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An analytic and algebraic evaluation of Franck-Condon overlap integrals for harmonic oscillators displaced
by an amount∆ and of different frequencies (ω, ω′) is presented. The results are extended to Morse oscillators
to first order in effective anharmonicities.

1. Introduction

The problem of calculating Franck-Condon intensities in
polyatomic molecules remains of great interest. This calculation
requires the knowledge of the wave functions of the initial and
final states and the successive evaluation of the overlap integrals.
It has been suggested that algebraic methods provide a way to
obtain wave functions of polyatomic molecules.1-5 In the
simplest version of this approach, wave functions are expanded
into a set of one-dimensional Morse (for stretching) and Po¨schl-
Teller (for bending) functions, both of which are related to
representations of the Lie algebrau(2). To calculate Franck-
Condon intensities, one needs to evaluate the overlap integrals
between different Morse (or Po¨schl-Teller) functions. Al-
though this evaluation can be done numerically, quite often one
does not know the potential, and/or the molecule may have many
degrees of freedom and consequently many Morse or Po¨schl-
Teller basis functions. Thus, it may be convenient to develop
explicit formulas for the overlap integrals which allow a
straightforward and less computer-intensive calculation. The
purpose of this note, dedicated to Raphy Levine on the occasion
of his 60th birthday, is to provide some explicit formulas for
the overlap integrals to be used in conjunction with the algebraic
method for the evaluation of Franck-Condon intensities.

2. Harmonic Oscillator, Analytic Methods

Overlap integrals of harmonic oscillator wave functions
centered about different equilibrium positions and whose
frequencies are also different have been evaluated by several
authors.6-8 The result is typically given in the form of a
recurrence relation. In this section, we derive an explicit
expression using analytic methods. The integrals we wish to
evaluate are

For harmonic oscillators

whereHn(x) is a Hermite polynomial andR is related to the
frequencyω by R ) (µω/p)1/2.

The integrals (2.1) can be evaluated by making use of the
following formulas. First, using the integral9

with the orthogonality property of the Hermite polynomials

(for the remainder of the paper all integrals will have limits of
-∞ to ∞) one obtains an expansion of the dilatated Hermite
polynomials in terms ofHn(x)

Next, using a translation operator

expanding the exponential and using the identity

one obtains

Using (2.5) and (2.8), making appropriate changes of integration
variables, and simplifying, one arrives at the final result

In,n′(∆; R, R′) ) ∫-∞

∞
ψn(R; x)ψn′(R′; x - ∆) dx (2.1)

ψn(R; x) ) ( R
π1/22nn!)

1/2
e-(1/2)R2x2

Hn(Rx) (2.2)

∫-∞

∞
e-x2

Hn(x)Hn+2m(Rx) dx ) 2nxπ
(n + 2m)!
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Rn(R2 - 1)m

(2.3)

∫-∞

∞
e-x2

Hm(x)Hn(x) dx ) δm,n2
nn!xπ (2.4)

Hs(Rx) ) ∑
n)smod2
0enes

s!

n!(s - n

2 )!
Rn(R2 - 1)(s - n)/2Hn(x) (2.5)

Hn(x - ∆) ) exp(-∆ d
dx)Hn(x) (2.6)

d
dx

Hn(x) ) 2nHn-1(x) (2.7)

Hn(x - ∆) ) ∑
k)0

n

(-2∆)k n!

(n - k)!k!
Hn-k(x) (2.8)
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whereR+
2 ) R2 + R′2 andR-

2 ) R2 - R′2.
This is a finite sum that can be computed easily. The

behavior of the square of the overlap integrals,|Infn′|2, is shown
in Figure 1 for some typical values ofR, R′, and∆. It is easy
to see that the summation is even or odd in∆ depending on the
parity of n + n′. Thus, by examining the limits of the
summation, one finds the leading term ofInfn′ for small∆ goes
like ∆(n+n′)mod2.

The intensities of the Franck-Condon transitions are obtained
by multiplying the square of the overlap integrals by appropriate
phase-space factors,10

3. Harmonic Oscillator, Algebraic Methods

An alternative derivation of (2.9) can be obtained by making
use of algebraic methods. This derivation is of interest in its
own sake, and in addition, it provides hints on how to extend
the results to anharmonic Po¨shl-Teller (or Morse) oscillators.
The harmonic oscillator (Weyl-Heisenberg) algebra,H(2), used
in this section can in fact be viewed as a contraction of the
algebra, u(2), which describes Po¨schl-Teller (or Morse)
oscillators.11-13 The inverse procedure of contraction (expan-
sion) can be used to go from harmonic to anharmonic oscillators.

