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A simple and realistic model of a bistable chemical system in which running fronts can be observed is studied.
The stochastic dynamics of this model is described by the master equation for a spatially extended system.
The results are compared with microscopic simulations of the system, performed using the molecular dynamics
technique for reactive hard spheres. The velocity of the front and its shape obtained in both simulations agree
well with the phenonenological description. For small volumes of the systems fluctuations grow locally and
create pulses of concentrations.

. Introduction been used to describe the influence of fluctuations on the
. . . __ propagation of the FishetKolmogorov-type front?13as well

The dynamics of nonlinear chemical systems can be sensitiveas on the trigger fronts 14 Many simulations of the effects of
to fluctuationsi™® which appear as a consequence of the fictuations on the fronts at the mesoscopic level use the lattice
complex character of molecular motion and stochastic propertiesgas cellular automata methotfsin particular, the simulations
of reactive collisions. One can expect substantial differences inere performed for the running front in the Satllonodet®
the influence of fluctuactions on homogeneous and inhomoge- and the fronts modeling chemical waves observed in heteroge-
neous nonlinear chemical systems. Ideally stirred systems areneous catalytic reactiors.

of course homogeneous, but also unstirred systems can be treated The mesoscopic approach in numerical simulations is much

as homogeneous ones if diffusion is sufficiently effective t0 1655 gemanding from a computational point of view than any
disperse local inhomogeneities. Otherwise, the description of gjmjation at the molecular level. The most complete description
spatially extended systems has to include the dependence o reaction-diffusion systems can be obtained using molecular
concentrations on spatial coordinates. The phenomenologlcaldynamiCS (MD) technique$ However, application of these
approach to dynamics of such systems is based on reaction ethods to a real, macroscopic chemical system requires an
diffusion equations, in which internal fluctuations of concentra- anormous number of variables (of the order oFLMoreover,
tions are neglected. In spatially extended nonlinear systems, local-hemical mechanisms of real systems exhibiting nonlinear
fluctuations can qualitatively change evolution of the systems. phenomena are complex and involve processes ocurring at
The influence of fluctuations on the dynamics is particularly gifferent time scale&®-2! Therefore, microscopic simulations
important if the system is close to a bifurcation. The simplest ¢ gych systems are not possible at present. To study the
example in which such qualitative changes in the dynamical jnflyence of internal fluctuations on nonlinear chemical systems
behavior can be expected is a bistable system close to a saddlej js necessary to construct simple models which can be adopted
node bifurcation. In this case the stationary state very close t0 for numerical experiments. Such models should contain possibly
a saddle point is weakly stable, whereas the other stableg minimal number of elementary processes occurring on a
stationary state is strongly attractive. For the homogeneoussimilar time scale and involve reagents whose concentrations
system, global fluctuations induce a “jump” of the whole system o not differ significantly. There are only a few papers dealing
from a basin of attraction of the weakly stable state to the with simulations of nonlinear phenomena in spatially extended
strongly attractive one. In the spatially extended system, a systems at the microscopic levélin particular, investigations
nucleation process can occur in which local fluctuations form of fluctuations in a bistable system have been reported by Baras
small domains (nuclei) due to the similar jump in localized and Malek Mansou#3

regions. These domains can next expand and cover a substantial The ajm of our study is to compare the description obtained

part of the system. from ME with MD simulations for an inhomogeneous bistable
There have been a number of investigations on fluctuations system. While the influence of fluctuations on the velocity of

in both homogeneous and spatially extended bistable chemicalchemical fronts has been studied previously by ME and

systems. The simplified treatment of fluctuations in nonlinear Langevin approachés; 4 we mainly focus our attention on

systems can be based on the master equation ME)This nucleaction, that is, spontaneous generation of pulses in regions
method has been applied directly to simulate the propagationahead of the running front and in initially homogeneous systems.
of the front in the FisherKolmogorov model! For large In the present paper, we apply the “hard-sphere chem#étry”

systems, the master equation can be further reduced to theas the simplest algorithm for MD simulations, which can be
corresponding Langevin equations, in which the deterministic used provided a chemical model consists of bimolecular
reaction-diffusion equations are supplemented by the stochastic reactions only. Therefore, the simple models for the chemical
terms representing local fluctuatioh® Such an approach has trigger waves, like the Schih model, cannot be treated directly
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by MD because they contain trimolecular reactions, and we restrict our considerations to one-dimensional systems. The
comparison of the ME and MD approaches is not possible. kinetic equations have the form:

