since neitherδω1 nor
æ depends onp, we sum (18) over evenp to obtain15

This simple general result holds whenF mixes electronic states
with identical vibronicsp, as required for (18), and the mixing
does not depend onp.

EA spectra are usually analyzed in terms of the linear
absorption (3) and its frequency derivatives.16,17 Stark shifts
for F ∼ 105 V/ cm are∼0.5 cm-1 for a 100 Å3 polarizability
change and∼40 cm-1 whenµL is an electron transfer over 5 Å
(the Fe-Pt separation is12 4.99 Å). When δω1 is small
compared to the observed width, we rewrite (20) as

A resolved peak at 2J clearly requires a splitting larger than
the experimental line width. When the width exceeds 2J, the
second term of (21) is a derivative and we have, to orderF2,

on using (19) to simplify sin2æ. The second term is (µLF)2/2
times the second derivative,∂2I1(x)/∂x2, for smallJ.

The same analysis holds foroddp andI2(x). The field now
mixes dipole-allowed states|2A,p〉 with two-photon states|1B,p〉
at higher energy. We have

for induced absorption at x and bleaching atx + 2|J|. The
Stark shiftδω2 is given by (19) with the opposite sign for the
J terms, since the shift is now to the red. The polarizability
change due to other states is approximately the same and yields
a first derivative,

The second term again reduces to (µLF)2/2 times ∂2I2(x)/∂x2

whenJ is small compared to the absorption width.
The EA spectrum is EA1(x) + EA2(x); the I′(x) and I′′(x)

contributions both add.I′(x) describes polarizability changes
for any complex, whileI′′(x) gives the mixing of|1B,p〉 and
|2A,p〉 in a centrosymmetric complex. EA simulations for
arbitrary J are conveniently based on (20) and (23), which
require no assumptions about line widths. The calculated
spectrum in Figure 6 is based on the linear absorption in Figure
4, with σs ) 1500 cm-1, Γ ) 5 cm-1, µL ) 20 D, and a typical
polarizability change18 of 100 Å3 between the ground and
excited state. The EA spectrum in Figure 6 resemblesI′′(x),
with a minimum close to the origin marking the 0-0 spike in
Figure 4. The large high-energy feature is due to the simulated
I(x) in Figure 4, whose greatest curvature is above the peak,
while the experimental absorption’s greatest curvature is below
the peak. Figure 4.1 of ref 11 has a preliminary EA spectrum
of 2/4/2 in frozen solution at 80 K. It shows a dominantI′′(x)
shape consistent with an ET of 5 Å (µL ∼ 20 D using Liptay
analysis16a). The absorption is over 2000 cm-1 narrower at 80
K and its peak matches the EA minimum.

Small J generatesI′′(x) by mixing nearby even and odd-parity
states in centrosymmetric systems, without averaging over
different orientations of the field. Thus (22) or (24) are
conceptually different from EA analysis of CT complexes,16

where an orientational average produces anI′′(x) term and first-
order Stark shifts are not considered. We comment below on
the extent to which2/4/2 can be approximated by two
noninteracting CT complexes, as assumed implicitly in previous
work.

5. Discussion

Reorganization energies of individual modes and bond-length
changes follow directly from Raman enhancements when

Figure 6. Simulated electroabsorption spectrum of2/4/2, in arbitrary
units, with the origin at 0-0 of|1B〉 and absorption given by the solid
line in Figure 4. The dipoleµL is 20 D and the polarizability difference
is 100 Å3.

EA1(x,pb) ) cos2 æ I1(x(pb) + pδω1) +

sin2 æ I1(x(pb) - 2J) - I1(x(pb)) (18)

pδω1 ) - (J2 + µL
2F2)1/2 + |J| + (R1B - RG)F2/2

tan 2æ ) µLF/|J| (19)

EA1(x) ) cos2 æ I1(x + δω1) + sin2 æ I1(x - 2J) - I1(x)
(20)

EA1(x) ) δω1

∂I1(x)

∂x
+ sin2 æ [I1(x - 2J) - I1(x)] (21)

EA1(x) ) 1/2(R1B - RG)F2
∂I1(x)

∂x
+

µL
2F2

2|J| {∂I1(x + |J|)
∂x

-
∂I1(x)

∂x } (22)

EA2(x) ) cos2 æ I2(x - 2J + δω2) +

sin2 æ I2(x) - I2(x - 2J) (23)

EA2(x) ) 1/2(R2A - RG)F2
∂I2(x)

∂x
+

µL
2F2

2|J| {∂I2(x + 2|J|)
∂x

-
∂I2(x + |J|)

∂x } (24)
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specific assumptions are made about the excited-state potential.6

The resulting model of displaced harmonic oscillators is the
coherent state of Tannor and Heller.8 The assumptions needed
to extract displacements are sufficient for quantitative simula-
tions of spectra in terms of the autocorrelation function (6) for
a DA dimer in the ground state and from (15) and (16) for the
diabatic states of2/4/2. In either case, the propagation of the
vibrational ground state on the excited-state surface follows from
the same Raman data. We find significant revisions of
reorganization energies, especially in the centrosymmetric
complex.

