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The role of the bonded (bond stretching and bond angle) force-field terms in free energy simulations is
examined. It is shown that the proper treatment of such terms depends on the choice of the free energy
methodology (single or dual topology). Furthermore, while there are no problems in describing changes in
bonded terms, care has to be used in creating or destroying them in a molecular dynamics simulation. An
approach that avoids the singularity caused by a bond with a zero force constant is outlined. Changes in
bond stretching or bond angle terms are shown to give rise to vibrational, Jacobian factor, and potential-of-
mean-force-type (pmf) contributions. The meaning of bond stretching and bond angle bending free energy
components obtained in single and dual topology simulations and their connection to these three contributions
is investigated. Due to the different end states used in single and dual topology simulations, the pmf contribution
is projected on different free energy components. In certain dual topology methods, vibrational and Jacobian
factor contributions are not included in the free energy difference. Therefore, single free energy differences
(e.g., the free energy difference between two molecules in the gas phase and in solution) often cannot be
compared directly between single and dual topology methods. However, identical double free energy
differences (e.g., free energy differences of solvation) are obtained in all cases. The present analysis emphasizes
the importance of the details of the simulation methodology in interpreting the results for bonded terms and
reconciles apparently contradictory findings in the literature.

1. Introduction

Free energy simulations have been successfully applied to
calculate the free energy change for a variety of processes.1-4

They include protein stability,5-7 ligand binding,8,9 cooperat-
ivity,10 solvation,11 and conformational equilibria.12 Such
simulations make it possible to probe the systems of interest at
the atomic level of detail and to obtain insights that would be
difficult to obtain experimentally. Although most calculated
overall free energy changes have been made in response to
experimental measurements,4-12 examples of predictions of free
energy differences have been published (e.g., the free energy
difference of solvation between nucleic acid bases13,14or a study
of the thermodynamics of Ribonuclease T1 substrate interac-
tions).15 Free energy simulations also have been used in force-
field development.16,17

Most free energy simulations are concerned withalchemical
transformations,3,10 in which one calculates the free energy
change resulting from the transformation of one molecule or
one molecular fragment (e.g., an amino acid side chain) into
another. The physically significant quantity (e.g., the free
energy difference of solvation between two solutes or the free
energy difference of binding for two ligands) can be expressed
as a double free energy difference in almost all cases. For
example, the free energy difference of solvation,∆∆Asolv,
between two solutes S1 and S2 is defined as

where∆A1 and∆A2 are the free energies of transfer S1 and S2,
respectively, from the gas phase into aqueous solution. Since
free energies are state functions, a thermodynamic cycle (see
Figure 1) can be used to obtain∆∆Asolv from the alchemical
free energy differences calculated as the difference between the
free energy change of mutating S1 into S2 in solution (∆A4)
and in the gas phase (∆A3);18 i.e.,

Similarly, the free energy difference for the binding of two
ligands, L1 and L2 to a protein, can be calculated from the free
energy difference between the unbound ligands L1 and L2 in
solution and the protein-ligand complex involving L1 and
L2.9,18,19

In alchemical processes of the type represented by the
horizontal arrows in Figure 1, one can distinguish two types of
changes in the potential energy functionU of the system. They
are∆Uintra, corresponding to energy terms restricted to the part
of the system that is alchemically transformed (among others,
the appropriate bond and bond angle terms belong into this
group), and∆Uinter, corresponding to the interactions between
the transformed portion and the rest of the system including
the solvent. To emphasize this separation, we write the total
potential energyU(λ) as a function of the coupling parameter
λ that formally describes the transformation from the initial to
the final state as

whereU0 is the part of the energy function that is not altered
by the mutation. This separation is exact for most of the
empirical energy functions used in standard force fields, which
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∆∆Asolv ) ∆A2 - ∆A1 (1)

∆∆Asolv ) ∆A4 - ∆A3 (2)

U(λ) ) U0 + ∆Uintra(λ) + ∆Uinter(λ) (3)
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are expressed as a sum of terms.17,20,21 Free energy differences
arising from the change in∆Uintra have been referred to asself-
terms6 or intragroup perturbed interactions;22 a detailed de-
scription of the contributions to the self-term that arise in the
mutation Ile 96 to Ala in the protein barnase is given in Prevost
et al.6

The published literature leaves unanswered a number of
questions concerning the calculational methodology and the
interpretation of the self-terms resulting from∆Uintra. Along
the two alchemical steps of a thermodynamic cycle (∆A3 and
∆A4 in Figure 1), the terms in the potential function belonging
to ∆Uintra are changed identically; i.e., the same transformation
is carried out in the gas phase and in solution. This has led to
the assumption that the self-terms cancel in the double free
energy difference and that the contributions arising from∆Uintra

can be omitted,13,23 although the simulations making this
assumption were made with the full potential energy function
(eq 3). Such an approach has been criticized,24 and other
workers have included∆Uintra in the free energy difference
formalism.6,7,10 In general, the free energy differences resulting
from the two approaches are not identical. The contribution of
∆Uintra to the free energy difference between S1 and S2 in
solution (∆A4), which also contains the solute-solvent terms
corresponding to∆Uinter and possible coupling between the
interactions, is expected to be different from that in the gas phase
(∆A3), which contains only the intrasolute terms.