Recently, we have presented the simple but realistic reaction ,

scheme of a bistable system which consists of elementarydV _ D IV _ k,RS— k_VS— K VE +

processes only and does not include autocatalytic Stdfisese ot Va2
properties allow us to perform for the first time direct simula- k_,XS— k,VX+ k_,YS (5)
tions of the trigger front by the MD technique and ME method.
The paper is organized as follows. In section I, the model is 9E 9 E
described and its phenomenological dynamics in spatially P DEa_Xzz —KVE + (k_, + kg)XS (6)

extended systems is analyzed. The next section is concerned

with the methods used in our simulations. In section IV, we aX 92X

present results for the inhomogeneous system as well s — Dy— = KVE — (k_, + kg)XS— k,VX+ k_,YS (7)

homogeneous one. The simulations are compared with results e

of a phenomenological description of the system. oy 2y
- — D -
e

In the following, we assume that the diffusion coefficients
of all reagents are identical and they are denotedDbylo

=Kk,VX—k_,YS ®)

Il. Phenomenological Model

The model consists of seven elementary reactions: simplify further considerations we also assume that initially the
’ sumE(x,0) + X(x,0) + Y(x,0) = Ep is constant in space. Then,
R+ S—V + 1 summing up eqs 58 it is easy to see thd(x,t) + X(x,t) +
S ko1 S (1) Y(x,t) = Eo for all timest > 0. Thus, one of the variables (for

exampleY) can be eliminated and the dynamics of the system

k . . 4 H 1 1 -
Vi E-—é Y 4s @) is described by three reactieuliffusion equations only:
— 2
%l _ D% = KRS~ K_,VS— kVE + k_,XS— k,VX+
ks
X+S—E+U 3) k_,(E, —E—X)S (9)
K 2
X+V =Y +5S (4) B0 = RVET (G kXS (10

It may be noticed that by substituting VE instead of X and gx 92X
V5E instead of Y one obtains the well-known scheme for a ot D? = KVE — (k_, + k) XS— Kk, VX +
catalytic (enzymatic) reaction inhibited by an excess of its X K
reactant V. This scheme is a modification of the well-known (B —E—X)S (11)
model of an open chemical system with a catalytic (enzymatic)
reaction, inhibited by an excess of its reactant V. The reactant
V is transformed to the product U with E as the catalyst (steps
2 and 3). This part of the scheme is the well-known Langrmuir
Hinshelwood mechanism of catalytic reactions (or the Michae-
lis—Menten kinetics for enzymatic reactions). Step 4 is the
inhibition of the Langmuir-Hinshelwood mechanism (or the
Michaelis—Menten scheme) by an excess of the reactant V. It -
. . N repelling.
is assumed that S is a solvent, whose concentration is held . . . .

. . . It is well-known that a one-dimensional infinite system

constant. The system is open, due to step 1, in which the reactan'a. ibed b iordiffusi ion for bistabl
V is produced from the reagent R, whose concentration is also iscribed by one reactiortifiusion equation for bistable

T ’ dynamics has the running front as an asymptotic solution for
maintained constant. Step 1 can be replaced by a flow term

which mimics a continuously strirred tank reactor (CSTR) open prorﬁ)erly ck;osen initial cor_lditior‘?izﬂlf tf|1le to;al c%ncentration
to the reactant V but closed to the catalyst E and its complexesOft e catalyst (enzymdj is much smaller than the concentra-

. : . S tion of the reactant V then the dynamics of the homogeneous
X and Y, which can be |mr_nob|.I|zed 'ns'd_e the rgactor. system can be reduced to one variable. In this case, one can
In the sequel we are mainly interested in spatially extended separate scales of time in which the concentrations of the
systems. Therefore, we assume that the initial distributions of reagents change. The variablEsand X are fast variables,
reagent concentrations depend on space coordinates. SuclyhereasV is a slow one. On the basis of the Tikhonov
conditions can be achieved experimentally in a continuously theoren?8in slow time scale the fast variables remain equal to

fed unstirred reactor (CFUR) or a so-called “gel disc reactor”. thejr quasistationary values, and then the behavior of the system
The local mass balance equations with reaction and diffusion can e described by one kinetic equation for V only.

terms for each reagent separately must be used to describe the

The homogeneous system with reactions4land thus
described by the above equations without the diffusion terms
has been studied in our recent pagé&rik.may be shown that
for a wide range of the parameters the model exhibits bistability
with the stationary statesy{, Ei, Xa), (V2, E2, X3), and ¥/3, Es,