By introduction of the standard creation and annihilation
operators

with the commutation relation [a, a†] ) 1, one can recast the
integrals in algebraic form. The algebraic form of the wave
functions of the harmonic oscillator is

In the algebraic derivation, the overlap integrals are calculated
as the matrix elements of some operators, in particular the
translation and dilatation operators.

The translation operator in coordinate space is

Using (3.1), one can write down the algebraic form ofT(∆)

Evaluation of the matrix elements ofT(-∆) is an elementary
quantum mechanical problem. The operatorsa, a†, a†a, and 1
form the well-known Weyl-Heisenberg algebra,H(2),

To calculate

one uses a special case of the Baker-Campbell-Hausdorff
(BCH) formula:

∫ψn(R; x)ψn′(R′; x - ∆) dx )

exp[-
(RR′∆)2

2(R+
2) ] (RR′n!n′!

2n+n′

2

R+
2)1/2( 1

R+
2)(n+n′)/2

×

∑
l)0

min[n,n′] 1

l!( -R+
2

(R′R∆)2)l

×

∑
j)nmod2

ngjgl

∑
j′)n′mod2

n′gj′gl [(R-
2)(n-j)/2(-R-

2)(n′-j′)/2

(R+
2)(j+j′)/2

×

RjR′j′(R′2)j(-R2)j′(2∆)j+j′

(n - j

2 )!(n′ - j′

2 )!(j - l)!(j′ - l)!] (2.9)

Rn,n′ ∝ νn,n′|Infn′|2 (absorption)

Rn,n′ ∝ νn,n′
4|Infn′|2 (emission) (2.10)

a† ) (1/x2)(x - d
dx)

a ) (1/x2)(x + d
dx) (3.1)

|n〉 ) (1/xn!)(a†)n|0〉 (3.2)

Figure 1. Square of the overlap integrals,|Infn′|2, vs n′ for n ) 0, 1,
2. The values ofR, R′, and ∆ are determined by the harmonic
approximation to the Morse oscillators fitting the S-S stretch progres-
sion of S2O. They may be obtained from Table 1 via eq 4.10. A
logarithmic scale is used to emphasize the fact that the overlap integrals
vary over many orders of magnitude.

T(∆) ) e∆(d/dx)

ψ(x - ∆) ) T(-∆)ψ(x) (3.3)

T(∆) ) exp[(∆/x2)(a - a†)] (3.4)

[a, a†] ) 1, [a, a†a] ) a, [a†, a†a] ) -a† (3.5)

1

xn!n′!
〈0|an exp[-(∆/x2)(a - a†)](a†)n′|0〉 (3.6)

9428 J. Phys. Chem. A, Vol. 102, No. 47, 1998 Iachello and Ibrahim



for any two operatorsA and B which commute with the
commutator ofA and B. When applied to (3.6), the BCH
formula yields

Expanding the exponentials and noting that the series truncates
after a finite number of terms, one finds

Evaluating the remaining matrix element and simplifying, one
obtains the final expression

To evaluate Franck-Condon integrals for oscillators of
different frequencies (or equivalently differentR), one uses a
dilatation operator

Hence, for the harmonic oscillator wave functions given by (2.2)

From (3.1) calculating overlaps for differentR (and∆ ) 0) is
equivalent to finding the matrix elements of the operator

To calculate the matrix elements ofD(R) one notes that the
operatorsa†2, a2, anda†a form the Lie algebra ofsu(1,1)14

or, introducing the quasispin operatorsJ+ ) (1/2)a†2, J- )
(1/2)a2, andJz ) (1/4)(1 + 2a†a)

The matrix elements of the dilatation operator can thus be simply
obtained from the group elements ofSU(1,1). Using a BCH
factorization formula forSU(1,1), one has

and consequently

where we have letâ ) ln R.
The matrix elements may now be calculated in a manner

analogous to the calculations of (3.8)-(3.10). Expansion of
the exponentials (except e-(ln coshâ)a†a, which is diagonal) and
simplification gives

In order to obtain the complete result, one must combine the
matrix elements of the translation and dilatation operators. The
complete Franck-Condon overlap integral is