The autocorrelation function reduces the absorption spectrum
for any number of displaced oscillators to a single time
integration, as shown for [Fe(CN)6Os(NH3)5]1- in Figure 1.
Because the Franck-Condon profile is asymmetric, with a sharp
0-0 edge, solvent broadeningσs ∼ 1250 cm-1 can readily be
extracted in addition toλi ∼ 1800 cm-1. The reorganization
energy is 40% lower than the 2660 cm-1 inferred from the width
alone.13 The dimensionless displacementsgj, and hence all
bond-length changes, are reduced by 25%.

The interpretation of [Fe(CN)6Pt(NH3)4Fe(CN)6]4- spectra
changes substantially:λi ∼ 1800 cm-1 is almost an order of
magnitude smaller than the 16500 cm-1 estimated9 from the
width. The inferredgj in Table 1 are 4.1 times smaller. One
third is due to having bu and ag displacements; the rest comes
from the broad, unresolved2/4/2 absorption in Figure 4. The
absence of harmonics in the Raman spectra was puzzling for
large displacements, but readily understood for reducedgj < 1.
The identification of two excited states follows naturally from
displaced oscillators and rationalizes other2/4/2spectra, notably
the REP minima and maxima of low-frequency modes in Figure
5, while the sharp REPs reported for CN disagree with
simulations. The EA spectrum is consistent with two active
electronic states. We chose identicalλi ) 1800 cm-1 for ET
in closely related complexes, but differences up to 10% could
easily occur.

Localized valences and solvent contributions are special
features of2/4/2. In addition to broadening, the solvent lowers
the symmetry as recognized7 previously for photodissociation
of I3

-. The solvent splitting 2∆ between|L〉 and|R〉 is expected
to be comparable toσs. We first suppose that ions or dipoles
generate a static electric field at the complex. Since the z
component shifts ET in opposite directions for head-to-head
dipoles, we have∆ ) σs due to long-range interactions for
anticorrelated transitions. In the opposite limit of short-range
interactions, the transitions are uncorrelated and∆ is σs/x2.
Since the complex and solvent have comparable size, the
transitions are partially anticorrelated for head-to-head dipoles
and ∆ ∼ σs. We usedσs ) 1250 cm-1 for the binuclear
complex in Figure 1 and a somewhat underestimatedσs ) 1500
cm-1 for 2/4/2 in Figures 4-6. We therefore expect∆ > 1200
cm-1 and J ∼ ∆ or less based onI(x) and REP simulations
with ε ) 1800 cm-1. Rough estimates demonstrate the solvent’s
importance and competition between∆ andJ.

The solvent gives the outer-sphere reorganization energyλs.
The classical limit for low-frequency oscillators leads to19

We haveλs∼ 6000 cm-1 for σs ) 1500 cm-1 at 300 K and add
λi + ε ∼ 4000 cm-1 for the apparent reorganization energy,
since the2/4/2 peak in Figure 4 has an unresolved splitting.
The measured11 λ ) hνmax - ∆E is 14700 cm-1 is slightly larger
and corresponds toσs ∼ 2000 cm-1. The broadening obtained
from simulated spectra is satisfactory and we could almost have

takenσs as fixed rather than adjustable. Larger∆ ∼ σs in turn
reduces the inferredJ and supports the picture of nearly localized
valences. The largest contribution toλ comes from the solvent,
and (25) is consistent with the strong (>2000 cm-1) narrowing
of the absorption at 80 K.11 The observed width also changes
with the hydrogen-bonding ability of the solvent,10b indicative
of σs variations.

Localized valences bring out a useful analogy between2/4/2
and a hypothetical DAAD system whose DA moeities can be
treated according to Liptay.16a The usual choice ofµg for the
DA and µe for D+A- leads toµL ) µe - µg for |L〉. The
centrosymmetric2/4/2 ground state has vanishing dipole mo-
ment, as do the states|1B〉 and|2A〉 in (11). The dipole moment
changefor excitation to|L〉 or |R〉 is ( µL, precisely the same
as in a DA complex; thus the coefficient (µLF)2 of the I′′(x)
term in EA is also the same. Head-to-head geometry ensures
an exact correspondence between EA in theJ ) 0 limit and
DA complexes in solution. The broad absorption leads to
equally broadI′′(x) contributions. On the other hand, nonin-
teracting DA complexes do not account for structured REPs.
Such comparisons show the limitations of the instructive DAAD
limit and the need for finite J.