X3). The state denoted a¥( Ej, Xi) is weakly attractive and
(V3, E3, X3) is strongly attractive, wheread/4, E,, Xp) is

dynamics of the system. According to the mass action law, the gy 2V k;E,VS
behavior of the system is described by four kinetic equations 5 — Dy =kRS—k_,VS— K S+V+ V2/(K 9 =f(V)
for V, E, X, and Y, where the symbols of the reagents are used m 4 (12)

to denote their concentrations for convenience, because this
notation does not cause any misunderstandings. For simplicity,whereKmn = (k-2 + ks)/k, andK4 = k_4/ks.
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For appropriate values of the parameters, the varidlias Numerical solutions can be treated as reasonable approximations
three stationary states. The stationary states with the lowest andf the running fronts in an infinite system if the “front’s width”
the highest concentrations are stable, whereas the middle onés small as compared with a size of the system. Moreover, the
is unstable. Therefore, eq 12 with initial condition such that region occupied by the weakly stable stationary state should be
one part of the system is in a basin of attraction of one stable sufficiently large that the front propagation can be observed.
stationary state and the other one is in a basin of attraction of
the other stable stationary state, has an asymptotic solution in
the form of a running fron¥/(§), where& = x + pt + Xo. A
velocity of the running fronp is given by’

I1l. Simulation Methods

Periodically Extended Molecular Dynamics.The periodi-
V3f(\/) dv cally extended MD technique for reactive hard sphérés
v lied to simulate the time evolution of an inhomogeneous
p=— (13) app . g . ! g
+ood_2d system with reactions 14 at the microscopic level. The
f—w (d\éj/) 3 algorithm used in this paper is similar to the one applied in
refs 25 and 30. All reactants (E, R, S, U, V, X, and Y) are
For the particular form of the right-hand side of (12), the represented by spheres with the same magsad diameter
explicit form of solution is not known. However, a sign @fs (0). The spheres are labeled by a chemical identity parameter

determined by the sign gf,,sf(V) dV. If this integral is positive, which defines their “chemical” properties but does not have
then the region withV close toVs expands, and for a negative  any influence on the mechanical motion. Both reactive and

value of the integral, the region witif close toV; expands. nonreactive collisions between spheres are considered. To
For uniform initial distributions ofEg, the distributions ofe control the rates of various chemical processes, the steric factors
andXin a slow time scale are held at their quasistationary values are introduced (they are denoted ®ss-i; i = 1, 4). They
which are determined by the asymptotic distributionvof describe a fraction of collisions between reactants of a given

It is a common belief and it has been confirmed by numerical process which leads to a reaction. If a collision between spheres
calculations (but to our best knowleadge there is no proof) that representing reagents of a given process occurs, then a random
also spatially extended infinite systems described by reaction number generator is used and the collision is regarded as a
diffusion equations for many variables have asymptotic solutions reactive one if the obtained random number is smaller that the
in the form of the running front for properly chosen initial corresponding steric factor. After such a collision, the chemical
conditions. Similarly to the one-variable system, the kinetic identity parameters of the spheres involved are modified
equations without the diffusion terms should have three station- according to the assumed reaction scheme. Otherwise, the
ary states, two of them are stable and one is unstable. Thereforecollision is a nonreactive one and the spheres retain their
on the basis of the results for the one-variable case, we expectthemical identities.
that the three-variable system«21) has asymptotic solutions If reactions 4 are thermoneutral, then all collisions between
in the form of travelling fronts. Selecting values of the spheres are elastic. Within this assumption, the system of spheres
parameters and the diffusion coefficient for simulations, we are as a whole is in thermal equilibrium with respect to the
restricted mainly by the MD approach, in which a limited translational motion. Maintaining such equilibrium in a system
number of molecules is used. For efficient MD simulations, the with chemical reactions is very important from the computa-
numbers of molecules of the reagents should not differ by more tional point of view because it allows us to extend the size of
than 3 orders of magnitude and, moreover, the rate constantghe system using a prerecorded equilibrium traject®rny
should have values as close as possible. The diffusion coefficienttrajectory which was calculated for a system of spheres with
is determined by microscopic parameters characterizing thethe periodic boundary conditions may be used as a database
system. In our MD simulations its value corresponds to a densewhich allows one to enlarge the size of simulations. The periodic
gas. MD simulations were performed for two sets of the rate boundary conditions mean that positions and velocities of
constants and the diffusion coefficient: (k) = 142.74,k_1 molecules are periodic in space with the period equal to the
= 87.23,kp = 793.0,k—2 = 39.65,ks = 1546.35k, = 793.0, length of the box within which the simulations were performed.
k_4 = 396.5 (all constants in [T¢ s M]™1) andD = 1.175 Therefore, the original small system may be periodically
103 um?/108s and (B)k, = 137.52 k-1 = 84.04,k, = 764.0, expanded in any of the directions by any integer number of the
k-, =38.2,ks =1489.8k, = 764.0,k_, = 382.0 (all constants box lengths. Of course, if a chemical identity of molecules is
in [1078 s M]™1), andD = 1.35 102 um?%1078 s, neglected then such expansion does not bring us any new