Bond and bond angle energy terms are an important part of
∆Uintra. Qualitatively different results concerning the importance
of bonded terms in self-term contributions have been obtained
in calculations of free energy differences that have included
them. In a study on the free energy difference of unfolding
between wild-type barnase and the I96A mutant, Pre´vost et al.6

reported a large self-term, which was attributed mainly to
changes in bonded interaction in the folded and unfolded state.
Pearlman and Kollman have reported an “overlooked bond-
stretching contribution to free energy differences” and also
concluded that self-terms (which they refer to asintraperturbed
group interactions) can be significant.22 Nilsson and co-workers
have compared the results of calculations in which contributions
from bonded energy terms were included or omitted.25,26 They
found significant differences, but the results are inconclusive
because of convergence problems encountered in the simulations
that included the bonded energy terms in the free energy
formalism. This suggests that there are methodological prob-
lems, as well as questions of interpretation, associated with the
inclusion of bond length and bond angle terms in the free energy
formalism. Harris and Loew recently presented some results
regarding these questions and found self-terms to be of little

importance;27 similar observations were reported by Rao et al.28

and by Sun et al.29

An essential question concerns the magnitude of any ne-
glected contribution to the∆∆A values when the terms arising
from ∆Uintra are omitted. Our purpose in this paper is to focus
on ∆∆Asolv and to answer the question for bond stretch and
bond angle terms. In so doing we resolve some methodological
problems that have arisen in the calculation of these terms. The
investigation is aided by the decomposition of the total free
energy difference obtained from the calculations. The so-called
“component analysis” that allows one to do this has been
criticized as the resulting free energy components depend on
the simulation path.30,31 We have shown elsewhere that the
results of a component analysis are meaningful19,32,33and that
the choice of path provides an additional degree of freedom
that gives insights into different aspects of a free energy change.
The use of component analysis to study the importance of self-
terms is an extension of earlier work.19,32,33

We believe that an investigation of the type reported here is
of considerable importance at the present time. In the past,
limited computer resources have prevented fully converged
calculations in some cases.30,34 Also papers were published,
as mentioned above, criticizing the significance of free energy
components.30,31,35 Since they are one of the more interesting
results of free energy simulations, there seems to have been a
lull in methodological developments and applications during
the past few years, relative to the large number of papers
published between 1987 and 1992. The results of the present
paper on treating bonded terms, the development of practical
approaches for solving the so-called van der Waals endpoint
catastrophe,36-38 and the availability of accurate treatments of
long-range electrostatic effects39,40together provide a methodol-
ogy for meaningful free energy simulations. When combined
with sufficient computer time to obtain converged results and
to do the calculation several times, free energy simulations are
now ready for their rightful place in the microscopic analysis
of mesoscopic systems. A good example of what can be done
today is given in a study of the difference in the free energy of
binding of asparagine and aspartic acid to aspartyl-tRNA
synthetase.39,41

This paper addresses the important aspects of the role of
bonded terms in free energy simulations and is organized as
follows. First, a brief review of the free energy formalism and
the path dependence of free energy components is given (section
2a). To analyze the role of bond stretching and bond angle
bending terms in free energy simulations, a comparison is made
of two ways of setting up the hybrid potential energy function
(single and dual topology) (section 2b). These two simulation
methodologies involve different end states. It is shown that
the contributions resulting from the use of the different end states
cancel from the double free energy of interest∆∆Asolv and that
they can be calculated analytically. Different (single) free
energy differences and, in particular, different free energy
components for the pieces of the thermodynamic cycle are
obtained that provide insights into the meaning of free energy
contributions from bonded terms. We then describe how to
include changes in bonded terms in the free energy formalism.
The appropriate method depends on whether a single or a dual
topology formalism is used. It is necessary also to distinguish
between changing the strength of a bond (section 2c) and
deleting or adding a bond (section 2d). Finally, some observa-
tions regarding the analysis of free energies differences of
solvation are presented (section 2e). A numerical example

Figure 1. Thermodynamic cycle used to calculate the free energy
difference of solvation between two molecules S1 and S2 (e.g., ethane
and methanol).
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illustrating a point made in the text concerning bond angle and
Urey-Bradley terms is presented in an appendix.

The theoretical considerations presented in this paper are
complemented and augmented by calculations of free energy
differences for selected model systems in the companion paper.42

We report the results and interpretation of free energy differ-
ences of solvation between (i) one-dimensional diatomics, for
which the partition functions can be obtained with high precision
by numerical integration, (ii) between two diatomic molecules
in three-dimensions, which make it possible to study the effect
of altering bond parameters most clearly, and (iii) between
ethane and methanol as an example of a realistic system.