Noting thatT(∆)D(R) ) D(R)T(R∆), D(R)† ) D(R)-1 ) D(1/
R), andD(R)D(R′) ) D(RR′), one may rewrite (3.19) as

with ∆h ) R∆ andRj ) R′/R.
Using the BCH factorizations of (3.8) and (3.17), the matrix

elements become

where

The computation of the matrix element〈n|T(∆)D(R)|n′〉 in terms
of finite sums is still nontrivial. The calculation is simplified
by using the BCH formula in its most general form

to obtain the result

valid for any arbitrary numbersθ andλ. Using (3.24) to reorder
the exponentials in (3.21) the matrix elements become

Expanding the exponentials and simplifying as before, we obtain
the final result

eAeB ) exp(A + B + (1/2)[A, B]) (3.7)

e-∆2/4

xn!n′!
〈0|ane(∆/x2)a†e-(∆/x2)a(a†)n′|0〉 (3.8)

e-∆2/4

xn!n′!
∑

j′,j)0

n′,n (∆/x2)j (-∆/x2)j′

j′!j!
〈0|an(a†)jaj′(a†)n′|0〉 (3.9)

〈n|T(-∆)|n′〉 )

e-∆2/4xn!n′!(-1)n (∆/x2)n+n′ ∑
0elemin(n′,n)

(-∆2/2)-l

(n′ - l)!(n - l)!l!
(3.10)

exp(Rx
d
dx) f(x) ) f(eRx) (3.11)

ψn(R;x) ) xRexp((ln R) x
d
dx) ψn(x) (3.12)

D(R) ) xRexp[(ln R)(a2 - a†2 - 1)/2] )
exp[(ln R)(a2 - a†2)/2] (3.13)

[a†a, a†2] ) 2a†2

[a†a, a2] ) -2a2

[a2, a†2] ) 2 + 4a†a (3.14)

[J+, J-] ) -2Jz

[Jz, J(] ) (J( (3.15)

eλ(J--J+) ) e-tanhλJ+ e-2{ln coshλ}Jz etanhλ J- (3.16)

D(R) ) e(ln R)(a2 - a†2)/2 )

e(-ln coshâ)/2e-(tanhâ)a†2/2e-(ln coshâ)a†a e(tanhâ)a2/2 (3.17)

∫ψn(x)ψn′(R; x) dx ) 〈n|D(R)|n′〉 )

xRn!n′!

2n+n′

2

1 + R2 ( 1

R2 + 1)(n+n′)/2
×

∑
k)n)n′mod2

min(n,n′)gkg0

22k
(1 - R2)(n-k)/2(R2 - 1)(n′-k)/2Rk

k!(n - k

2 )!(n′ - k

2 )!
(3.18)

∫ψn(R; x)ψn′(R′; x-∆) dx ) 〈n|D(R)†T(-∆)D(R′)|n′〉
(3.19)

〈n|D(R)†T(-∆)D(R′)|n′〉 ) 〈n|T(-∆h )D(Rj)|n′〉 (3.20)

〈n|T(∆)D(R)|n′〉 )

e-∆2/4

xcoshâ
〈n|e-(∆/x2)a†

e(∆/x2)ae-γa†2
e-ηa†aeγa2|n′〉 (3.21)

η ) ln coshâ, γ ) (tanhâ)/2, and â ) ln R (3.22)

eAeB ) exp(A + B + 1
2
[A,B] + 1

12
([A,[A,B]] + [B,[B,A]]) +

...) (3.23)

e-λθa†
eλaeθa†2

) eλ2θeλθa†
eθa†2

eλa (3.24)

e(-∆2/4)(1+tanhâ)

xcoshâ
〈n|e-(∆/x2)(1+2γ)a†

e-γa†2
e(∆/x2)ae-ηa†aeγa2|n′〉

(3.25)
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Letting ∆ f R∆ and R f R′/R verifies that this result is
identical to that given in (2.9).

4. Anharmonic Morse Oscillator, Approximate Analytic
Expressions

For transitions between low-lying states (n, n′ small) the
harmonic oscillator results are a good approximation to the
Franck-Condon overlaps. However, in recent years, measure-
ments of transitions up to very highn (n ∼ 20) have become
available. For these transitions, the harmonic oscillator results
are no longer sufficient.

We consider specifically the Morse potential

shown in Figure 2. The overlap integrals between the eigen-
functions of two Morse potentials, (4.1) and (4.2),

differing in strength (D ) and location (x0) but having identical
range (a ) a′) can be calculated analytically.

The wave functions for the Morse potential (4.1) are given
by

where Ln
(R)(x) are the generalized Laguerre polynomials and

(N + 1)/2 ) [D2µ/(p2a2)]1/2 (N is significant since, when
integral, it labels representations ofu(2)).