We have carried out ME simulations and numerical solutions information. However, in a multicomponent chemical system,
of eqs 9-11 for the same sets of the parameters. Moreover, in which the translational motion is not related to chemical

some additional ME simulations were performed for K} identity, the situation is different. First, different chemical
144.0,k-; = 88.0,k, = 800.0,k_, = 40.0,k; = 1560.0,ks = composition may be initialized in various boxes by marking
800.0,k_4 = 400.0 (all constants in [1& s M]™Y) and two the equivalent (by periodicity) spheres in a different way.
values of the diffusion coefficient, 0.2 and 0.0h%/108s. In Second, steric factors (if they are not equal to unity) differentiate
all simulations we use® = 0.5 M,E; = 0.2 M, andS= 0.1 the time evolution in various boxes, as a collision between the
M. For all sets of the rate constants the concentrations at thesame objects may be reactive in one box and nonreactive in
stationary states are identical and equal/to= 0.113816 E; another one. The periodic boundary conditions ensure free

= 0.069820,X; = 0.039733;V, = 0.139666,E, = 0.054810, motion of molecules between boxes. The problems concerned

X, =0.038275V3 = 0.514699F3; = 0.006652 X3 = 0.017120. with the influence of system size on the observed evolution may
We used two types of the boundary conditions, the periodic be studied in an effective way.

conditions in MD simulations and the zero-flux conditions for In studies on chemical wave front propagation it is convenient

ME simulations. In all cases for appropriate initial conditions to consider systems extended by a large number of cell lengths

the system becomes uniform and approaches the stronglyin the direction the wave propagates (thdirection) and by a

attractive stationary stai;, Es, X3 after sufficiently long time. few cell lengths in the transversal directions. The system is
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initialized in such a way that a part of it is in one stationary
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from adjacent cells. Both kind of these processes contribute

state and the remaining part in another one. Let us consider aindependently to the time evolution of the distribution function,

slice in the xth direction, which is one box wide. At the
beginning of each MD simulation, the chemical identities within

and the master equation fBrcan be presented in the following
general form:

such a slice are assigned to spheres in a random way and all

remaining spheres are marked as the reservoir particles. Ing
simulations, the numbers of particles representing the reactantﬁp({ Nv,i} { NE,i} { NX,i} { NY,i} 1) = ot

oP P

ot

14
chem diff ( )

R and S are constant, which is achieved by assuming that the

system contains nonrective particles which play the role of
reservoirs of R and S molecul&slf a particle of S (R) vanishes

in one of the reactions, then simultaneously a randomly selecte
particle of the reservoir, which belongs to the same slice, is
transformed into S (R), respectively. On the other hand, if a
particle of S (R) appears, then a randomly chosen particle of S
(R), which belongs to the same slice, becomes a patrticle of the
reservoir. However, the partices of S and R may migrate

between slices and their numbers in different slices may change.

The applied technique forces the periodic boundary conditions
for the mechanical motion of spheres in the extended system.
For simplicity of the MD simulations, we considered a case in
which both ends are in the weakly stable state and an interval
in the middle corresponds to the strongly attractive state. For
such a system, the boundary conditions in all directions were
periodic.

The MD results discussed below have been obtained by a
periodic extension of two trajectries. One of them descri¥es
= 500 hard spheres placed in a cubic box with the side length
d = 140 (and thus the packing fraction ig ~ 0.095). The
trajectory contained 10 000 000 collisions (20 000 collision per
sphere). The other one was recordedNo+ 400 hard spheres
placed in a cubic box with the side lenglh= 12.5 (and thus
the packing fraction is; =~ 0.11). It contained 12 800 000
collisions (32 000 collision per sphere). For both trajectores,
=5x 107 um.

In both cases, the diffusion coefficients were calculated from
the average square of the displacement of a sphéras the
function of time.

[E°L1t)
6t

D

We obtained = 1.35 x 1072 um?#10-8 s for» ~ 0.095 and

D =1.175x 1073 um#108 s fory ~ 0.11, and these values
have been used in ME simulations and numerical solutions of
(9—11) for comparison of the methods.

In MD simulations we assumed the following values of steric
factors for reactions14: s; = 0.018,s-; = 0.011,5, = 0.1,
S5 = 0.005,5 = 0.195,4 = 0.1, s-4 = 0.05. These steric
factors lead to sets A and B of the rate constants given in the
previous Section.