2. Theory

2a. Review of the Free Energy Formalism.We begin with
a brief summary of the theory used in free energy simulations.
All formulas are developed in the canonical ensemble (constant
volumeV, temperatureT, and number of particlesN). Similar
expressions are valid at constant pressureP, T, andN; in most
cases, the two types of results should be essentially the same,
although for a large volume change in an alchemical simulation,
a constant pressure calculation may be more appropriate. If
the potential energy function of the system is given in the form
U ) Uo + ∆U, where∆U is the change in potential energy
relative to the reference system described byUo, the (configu-
rational) free energyA of the full system can be written in the
form A ) Ao + ∆A, where∆A is the free energy difference
due to the change in the potential energy function. This is often
referred to as a “perturbation”, although the calculational
methods used in most studies are exact, in principle. The kinetic
energy contribution can be calculated analytically or ignored
since it cancels in a double free energy difference.1

Two equivalent, exact expressions for∆A are employed in
most free energy difference simulations. The first one is
commonly referred to as the thermodynamic integration method
(TI)43,44 and the second as the exponential formula (EF) (also
denoted as the perturbation method or formula, even though it
is, in principle, an exact expression).45,46 In both cases, one
starts by introducing a coupling parameterλ and writes the
potential energy function of the system as follows

We refer to thisλ-dependent potential energy function as a
hybrid potential energy functionbecause in an alchemical
simulation it makes possible the smooth transformation of the
initial system to the final state by introducing an intermediate
(hybrid) system. The parameterλ ranges betweenλinitial and
λfinal, which are commonly chosen as 0 and 1 so thatU(λ ) 0)
corresponds to the reference system (or∆U(λ ) 0) ) 0), and
U(λ ) 1) to the perturbed system. In TI,43,44 the free energy
difference between initial (λ ) 0) and final state (λ ) 1) of the
system is obtained as

where the integration has been performed with a variety of
methods; use of the trapezoidal rule is most common. In EF,
the same free energy difference is obtained as

In most practical applications of eq 6, the second equality is
used to take into account the fact that the required ensemble
averages converge only if initial and final state are not too
dissimilar. In eq 6kB is the Boltzmann constant,T is the
temperature, and the notation〈X〉 λ in eqs 5 and 6 denotes a
classical statistical mechanical ensemble average in the canonical
ensemble, i.e.,

whereZ is the configurational partition function andr denotes
the 3N dimensional coordinate space withV designating the
integration volume. The subscriptλ on the ensemble average
indicates that it is evaluated at a particular value ofλ.

In the remainder of the paper, we use the TI formalism
because it leads to a direct relation between additive terms in
the potential energy function and additive terms in the free
energy difference;8,10,19,32i.e., if ∆U is written as a sum of terms

the free energy difference∆A is given by a sum of terms

This decomposition, which has been referred to ascomponent
analysis, is exact and has proven to be a very useful tool for
obtaining insights into the free energy change on the molecular
level.6-8,10 However, such free energy components depend on
the simulation path between the initial and final
state,8,19,30-32,34,47-51 in contrast to the total free energy differ-
ence, which is a state function. To make clear this path
dependence, it is useful8,19 to consider a system with two
additive terms that contribute to∆U and to introduce separate
integration variablesλ and µ associated with∆U1 and ∆U2,
respectively; that is,

The free energy component∆A1 is given by

A corresponding expression holds for∆A2(λ). Both ∆A1 and
∆A2 are line integrals that depend on the integration path defined
by the parameters (λ, µ). The coupling betweenλ andµ arises
from the Boltzmann factor, which involves the total potential
energyU(λ,µ). Equations 8 and 9 correspond to what has been
called the concerted linear path (λ ) µ), in which all terms in
the potential function are changed in a concerted fashion
corresponding to the transmutation of one system into another.
Since the free energy components are not unique, care is
required to establish their physical meaning in each application.
The nature of the coupling between free energy components
has been considered in a more general context in previous
work.8,19,32,33,51 One property of the free energy components
is evident from eqs 3, 7, and 8. Only energy terms that depend
on the coupling parameter give rise to free energy components.
Thus, although a free energy component depends on all energy
terms of the system through the Boltzmann factor, it is projected
on a specific term; i.e., on∆U(λ) in eq 10. This implies that

U(λ) ) U0 + ∆U(λ) (4)

∆A ) ∫0

1
dλ 〈∂∆U(λ)/∂λ〉λ (5)

∆A ) -kBT ln 〈exp[-∆U(λ ) 1)/kBT〉λ)0 )

-kBT ∑
i

ln〈exp[-(∆U(λi+1) - ∆U(λi)/kBT]〉λi
(6)

〈X〉λ ) [Z(λ)]-1 ∫V
dr X exp[-U(r ,λ)/kBT] (7)

∆U ) ∑
i

∆Ui (8)

∑
i
∫0

1
dλ 〈∂∆Ui(λ)/∂λ〉λ ) ∑

i

∆Ai (9)

U(λ,µ) ) Uo + ∆U1(λ) + ∆U2(µ) (10)

∆A1(µ) ) ∫0

1
dλ
∫V

dr [∂∆U1(r ,λ)/∂λ]exp[-U(r ,λ,µ)/kBT]

∫V
dr exp[-U(r ,λ,µ)/kBT]

(11)
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different free energy components can be obtained if different
hybrid potential energy functions are used to describe the
mutation of interest. One of the aims of this paper is to provide
insights concerning the physically meaningful interpretation of
these differences.