The solvent and temperature dependencies of2/4/2 spectra
provide wider applications of displaced oscillators. Such studies
are in progress. Detailed modeling of dimers with finite hopping
J and symmetry breaking∆ are theoretical extensions sketched
below. Displaced oscillators can also be used to improve the
Raman inputs through the complete expression (10) forR(ωj,xL).
The resonance enhancement|R(ωj,xL)|2 necessarily scales asgj

2

in linear-coupling models. The assumed scaling asωj
2, by

contrast, is the leading term forωjt , 1. It then follows that
all REPs are identical, since the integrand of (10) is independent
of j after factoring outωj. The different profiles in Figure 5
indicate that higher-order contributions inωj are not negligible.
We also find mode-dependent REPs in the simpler FeOs
complex for theI(x) parameters in Figure 1b. Just as for linear
absorption, quantitative REPs follow directly for displaced
harmonic oscillators. Accurate modeling is a prerequisite for
identifying failures or inconsistencies of displaced oscillators
with equal ground and excited-state frequencies.

The theoretical analysis can also be deepened without
additional experimental input. Displaced oscillators are the
starting point for polarons or excitons in extended systems.4

Double-well potentials such as in Figure 3b are closely related
to the Holstein model, with a single coupled mode, and were
discussed by Fulton and Gouterman20 for dimers. The diabatic
states (13) are the special case forJ ) 0. Finite J implies
excitation transfer between|L〉 and|R〉 that corresponds to the
dimer version of the small polaron. Appropriate vibrational
functions for a few bu modes can be obtained numerically21 and
there are some analytical limits, but not a general solution.

In dimers, ag vibrations are not coupled and displaced
oscillators remain appropriate for finite J. The2/4/2 fits give
the pωg2 in Table 1 that account for over half of the
reorganization energy. The bu contribution toλi is λa ∼800
cm-1, or ∼J/2 used in the simulations. Merrifield’s variational
procedure22 postulates displacements onbothsites in|L〉 or |R〉
as a function ofJ/λa. The upper and lower states,|1B〉 and
|2A〉 for J < 0, have different equilibrium displacements.23 The
total energy in the upper state is reduced by out-of-phase
distortions of the two sites along the antisymmetric coordinate
in Figure 2. The excited-state displacements and henceλa

increase compared toJ ) 0. The displacements are in-phase

σs
2 ) 2λskT (25)
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in the lower state, reduced fromλa. A sum rule ensures that
the total excited-state displacement is conserved for linear
coupling to vibrations. TheJ ) 0 displacements for ag modes
obtained from Raman data are retained for finiteJ, while the
bu displacements increase (decrease) withJ in the upper (lower)
state.23 The variational calculation is straightforward at∆ )
0, without symmetry breaking by the solvent.

Linear electron-vibration coupling leads to anharmonic
potentials along antisymmetric coordinates for finiteJ. Ap-
proximations of various sorts are then needed. As aheuristic
example, we suppose that ga for each antisymmetric mode is
increased by 10% in (15), decreased by 10% in (16). The
resulting dashed lines in Figures 4 and 5 show that, although
broad, the spectra are sensitive to modest parameter changes.
More rigorously, the bu displacements depend onJ/pωj, low-
frequency modes change the most, and there are frequency shifts
and altered Franck-Condon factors. Detailed analysis is
certainly possible and needed for improved simulations of
additional spectra. Such developments are extensions that retain
the original assumptions about linear coupling and harmonic
potentials atJ ) 0.

In summary, we have obtained quantitative consequences of
displaced harmonic oscillators for ET spectra and presented a
simple general expression for the linear absorption and solvent
broadening. Displaced oscillators rationalize the special features
of 2/4/2associated with nearly localized valences, head-to-head
transition moments, and solvent contributions, and do so with
the reorganization energy of a related CT complex. Within
approximations introduced for resonance Raman enhancements,
displaced oscillators yield quantitative simulations of linear and
electroabsorption, as well as resonance enhancement profiles
for diabatic states. A consistent approach to different spectra
and to solvent contributions suggests experimental comparisons
that are in progress. Theoretical improvements of the model
focus on finiteJ, the excited-state splitting of2/4/2 that relates
ET to polaron models.
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