Master Equation Approach. The ME approach determines
the probability distribution of populations of molecules in a
chemical system. To include the spatial dependence of concen
trations (local populations), the (one-dimensional) system is
divided intoM cells along the spatial coordinate. The volume
Q and the lengthAl of each cell are assumed identical. The
state of our system (14) is described by the probability
distributionP({ Nv,i,Ng;,Nx.i,Nv,i} ,t) of finding a set of popula-
tionsNg; of species =V, E, X, Yinacelli=1, .., M. (A
number of molecules R, S in each cell is constant and equal to
Nr andNs.) A number of moleculedly i, Ngj, Nxi, Ny, in the

The contribution due to the chemical processes describes isolated

dreactions in each single cell provided that populations in other

cells remain unchanged; it is a straightforward extension of the
corresponding term for the uniform syst&m

oP

M
at = Z(KlNRNSP(“" Ny; — 1, ...1)

chem
+1_y(Nyj + DNP(..., Ny + 1, ...t)

+ 1Ny + D(Ng; + 1P( Ny + 1, oo, Ng; +

1,...0)

+ 1 o(Ny + NP, Ny = 1, ., Ngy —

1, N+ 1,00)
+ 15Ny + DNGP(-s Ngj = Ly Ny + 1, o)

+1g(Ny + DNy + DPCoy Ny 1, Ny +

1, .10

+ 14Ny + DNP(, Ny + 1, ...,

~ VenenP({ Ny it {Ng i { Ny i {Ny i} ,0) (15)

The notation (...Ng;, ...) means that exceply; all populations

in the distribution functior® remain unchanged. The right-hand
side of (15) expresses the rate of change of a probability of a
state{ Nv ;,Ngj,Nx i,Nv i} as a balance of the “birth” and “death”
processes. The “birth” term is formed by the positive compo-
nents of (14), which describe creation of a given state, resulting
from transitions from other states under particular chemical
processes-14. Consequently, the last component of (14) is a
“death” term, describing escape from this state to other points
of the configuration space. The coefficienhem provides the
total rate of escape from the configuratigm( ;,Ng;,Nx ;,Ny i} ),

as a result of chemical reactions

M
Venenf{ NvisNg;iNy i sNy }) = Z(KlNRNS + ki Ny N+
=

KZNV,jNE,j +(k_,+ K3)NX']-NS + K4NXJNVJ— + K,4NY'J-NS)
(16)

The respective terms of sum (16) represent the rates of reactive
collisions corresponding to reactions-4. The coefficients

are related to the phenomenological rate constants of bimolecular
reactions +4 by «; = k/Q. The units must be consistent so
that the result is in (time unitf. Due to this relation, the
chemical terms in the phenomenological egs85can be
recovered from the master equation in the liit— o, as the
equations for the average number concentratidiag2[]

To account for the diffusion process it is assumed that every

ith cell can be changed either by a chemical reaction betweenparticle can jump with certain probability to a neighbor cell.

molecules within a cell or by a transfer of a molecule to or

These hoping rates are related to the diffusion coefficients and
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in general can be specific for each species. The term of eq (14)
describing diffusion has then the following form:

9P M

el = JZ(d\,(NVJ,1 + 1P(..,Nyjop + LNy, — 1, ...0)
+dy(Nyjs1 + DPC Ny — LNy + 1,000
+ de(Ngj—g + DP(..,Ngj_y = 1,Ng; — 1, ...,0)
+ de(Ngjq1 + P Ngj — L, Ngj 1 + 1, ..,0)
F (N1 + P, Nyjog 71, Ny, — 1, .01)
F dy(Nyjsq + DPCo Ny = LNy + 1, 0000)
+dy(Ny;—g + DP(..,Ny;os F1,Ny; — 1, ..01)
+dy(Ny; 3 + DP(s Ny = 1, Ny g + 1, 1)
~ Vit PANv,i Nejo Ny i Ny i3.t) 17)

Let us notice that contrary to the phenomenological approach
we cannot eliminate the species Y because the number of
molecules in each cell fluctuates for all components due to
diffusion.

In the above equation, the terms for boundary cg¢lls, 1
andM, can formally include population@Ng; +1} outside the
system, that is, for= 0 andM + 1. The interpretation of these
values depends on boundary conditions. In the application of
ME, we assumed that the boundaries of the system were
impermeable walls (corresponding to zero-flux boundary condi-
tions in the phenomenological description), and then transitions
of molecules outside the system were forbidden. Consequently,
the terms involvingj = 0 andM + 1 are disregarded. The
coefficientvgi, describing the total rate of diffusive jumps for
all cells, for that system can be written as

Vit ({ Nyi» Nejo Ny Ny i}) = dyNy 3 + deNg g + dy Ny ; +
M—-1

dyNy,; + ZZ(dVNV’j + deNg; + dyNy; + dyNy ;) +
=
dVNV,M + dENE,M + dXNX,M + dYNY,M (18)

The relation between the transition ratkgand the diffusion
coefficientsDgq is obtained from the condition that the usual
diffusion terms are recovered from equation (17) in the limit of
large volume Q — o, and fine division Al — 0. This yields
the relationdqg = Do/(Al)?, which shows that for a given value
of the diffusion coefficient the hopping rately increase for
finer divisions.