2b. Single and Dual Topology Simulations.Two distinct
ways of implementing the hybrid potential energy function (eq
4) are used in free energy calculations. We refer to them as
singleanddual topologymethods.52 Calculations of the free
energy difference with the single or the dual topology method
correspond to employing different hybrid potential energy
functions; in particular, the number of degrees of freedom of
the system used in the thermodynamic integration formula is
different. It is necessary to understand this difference for an
analysis of the effects on free energy components resulting from
changes in bond and bond angle terms and the physical meaning
of such contributions. In fact, different end states are present
in the two methods, so even the total free energy differences
are affected. However, as we show below, the same double
free energy differences are obtained, which in most cases are
the quantities that can be measured directly (cf. the Introduction).

Single Topology.The single topology approach, as imple-
mented, for example, in the PERT module of CHARMM,20 is
a one-to-one mapping process where every atom in the initial
state (e.g., ethane) has a counterpart in the final state (e.g.,
methanol). Any energy term that depends on an atom that
changes in the transformation is altered so that we can write

whereUo(r ) is the part of the potential energy function that
does not change,Uinitial(r ) contains the energy terms unique to
the initial state andUfinal(r ) those unique to the final state. The
variabler represents the system coordinates. Since the number
of atoms does not change in the transformation, the coordinate
space is conserved. The functionsf(λ) andg(λ) are such that
f(λ)0) ) 1, f(λ)1) ) 0 andg(λ)0) ) 0, g(λ)1) ) 1; it is
common, as in the PERT module of CHARMM, to usef(λ) )
1 - λ, g(λ) ) λ (a linear dependence onλ), but other functions
of λ have been employed.37,53-55 Equation 12 is a generalization
of eq 4; for a linear dependence onλ, eq 4 is obtained if one
defines U0′ ) U0 + Uinitial, ∆U ) Ufinal - Uinitial. Some
programs (e.g., AMBER, GROMOS) implement the single
topology method by mixing the parameters (force constants,
charges, etc.) rather than the entire potential energy function,
as in eq 12.56-58 This difference is not important for the present
analysis.

In most alchemical simulations (e.g., ethane to methanol) the
actual number of atoms in the initial and final state is different.
As stated above, the number of particles in the system is
assumed to be fixed in single topology calculations, so that it
is not the types of atoms but their number, i.e., the dimension
of the configuration space, that is conserved. To accomplish
this,dummy atomsare introduced for atoms which exist in one
state and have no counterpart in the other24 (e.g., for the
transformation of ethane to methanol in an all-atom model, two
of the hydrogen atoms of the methyl group, which is mutated
into a hydroxyl group, are dummy atoms in the final state (see
Figure 2a)). The number of atoms in a single topology
simulation is equal to the larger of the number of atoms of which
the initial and final system is composed. The dummy atoms
have no nonbonded energy terms; i.e., no van der Waals or
electrostatic terms are associated with them, but they are
connected to the rest of the system through bonded terms. These
bond and bond angle terms often are assumed to be the same

as those in the system from which they originate as real
atoms,22,24,54but the treatment of dihedral and improper dihedral
angles seems to vary. In some applications, the bond lengths
involving bonds to dummy atoms are shortened to improve the
convergence of the simulations.22,59,60 Such changes in bonded
terms to dummy atoms have to be treated specifically since they
can lead to nonphysical contributions to the free energy
differences of interest that have to be eliminated.60,61 More
generally, the effect of differences between a system with
dummy atoms and the real system it represents (e.g., methanol
with two dummy atoms compared to methanol) has to be
investigated and the required corrections have to be introduced.

Dual Topology. The dual topology approach differs from
the single topology method in that the parts of the system which
are not the same in the initial and final state are defined
simultaneously. Thus, the number of particles is increased,
relative to the physical end states. This is exemplified for the
alchemical mutation of ethane to methanol in Figure 2b. The
parts of the system that change interact with the rest of the
system, but not with each other. This is analogous to the use
of replicas in the multiple copy simulation search method
(MCSS).62 Multiple copies have been introduced also to
improve the convergence of configurational free energy simula-
tions.63 Examples of dual topology methods are implemented
in the BLOCK and TSM modules of CHARMM. The potential
energy function for the dual topology method can be written

As in the single topology method (see above), the dependence
on the coupling parameterλ is often taken to be linear but it
does not have to be.37,53-55 Also different coupling parameters
for different energy terms can be used. This latter capability is
implemented to some degree in the TSM module of CHARMM
and in a modified version of the BLOCK module.39 The
coordinatesr ,r initial and r final, respectively, are associated with
the atoms that do not change, those that are present only in the
initial state and those that are present only in the final state.
Equation 13 emphasizes that the total number of degrees of
freedom used in the simulation is larger than in either physical
end state, i.e., the number of atoms in a dual topology simulation
is the sum of the number of atoms that change between the

U(r ,λ) ) U0(r ) + f(λ)Uinitial(r ) + g(λ)Ufinal(r ) (12)

(b)

(a)

Figure 2. (a) The hybrid ethane/methanol solute used in the single
topology simulations described in detail in ref 42. (b) The hybrid ethane/
methanol solute used in the dual topology simulations described in detail
in ref 42.