Integrals of the type

may be readily evaluated by substituting in the defining relations
of the Laguerre polynomials and recognizing the resulting

integrals are simply representations of Gamma functions:

where

and the binomial coefficient is given by

The sum of (4.5) is finite and thus would seem useful in cases
wherea ) a′. Unfortunately, for realistic molecules,N tends
to be quite large (N ∼ 200) and the alternating series of (4.5)
becomes quickly unstable due to computational precision errors.
Rearrangement of the summation has, as of yet, not significantly
decreased these precision errors.

To evaluate overlap integrals for Morse functions with large
N values (and in any event for the casea * a′), one must thus
resort either to numerical quadrature or to an approximate
analytic or algebraic evaluation. The results of such a numeric
calculation are given in Figure 3. The parameters in this figure
are taken as those that fit the S-S stretch progression of S2O15

(Table 1). The two Morse potentials differ in strength,D, range,
a, and location,x0.

∫ψn(x)ψn′(R; x-∆) dx ) 〈n|T(-∆)D(R)|n′〉 )

exp[-
∆2

2

R2

R2 + 1](n!n′!

2n+n′

2R

R2 + 1
)(1/2)( 1

R2 + 1
)(n+n′)/2

×

∑
0elemin(n,n′)

1

l!(-
R2∆2

R2 + 1
)l

×

∑
leken,k)nmod2

lek′en′,k′)n′mod2[(R2 - 1)(n′-k′)/2(1 - R2)(n-k)/2

(R2 + 1)(k+k′)/2
×

Rk′(-R2)k(-2∆)k+k′

(k - l)!(k′ - l)!(n - k

2 )!(n′ - k′

2 )!] (3.26)

V(x) ) D[1 - e-a(x-x0)]2 (4.1)

V′(x) ) D′[1 - e-a′(x-x′0)]2 (4.2)

ψn(N, a; x-x0) ) xaMn,N ((N + 1)ω)(N/2)-n ×

exp[-
N + 1

2
w]Ln

(N-2n)[(N + 1)w],

w ) e-a(x-x0), Mn,N ) (∑
j)0

n Γ(N - 2n + j)

j! )-1/2

(4.3)

∫ψn′(N′, a; x-x′0)ψn(N, a; x-x0) dx (4.4)

Figure 2. Morse potential corresponding to the first column of
parameters in Table 1; the simple harmonic oscillator (SHO) ap-
proximating the Morse oscillator to second order, (inset) magnification
of the Morse potential near the classical turning points for then ) 4
state, (inset) the harmonic oscillator adapted to give the best approxima-
tion to the Morse wave function at then ) 4 state.

∫ψn′(N′, a; x-x′0)ψn(N, a; x-x0) dx )

Mn′,N′ Mn,N ú(N/2)-n ( 2

1 + ú)[(N+N′)/2]-n′-n

×

∑
m,m′)0

n,n′ [(-)m+m′

m!m′! (N′ - n′
n′ - m′ )(N - n

n - m)úm( 2

1 + ú)m+m′
×

Γ(N + N′

2
-n - n′ + m + m′)] (4.5)

ú ) N + 1
N′ + 1

e-a(x′0-x0) (4.6)

(R
â ) )

Γ(R + 1)

Γ(â + 1)Γ(R - â + 1)
(4.7)
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In view of the fact that the Morse potential is not symmetric
aroundx0, the results depend crucially on whether the shift

is positive or negative (upper and lower panels of Figure 3).
The Morse potential (4.1) can be approximated around its

minimum by a harmonic oscillator

One can use, to this approximation, the formulas derived in
sections 2 and 3 to calculate the overlap integrals. The
appropriate values ofR, R′, and∆ are given by

or, introducing the parameter of anharmonicityxe

The results for the harmonic approximation, which are
independent of the sign of∆, are also shown in Figure 3. One

can see that for largen, the results are rather poor. This is
expected since asn increases, the Morse potential deviates more
and more from the harmonic oscillator. A better approximation
can be obtained by considering the classical turning points at
energyE given by

The wave functions diminish rapidly to 0 outside of the turning
points. Hence, at thenth energy level, the Morse wave functions
would be best approximated by harmonic wave functions where
the harmonic oscillator is adjusted so that its width is equal to
the Morse width at thenth level and the minimum of the
oscillator is midway between the Morse potential’s turning
points. In other words, the approximating harmonic oscillator
is adapted to the Morse potential at eachn.