The master equation describes the stochastic system in term
of the probability distribution function. Alternatively, a sto-

chastic dynamics of a chemical system can be considered as eg

random walk in a discrete space, in which coordinates of each
point give population§Nq;} of molecules in each cell. We have
performed Monte Carlo (MC) simulations of this (continuous
time) random walk applying the method of Gillesgfewhich
generates a stochastic trajectory according to the following
algorithm. Let us assume that the system at an instanin a
state which is given by the pointNv.i,Ng;,Nx ;,Ny.}). The total

rate of escape of the system from this point due to any reaction
or diffusion process is equal 0= vchem+ vgir. According to
this, in the first step of the algorithm, a waiting tinadfor the
transition is sampled from the exponential distribution

O(r) = vexp(—vr) (19)
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Figure 1. Spatial distributions of concentration of V. The values of
the parameters from set A were used for MD and ME simulations.
The cell volumeQ = 1.042x 1075 um®. (a) MD results for times:
1.6696, the short dashed line; 4.4515, the dashed line; 5.842, the solid
line. (b) ME results for times 1.6358, the short dashed line; 4.4399,
the dashed line; 5.842, the solid line.

The next step consists of choosing a particular reaction or
diffusion process, which causes a transfer of the system to

Another point. The probability(a) of selection of process is

roportional to its contribution to the total rate of escapEor
hemical reactionp in a cellj, that means
; -1
pchen(pvj) =v Klep,jNZp,j (20)
where Ny,j and Np,; denote populations of molecules of the
corresponding two species involved in the bimolecular reaction
p. Similarly, for the probability of a diffusive jump (to the left
or right) of a molecule Q in a cejlone obtains
: -1

Pair(Q4) = v dQNQ,j (21)
Next, the population§Ny j,Nej,Nx Ny} are updated as they
result from the chosen processin terms of the random walk,
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Figure 2. Same as in Figure 1, but for the parameters from set B. The Figure 3. Same as in Figure 2, but the cell volurie = 0.469 x
cell volumeQ = 1.875x 1075 um?®. (a) MD results for times: 0.863, 1075 umd,
the short dashed line; 3.017, the dashed line; 4.309, the solid line. (b)
ME results for timeg: 0.862, the short dashed line; 3.017, the dashed IV. Results

line; 4.310, the solid line.
The simulations for initially inhomogeneous as well as
the system moves to the new point. Given this new state, homogeneous spatially extended systems were performed. We
generation of the random trajectory proceeds beginning from compare the results obtained by MD and ME approaches for
the first step, and so on. The coarse-grained description providedtn® systems with the same rate constants, diffusion coeficients,
by the master equation, which is based on a division of space@nd number of molecules. The only difference was that the
in finite size cells, is valid when concentrations in each single bounqlary c_ondmons used in MD were periodic, whereas for
cell can be regarded as uniform. This condition can be satisfied ME simulations the z.ero.-flux clond|t|0n.s were agsumed.
if the length of a cell is sufficiently small. The results of the Let us recall that in simulations of ideally stirred systems

henomenoloaical aporoach can be used as a first approximatio with the same reaction schefheve observed transitions from
P . 9 Pproa e stapp! A6 basin of attraction of the weakly stable stationary state to
for variation of concentration within a cell; on this basis a size

the other one. It was found that the mean first passage time
of a .cell'can Pe fOUQh'y eyqlgateq. .Therefore, the ma§ter strongly increases with the volume of the system. On the basis
equation is applicable if the division is fine enough to describe ¢ this dependence we were able roughly estimate a volume of
inhomogenities relevant for a given problem. On the other hand, the cell for simulations of spatially extended systems. For the
the transport between neighbor cells can be described bynonuniform initial conditions described in section II, the region
diffusion only if a single cell is longer than the mean free path occupied by the strongly stable stationary state expands due to
of molecules. Also, the number of molecules in a cell must be the running front mechanism. Moreover, one can expect that
sufficiently large to provide enough accurate statistics for spontaneous transitions from the weakly to the strongly stable
populations, even for the reactant of the smallest concentration.stationary state can occur locally in a finite time long before
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Figure 4. Comparison between numerical solutions of egd 9 with Figure 5. Same as in Figure 4 but for the system presented in Figure