U(r ,r initial,r final,λ) ) U0(r ) + f(λ)Uinitial(r ,r initial) +
g(λ)Ufinal(r ,r final) (13)
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initial and final state, plus the number of atoms that remain the
same. Comparing eqs 12 and 13, we see that the essential
difference between the single topology method and the dual
topology method is that in the former the energy functionsUinitial

andUfinal involve the same set of coordinates, while in the latter
Uinitial andUfinal involve different coordinates. Usually, there
are only a few more atoms in a dual topology simulation
compared to the single topology calculation, because the parts
of the system that do not change (e.g., the solvent and the
protein) are much larger than the part that does.

For the dual topology method, the energy expression must
be based on mixing potentials as in eq 13; that is, the
transformation from the initial to the final state cannot be done
by mixing parameters, as, for example, in the GROMOS
implementation of the single topology method. This is analo-
gous to free energy simulations based on QM or QM/MM
potential functions,64,65where the initial and final state must be
fully represented because the quantum mechanical energy
function is not separable. In the dual topology methods, there
is a choice concerning the scaling of the bonded interactions in
the parts of the system that are modified, as well as of the
bonded interactions of the modified portions with the rest of
the system. It is possible to scale the bonded terms, as is done
necessarily for the nonbonded terms, or not to scale them. The
former approach corresponds to an ideal gasatomend state for
the parts of the system that are changed in the dual topology
method (e.g., in going from AB to A′B′, the initial state consists
of the AB molecule (which interacts with solvent) and ideal
gas atoms A′ and B′, while the final state consist of the ideal
gas atoms A and B and the molecule A′B′ (which interacts with
solvent)). This means that certain bonds and angles are broken/
formed at the respective end points; in the example, the AB
bond is broken and the A′B′ bond is created. A number of
studies carried out with the BLOCK and TSM modules of
CHARMM have used such ideal gas atom end states. If the
bonded terms are not scaled, the end state corresponds to ideal
gas molecules; in the example, the end states consist of
molecules AB and A′B′, but in the initial state only AB interacts
with the solvent, while in the final state only A′B′ interacts with
the solvent. Whether or not the bonded terms are scaled, the
parts of the system that change (AB and A′B′ in the example)
do not interact with each other throughout the simulation.

In single topology methods when dummy atoms are intro-
duced, as in the majority of practical applications, a similar
ambiguity as to the choice of end state (ideal gas molecules vs
ideal gas atoms) arises. If the bonded terms connecting the
dummy atoms to the rest of the molecule are reduced to zero in
the end states, they are transformed into ideal gas atoms; if the
bonded terms to the dummy atoms are not altered, they remain
part of the molecule. The latter procedure has been used in
practice. However, as already mentioned, the bond lengths to
dummy atoms are often changed and this can lead to effects
that have to be considered.

End States.There is a conceptual question and a technical
question concerned with the choice of end states. Here we focus
on the conceptual aspect; the technical issue associated with
making or breaking a bonded term is considered in section 2d.
Since the thermodynamic cycles employed in most alchemical
free energy simulations contain molecules in the initial and final
states (see Figure 1), there is no need to break or make bonds.
This is true for all applications of free energy simulations in
which the transformation does not involve covalent bond
dissociation; studies of the free energy differences of solvation,
ligand binding, and protein stability are of this type. It is,

therefore, possible to choose ideal gas molecules for the end
state in alchemical simulations. Since the convergence is likely
to be improved when bonds and bond angle terms are not made
or broken, this suggests that the bonded terms be made
independent of the coupling parameter in dual topology simula-
tions. As a consequence, there would be no bond and bond
angle free energy components, in contrast to simulations which
scale all the energy terms associated with the parts of the system
that change. The significance of this is discussed in section
2e.

The above analysis shows that single and dual topology
methods generally use different hybrid potential energy functions
(eqs 12 and 13) and that the end points of the simulation can
be different. This is a consequence of the different philosophy
behind the single and dual topology method and the requirement
that the number of atoms does not change in the simulation;
i.e., in the dual topology method the total number of particles
corresponds to the sum ofr , r init, and r final, even if some of
them do not interact with anything at the end points. As an
illustration, the hybrid molecules used in a calculation of the
free energy difference of solvation between ethane and methanol
are depicted in Figure 2a for the single topology and Figure 2b
for the dual topology method. Since the end points are not the
same, different free energy changes for one step of a thermo-
dynamic cycle are expected to result from the two methods.
The difference in endpoints cancels from the thermodynamic
cycle; therefore, identical double free energy differences, such
as the free energy difference of solvation, are obtained. To show
this, we address here the role of dummy atoms (which are clearly
unphysical). Further differences between single and dual
topology methods, as well as the choice between an ideal gas
atom and an ideal gas molecule end state, are considered in
section 2e.