Using the expression for the Morse energy levels in (4.12),

and equating∆xM with the analogous expression for the simple
harmonic oscillator,

one finds

where

Similarly, by finding the midpoint of the Morse potential’s
turning points and equating it with the midpoints of the harmonic
oscillators turning points, one finds

Using (4.15)-(4.17) in the expressions of section 2 and 3
demonstrates much greater qualitative agreement with the Morse
overlap integrals (Figure 3).

Since the anharmonicity is typically small, one may expand
(4.15) and (4.17) to lowest order inxe, x′e,

Figure 3. Square of the overlap integrals,|Infn′|2, vs n′ for n ) 0
calculated (1) numerically for a Morse potential, (2) analytically for
the SHO approximating the Morse, (3) analytically using a dynamically
adapted SHO. The top panel corresponds to the data of Table 1. The
bottom panel is identical exceptx0 f -x0 and x′0 f -x′0 (i.e., ∆ f
-∆).

TABLE 1

final state initial state

D (cm-1) 48 151 20 523
a (Å-1) 1.551 1.639
x0 (Å) 1.8005 2.14
ωe (cm-1) 680.006 415.2
ωexe (cm-1) 2.4008 2.10

∆ ) x′0 - x0 (4.8)

D[1 - e-a(x-x0)]2 ≈ Da2(x - x0)
2 (4.9)

p2

2µ
R4 ) Da2,

p2

2µ
R′4 ) D′a′2, ∆ ) x′0 - x0 (4.10)

R ) a

x2xe

, R′ ) a′

x2x′e
, ∆ ) x′0 - x0 (4.11)

x(
M ) x0 - 1

a
ln(1 - x(E/D))

∆xM ) x+
M - x-

M (4.12)

E ) pωe(n + 1
2)[1 - xe(n + 1

2)]
ωe ) ax(2D/µ) (4.13)

∆xSHO ) 2x2
R (n + 1

2)1/2
(4.14)

R )
2x2(n + 1

2)1/2
a

ln (1 + g(xe,n)

1 - g(xe,n))
(4.15)

g(xe, n) ) 2[xe(n + 1
2) [1 - xe(n + 1

2)]]1/2
(4.16)

∆ ) [x′0 - 1
2a′ ln(1 - g(x′e, n′)2)] - [x0 - 1

2a
ln(1 -

g(xe, n)2)] (4.17)

R ) a

x2xe
[1 - 5

6
xe(n + 1

2)]
R′ ) a′

x2x′e
[1 - 5

6
x′e(n′ + 1

2)] (4.18)
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for smaller n and n′. Comparing (4.18)-(4.19) with (4.11)
reveals that we may in some sense interpret this approximation
as a low-order correction in the anharmonicities. Since the
turning point approximation contains all the necessary features
of Franck-Condon transitions for anharmonic oscillators, the
expression (2.9) with

where R0, R′0, ê, ê′, ∆0 are parameters (effective parameters
which compensate for higher order contributions in (4.18)-
(4.19)) and

can be used to analyze Franck-Condon transition intensities
for stretching vibrations. A similar expression applies to
Pöschl-Teller oscillators (appropriate to bending vibrations)
except that these potentials are now symmetric aboutx0, x′0 and
henceη ) η′ ) 0. An analysis of experimental data in S2O
will be presented in a forthcoming publication.15

5. Conclusions

In this article, we have given a compact expression for the
Franck-Condon overlap integrals between harmonic oscillator
wave functions with different frequencies (ω, ω′), which are

displaced by an amount∆. These differ from previous results
in that the expression is given as an easily computed finite sum.
These results have been obtained by using both analytic and
algebraic methods. In particular, the algebraic evaluation is of
interest, since it makes use of nontrivial mathematical results
to evaluate matrix elements of exponential functions of quadratic
operators,a2 - a†2. We have also presented an approximate
expression for the Franck-Condon overlaps of Morse oscillators
based on the harmonic expression previously derived but
including anharmonic corrections. This form is of great interest
for the analysis of experimental data, since it provides an explicit
expression, which can be combined with the algebraic wave
functions to calculate Franck-Condon intensities in polyatomic
molecules.
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∆ ) [x′0 + 2
x′e
a′(n′ + 1
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xe
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∆ ) ∆0 + η(n + 1
2) - η′(n′ + 1

2) (4.20)

η ) 2
R0

x3
5
ê, η′ ) 2

R′0 x3
5
ê′
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