MD simulations (a) and with ME simulations (b) for the system 3. The initial conditions in phenomenological calculations were defined
presented in Figure 1. The initial conditions in phenomenological by the concentration distributions obtained in simulationis=at2.154
calculations were defined by the concentration distributions obtained (MD) andt = 2.586 (ME). The dashed line and the solid line show the
in simulations at = 4.17 (MD) andt = 3.97 (ME). They are denoted  results of simulations and phenomenological calculations$o#.310.
by the short dashed line. The dashed line and the solid line show the
results of simulations and phenomenological calculationsf06.842. results is very good for times less than 1.7. For longer times,
the running front arrives. The appearing domains spread outthe results of the two methods coincide for the front progating
like the running front too. For the selected values of the to the left. In MD simulation the front propagating to the right
parameters, we can clearly observe both the propagation of themoves faster than the one obtained in ME simulation. The
running front and spontaneous creations of pulses. evolution of the system for times longer than 1.7 is strongly
In Figures 13, we present a comparison between results affected by spontaneous generation of new pulses which
obtained for initially inhomogeneous systems by (a) MD and originate due to transitions from the weakly to the strongly stable
(b) ME methods at selected times. In these simulations our State induced by local fluctuations. These transitions occur more
system consists of 500 cells. At the beginning, the concentrationsfrequently in MD simulations than in ME ones.
of the reagents in cells numbered from 220 to 280 corresponded Figure 2 presents snapshots of V for the system characterized
to the strongly attracting stable stationary state, whereas in allby the volume of single cell 1.875% 10°° um? and the
other cells, the weakly stable stationary state was assumedparameters from set B. This is the largest volume we considered
Figure 1 shows the evolution of V for the system characterized in our MD simulations. The length of the system is 5.
by the volume of a single cell, 1.04% 105 um?3, and the The profiles of the expanding pulse obtained from the two
parameters from set A. The length of the system is 3425 simulation methods agree perfectly for this system. The main
Expansion of the pulse initialized in the middle zone of the difference in comparison with the previous case is that for such
system is seen. It can be treated as propagation of two fronts inlarge volume the spontaneous generation of new pulses is much
the opposite directions. The agreement between MD and ME more difficult. Local fluctuations are smaller because the volume
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Figure 6. Spatial distributions of concentration ¥fobtained in ME Figure 7. Same as in Figure 6 but fo = 200 andQ =5 x 10°®
simulations of an initially homogeneous systenVatE;, X; for set C ums,
and the diffusion coefficienb = 0.02um?1078 s. The division inM
= 400 cells withQ = 2.5 x 10°% um? was used. Snapshots for times 0.6
t: 1.25, the short dashed line; 2.50, the dashed line; 3.75, the long 3
dashed line; 4.0, the solid line.
_ _ _ 0.5 4
of a cell is much larger. It is expected that the evolution of the ]
system with parameter set B is qualitatively similar to that seen
in Figure 1 if the cell volume is smaller. Figure 3 shows 0.4 3
snapshots of V for the system with the same values of the
parameters as in Figure 2, but the volume of a single cell is ]
reduced to 0.46% 1075 um?3. Many new pulses appear inthis - 0.3 ]
system at the same time. Also, in this case both simulation = .
methods give similar rates of expansion of the initial pulse. ]
Similarly to in Figure 1, for the system with parametr set B the 0.2 9
spontaneous generation of pulses is easier in MD as compared
with ME simulations. E)
To study the influence of fluctuations on the dynamics of 0.1 7
the system, we compared the solutions of the deterministic egs ]
9—11 with the MD and ME simulations. The initial conditions A A
for eqs 9-11 were taken as the concentrations of the reagents = g T LT TR e
obtained in simulations for selected times. Figure 4 shows the %

comparison between simulations (MD (&), ME (b)) and phe- rigyre 8. Same as in Figure 6 but f@ = 0.24m?/10° s at timest:
nomenological equations for the system presented in Figure 1.9.25, 10.00, 10.75, 11.25, 11.75, 12.25.
The phenomenological calculations were initiated by the simula-
tion results fort = 4.17 (MD) andt = 3.97 (ME). We have whereasM = 200 andQ = 5 x 1076 um3 in Figure 7. The
found a very good agreement for the expansion of the initial results presented in these figures (as well as those not shown
pulse, as well as for evolution of sufficiently developed here) indicate that general features of the dynamics do not
spontaneous pulses. However, small fluctuations vanish in thedepend on divisions used in our ME simulations (regardless
deterministic evolution, whereas they may grow to macroscopic the stochastic details).
size in the simulations. A similar relation between the phenom-  Spontaneous creation of pulses is more difficult if diffusion
enological description and the simulations is observed in Figure s faster, and this effect is worth studing in more detail by
5, in which the calculations for the system presented in Figure simulations of systems which differ by diffusion coefficients
3, initialized by the simulation results far= 2.15 (MD (a)) only. In MD simulations we could not achieve wider variations
andt = 2.59 (ME (b)) are shown. of the diffusion coefficient. This restriction does not play major
To check the influence of division of the system into cells of role in ME simulations. In Figure 8 we show the results of ME
various volumes on the ME results we have performed special simulations for the initially homogeneous system and the same
simulations in which we used various system divisi&tiEhese division and cell volume as in Figure 6, but with the diffusion
simulations were carried out for initially inhomogeneous as well coefficient one order larger, equal to 0.2. It can be noticed that
as uniform systems. Set C of the parameters was used, and thén this case only the single pulse appears and at a much later
length of the system was equal tan. The example results  time.
for initially homogeneous system are shown in Figures 6 and One can estimate a size of fluctuations which are able to
7. In these two cases the total volumes of the systems were theswitch the system from the basin of attractiorMaf E;, andX;
same, butM = 400 andQ = 2.5 x 10°% um? in Figure 6, to the basin of attraction dfs, Ez, and X3 on the basis of the
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reduced system described by (12). The linear stability theory 12