The use of ideal gas molecule end states raises the problem
that the endpoints in the simulation do not necessarily cor-
respond to the real system. In single topology simulations when
dummy atoms are required, there are additional atoms (the
dummy atoms) bonded to the system of interest. Similarly, in
dual topology simulations the parts of the molecule which at
the respective end points do not interact with the rest of the
system are present and bonded to the system. Such fragments,
which usually have only harmonic bond and bond angle terms,
do not affect the free energy differences of interest; dihedral
angles to dummy atoms (which are not harmonic terms) can
always be turned off, as is the case in the calculations reported
in the companion paper. To show that the dummy atom terms
cancel, we consider a system that differs from thephysical
system it attempts to mimic by one dummy atom connected
via a harmonic bond stretching term and a harmonic bond angle
term; at the end state the dummy atom has no nonbonded
interactions. By methods analogous to those used in deriving
Jacobian factors,61,66the contribution from the dummy atom can
be factored out in the configurational partition function, which
can be written as

Here Z′ is the partition function of the real system; the two
integrals correspond to the harmonic bond and bond angle term
of the dummy atom. They add a constant term in the parallel
pieces of the thermodynamic cycle of interest and, consequently,
cancel from the double free energy difference. Furthermore, if
one wanted to know a single free energy difference and needed

Z ) Z′ ∫ dr r 2 exp(-âK(r - ro)
2) ∫ dθ sin θ ×

exp(-âKθ(θ-θo)
2) (14)

Free Energy Simulations. 1 J. Phys. Chem. A, Vol. 103, No. 1, 1999107



to correct for the presence of the dummy atoms, the respective
terms could be calculated on the basis of eq 14. If anharmonic
terms are used in the force field, the first part of the simulation
could change the anharmonic terms involving atoms that become
dummy atoms into fitted harmonic terms. Whether the resulting
harmonic energy terms involving the dummy atoms are removed
depends on the choice of atom vs molecule end state. Equation
14 can be used to account for the contributions of the harmonic
terms.

Dual Topology in Single Topology Framework.An interest-
ing application of the theory involves attempts to mimic a dual
topology calculation with a program that includes only the single
topology method. This has been proposed and applied by
Pearlman52 and more recently discussed by Sun et al.29 Similar
to the dual topology method, the parts of the system which are
not the same in the initial and final state were defined
simultaneously. In the initial state, all atoms representing the
final state were dummy atoms and vice versa. The configuration
space was, therefore, the same as in the dual topology method,
i.e., the total number of degrees of freedom was equal tor +
r init + r final. However, the hybrid potential function was not
the same as given by eq 13. The nonbonded parameters, i.e.,
the van der Waals parametersε andσ, as well as the chargesq,
of the physical atoms were scaled as a function of the coupling
parameter. This can be written as

One sees from eq 15 that similar to a standard dual topology
method (eq 13) the potential energy terms describing the initial
and final state act on different coordinates. However, the
interaction parameters, rather than the energy terms, were scaled
by λ. Bond and bond angles involving dummy atoms, i.e., the
respective other half of the system were not changed; this
corresponds to the ideal gas molecule end state discussed above.
So far this approach has been applied only to the model
calculation of changing ethane into ethane; see ref 52, although
not all technical details are made clear in that paper, (e.g., the
treatment of the dihedral angle terms is not specified explicitly).
Sun et al.29 utilized the idea to make clear the difference between
single and dual topology simulations, although it should be kept
in mind that these “dual topology” calculations are not identical
to the use of the BLOCK or TSM module of CHARMM.
Nevertheless, eq 15 presents an interesting ansatz for combining
elements of parameter mixing56-58 and the dual topology
method.

2c. Contribution of Bonding Terms in Alchemical Free
Energy Simulations. We now turn to the question of calculat-
ing the contributions from changes in bond stretching and bond
angle bending terms in free energy simulations. Analysis of
the bonded energy terms provides a way of determining the
physical meaning of the free energy components associated with
them. We show that the bond or bond angle free energy
components have vibrational, potential-of-mean-force type and
Jacobian factor contributions. In what follows, we present the
formulation for bond length terms and then briefly describe the
results for bond angles.

Vibrational Contributions.We consider first the free energy
differences that arise from changing a one-dimensional harmonic
oscillator into another in the absence of other interactions (i.e.,
in the gas phase). In classical statistical mechanics, it is
straightforward to calculate analytically the partition function

for a harmonic oscillator and from it the free energy difference
that is introduced by changing the force constant and the bond
length.46 It is useful for the present analysis to do the
corresponding calculation in the TI formalism. We employ a
single topology hybrid potential energy function of the type used
in AMBER or GROMOS. It has the form

Herex is the position of the particle,K is the force constant,xo

denotes the equilibrium bond length, and i and f stand for initial
and final state, respectively. To calculate the free energy
difference, we need the ensemble average〈∂U/∂λ〉λ, as in eq 5.
Introducing the shorthand∆x ) x - [(1 - λ)x0,i + λx0,f], we
obtain

The ensemble average〈∂U/∂λ〉λ as defined in eq 7 can be
calculated analytically. It is equal to

Substitution into eq 5 yields

which is the expected result for the free energy change when a
one-dimensional harmonic oscillator is transformed into another.
It is assumed that the particle masses do not change so that
there is no kinetic energy contribution.46 As can be seen from
eq 19, the free energy difference is independent of the
equilibrium bond lengthxo; i.e., the only contribution arises from
the change in the force constant. Qualitatively, this result
corresponds to the fact that the free energy change arises from
the entropy, which depends on the “size” of the configuration
space available to the oscillator and not on where it is located
(as determined byxo). Since a change in force constant alters
the vibrational frequency of the oscillator, we refer to this type
of free energy contribution asVibrational. To do the corre-
sponding calculation with a molecular dynamics simulation,
〈∂∆U/∂λ〉λ is evaluated from a trajectory at eachλ; i.e., from
eq 17, it is necessary to determine

eq 20, which was first given by Simonson and Bru¨nger,49 makes
clear how to include changes in bond terms in the TI formalism.
It is generally straightforward to obtain accurate values for the
required ensemble averages〈∆x2〉λ and〈∆x〉λ (see the companion
paper and ref 61). The excellent convergence behavior in such
a TI calculation contrasts with problems that can arise when
EF is used. Pearlman and Kollman22 reported severe conver-
gence problems when attempting to calculate the free energy
change between two harmonic oscillators with EF. The
difficulty arises from an interesting difference between TI and
EF. In TI (cf. eq 5) the time averages (as in eq 20) are
evaluated for the value ofλ at which the simulation is performed.

U(r ,r init,r final) ) Uo(r ) +
Uinit(r ,r init, (1 - λ)σinit, (1 - λ)εinit, (1 - λ)qinit) +

Ufinal(r ,r final, λσfinal, λεfinal, λqfinal) (15)

∆U(x,λ) ) [(1 - λ)Ki + λKf] {x - [(1 - λ)x0,i + λx0,f]}
2

(16)

∂∆U
∂λ

) (Kf - Ki)∆x2 + [(1 - λ)Ki + λKf]2∆x(x0,f - x0,i)

(17)

〈∂U(λ)
∂λ 〉

λ
)

kBT

2

Kf - Ki

Ki + λ(Kf - Ki)
(18)

∆Avibr )
kBT

2
ln(Kf/Ki) (19)

〈∂∆U
dλ 〉λ

) (Kf - Ki) 〈∆x2〉λ +

[(1 - λ)Ki + λKf] 2〈∆x〉λ (x0,f - x0,i) (20)
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By contrast, in EF (as in eq 6) averages of the form〈exp(-
â∆U(λi+1)〉λi have to be determined; i.e., the exponential of the
energy function atλi+1 must be evaluated for configurations
sampled atλi. This can lead to very slow convergence for bonds
if the regions sampled for∆U(λi+1) and∆U(λi) do not overlap
well. Severance et al. have recently shown that this limitation
can be overcome in EF by correcting for the change in
equilibrium bond lengthro as a function of the coupling
parameter;67 i.e., they observed that the potential energy function
of a bond term can be rewritten as

if x(t) (the instantaneous bond length) is written as

(cf. eq 7 of ref 67). The convergence problem encountered by
Pearlman and Kollman22 occurs exactly because of theλ-de-
pendence ofxo: In the EF formalism, one needs to compute
the difference (see eq 6)

The notationxλi(t) in eq 23 makes clear that the instantaneous
value of the bond length is calculated with a potential corre-
sponding toλi, in general,xλi(t) and xo(λi+1) will be quite
different; hence, the first term in eq 23 will be large so that the
convergence will be slow upon insertion into eq 6. To avoid
this problem, Severance et al. suggest taking into account the
λ-dependent part ofx(t) by replacingxλi(t) by xλi+1(t) ) xo(λi+1)
+ ∆x(t), based on the second expression in eq 21. In this case,
eq 23 becomes

which is well behaved. Although it is not clear that eq 24 is
exact, its use leads to correct results, at least within certain error
limits, as demonstrated by the test calculations presented in ref
67.

External Forces or Potential-of-Mean-Force Type Contribu-
tions. Although in the isolated harmonic oscillator the free
energy depends only on the force constant and not on the bond
length, this is not true when external forces are present; their
effect is analogous to that which arises in transforming an
anharmonic oscillator. To examine the influence of external
forces (e.g., the harmonic oscillator interacts with a field or is
immersed in solvent), we consider the case in which the force
constant is unchanged but the equilibrium bond length is
increased or decreased. Equation 20 simplifies to〈∂∆U/∂λ〉λ
) 2K〈∆x〉λ (x0,f - x0,i). For an isolated harmonic oscillator (e.g.,
in the gas phase),〈∆x〉λ is zero for all values ofλ since the
potential is symmetric aboutxo(λ). This is in accord with the
theoretical result that the change in bond length does not affect
the free energy ( eq 19). In the presence of interactions (e.g.,
in solution or in the presence of an external electric field for a
dipolar oscillator),〈∆x〉λ can deviate from zero and a nonzero
contribution to the free energy difference can result. The free
energy change is introduced by the altered average bond length
induced by the presence of external forces; i.e., it reflects the
change in potential of mean force acting on the oscillator as a
function of its bond lengthxo. To show this we transform to
the equilibrium bond lengthxo, instead ofλ, as the coupling

parameter. Withxo(λ)0) ) xo,i and xo(λ)1) ) xo,f the free
energy difference (eq 5) becomes

where〈∂∆U/dx〉xo is the average force acting along the bond.
Even if the parameters describing the interactions between the
harmonic oscillator (“solute”) and external forces (“solvent”)
are constant, i.e., in a physical system this would mean that
van der Waals parameters and charges remain the same, the
average solute-solvent interaction energy and, consequently,
〈∂∆U/∂x〉xo can change as a function ofxo. Equation 25 is the
definition of the change in potential of mean force for the
interaction of two particles as a function of their distancexo.46

We, therefore, refer to the free energy contributions to bonded
terms arising from external forces aspmf-typecontributions.