determines the behavior of infinitely small perturbations of the

homogeneous stationary statég Vo, and Vs in the form of } 2

normal modesdVi(t,x) = OVu explgx + ot) for which the ( {

dispersion relation is 8 # | \
|

(a)

df(v,)
v

o=-Dq

V(q)

(22)

It is easy to check that if

o) o KESKGS—VAKS)

v TS s v vaksE D 2

then the perturbations with any wavenumbeigecay in time. !

Therefore, the homogeneous stationary statesnd V3 are 10 o

stable. It is not the case fak, for which di(V2)/dV = 0. Thus, T\” (b) \

for q < g, = (1/Ddf(V,)/dV)Y2 the value ofc can be positive ‘

and the perturbations of the homogeneous 8fatean grow in 8 —i "

time. The size of the critical nucleus given By= 2x/q. is | |

equal to 0.14%m for D = 0.02um%10-8 s and 0.46G:m for D !

= 0.2um?/1078 s for the parameters used in Figures&(set — |

C). These values are rough estimations, and they give ap- z 1 \

proximate minimal sizes of fluctuations which can switch the 4= \

system from the basin of attraction of the weakly stable . |

stationary state to the strongly stable stationary one. The results |

shown in Figures 68 confirm these estimations, although the T

system is initialized as uniform at the stable steieE;, X, ; /N RN

not in the unstable saddle poi, E;, Xo. 0 - e -
Analysis of the Fourier spectrum of concentration of V in 0 40 80 120

the region of space which remains close to the weakly stable o

stationary state can be used to evaluate a critical wavenumberrigure 9. Time evolution of the modulus of the Fourier spectrum of

below which spontaneous excitations grow in time. Figure 9 the region remaining close to the weakly stable stationary state obtained

shows changes of the Fourier spectrum in time obtained from from MD (a) and ME (b) simulations. Both simulations are performed

MD (Figure 9A) and ME (Figure 9B) simulations for the system for the same set of the parameters (set B) @ 0.469x 107° um®.

with the parameters defined by set B. The results are in '_Fhe_curves show results forthe_ fo!lowmg times: 0.431, the short dashed

o . . line; 2.155, the long dashed line; 4.31, the solid line.

qualitative agreement with those obtained from the phenom-

enological descripition given above. In both MD and ME 1.0

simulations, the Fourier components with small wavenumbers

grow in time, whereas for large wavenumbers their amplitudes |

fluctuate at low level. The evolution &f(q) obtained from both 0.8 0
simulation methods is in quantitative agreement. MD and ME a
indicate that in the system studigg~ 50 4= 10 um~1, which 0.6 .

gives the size of the critical nucleds~ 0.126um. A. calculated

g |
from eq 23 is equal to 0.154m which is in quite good > ‘\‘
agreement with the critical size nucleus evaluated above. 0.4

Similar analysis of the Fourier spectrum obtained from ME ;
simulations for the system (set C) with a large diffusion 0.2 -

coefficientD = 0.2um?1078 s initialized at the weakly stable
stationary state is shown in Figure 10. In this case the critical ‘
wavenumber evaluated from eq 23jis~ 14um™2, (A ~ 0.449 0.0~
um) which is also in good agreement with the results of
simulations. On the basis of the above observations, we can
conclude that the criterion deduced from the linear stability Figure 10. Fourier spectrum for the simulations presented in Figure
applied to the saddle point gives a reasonable estimation of the8 at the following times: 2.5, the short dashed line; 6.25, the long
size of the critical nucleus. dashed line; 10.0, the solid line.

The approximate theoretical description of fluctuations in the for q > g. should converge te/2(Dg? — df(V2)/dV) wheree is
reaction-diffusion system may be based on the Langevin the noise amplitud& We have calculated the average modulus
approach in which additional terms corresponding to stochastic of the Fourier components foy> 80 um~1 obtained from MD
character of reaction and diffusion processes are added to ecsimulations of the system with set B for two volumes: 0.469
12. As the simplest approximation, one can consider that the x 107> um? and 1.875x 10~ um3. The average modulus of
stochastic terms are given by the white noise which is uncor- amplitude does not depend on time, and it equals approximately
related in time and space. Within this approximation, one can 0.18 and 0.11, respectively. The square of their ratio roughly
show that the square of the amplitude of the Fourier componentscorresponds to the inverse ratio of the system’s sizes.
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