Frequently, bonds are kept fixed by means of constraints, of
which SHAKE68 is the one that is most commonly used in
molecular dynamics simulations. In the presence of such
constraints, there is noVibrational contribution to the free energy
difference since the bond degree of freedom has been removed.
This is an approximation, though the neglected effect is likely
to be small. However,pmf-typecontributions still exist and
have to be taken into account. The general theory of introducing
holonomic constraints in free energy difference calculations is
summarized in section 4.4 of ref 48. Here we only consider
the case of constraining bond lengths; in this case the pmf-
contribution can be obtained as follows (cf. section 4.5 of ref
48). If the equilibrium bond length changes as a function of
the atom types in an alchemical transformation, the target
distance of the constraint becomes a function of the coupling
parameterλ. We use a constraint potential of the form, cf. ref
48,

where δ(xo(λ)) is the constraint that depends on the target
distancexo(λ)

with xo(λ) ) (1 - λ)xo,i + λxo,f, and µ(λ) is the Lagrangian
multiplier that is determined from the constraint equation in
the standard manner (e.g., by the use of SHAKE).68 Using eqs
5, 26, and 27, the resulting free energy change for a rigid
diatomic molecule in one dimension is

where the term involving the derivative∂µ/∂λ cancels because
of eq 27.

A number of publications have compared methods for
calculating such “constraint” or “pmf” corrections; a good
overview can be found in ref 60. In addition, this contribution
can also be calculated based on the generalization of eq 28 to
more than one constraint as first pointed out by van Gunsteren
and co-workers;48 apparently, this possibility is not well-known.
The derivative of the free energy due toNc bond length
constraints depending on the coupling parameterλ is

Clearly, only those bonds whose equilibrium bond length is

U(λ) ) K(λ)[x(t) - xo(λ)]2 ) K(λ)[∆x(t)]2 (21)

x(t) ) xo(λ) + ∆x(t) (22)

U(λi+1) - U(λi) ) K(λi+1)(xλi
(t) - xo(λi+1))

2 -

K(λi)(xλi
(t) - xo(λi))

2 (23)

U(λi+1) - U(λi) ) [K(λi+1) - K(λi)]∆x(t)2 (24)

∆A ) ∫xo,i

xo,f dxo 〈∂∆U/∂x〉xo
(25)

Ucons(λ) ) µ(λ)δ(xo(λ)) (26)

δ(xo(λ)) ) x2 - (xo(λ))2 ) 0 (27)

∆A ) ∫0

1
dλ 〈∂Ucons(λ)/∂λ〉λ ) -2∫0

1
xo(λ)[xof - xoi]〈µ〉λ dλ

(28)

∂Ac/∂λ ) 〈∂Ucons(λ)/∂λ〉λ ) -2 ∑
k)1

Nc

〈µk〉λ xo,k(λ) [xof,k-xoi,k]

(29)
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changed need to be considered. Equation 29, which is identical
to eq 4.5.9 of ref 48, is only valid for bond length constraints.
It forms the basis for the method to compute constraint
corrections used in the PERT module of CHARMM C24b1 and
subsequent versions of the program (S. Boresch, unpublished).

Jacobian Factor Contributions.There is one more contribu-
tion that can appear as part of the bonded free energy
components in single topology simulations for flexible bonds
or as part of the constraint correction for constrained bond terms.
Since it has been analyzed in detail recently and shown to
involve Jacobian factors,61 we describe it here only briefly. The
same contributions have been formulated somewhat differently
in earlier work and referred to asmoment of inertia corrections59

or dynamic stretch free energies.60 The simplest case where
such a contribution arises is in a three-dimensional harmonic
oscillator.69 We associate the three translational degrees of
freedom with the Cartesian coordinates of the first atom and
describe the position of the second atom in polar coordinates
relative to the first atom. The configurational partition function
of the system expressed in terms of these coordinates is

Here, V is the volume of the system and results from the
integration over the coordinates of the first particle, and the
factor 4π arises from the integration over the two polar
coordinatesϑ and æ describing the orientation of the second
particle with respect to the first. The remaining integration in
the configurational partition function is over the distancer
between the two particles. This is analogous to the integration
for a one-dimensional oscillator, except for the presence of the
factor r2, which comes from the Jacobian factorr2 sin æ that
arises in the transformation of the Cartesian coordinates of the
second particle to polar coordinates with respect to the first.
As indicated, the limits of integration are between zero and∞,
rather than between-∞ and+∞ for the one-dimensional case.
For most values of the force constantK, the distancer between
the two particles is limited to a very narrow range nearro, so
that the rigid rotor (RR) approximation can be used; it
corresponds to the limitK f ∞ in eq 30. In this limit,r2 is
replaced byro

2 which can be taken out of the integral. The
free energy difference between two isolated three-dimensional
harmonic oscillator is then

The first term in eq 31 is the free energy difference due to the
Jacobian factor (∆AJ); the second term is the vibrational free
energy contribution given in eq 19. For the general case,∆AJ

can be calculated analytically within the RR approximation for
any change in molecular geometry by use of the expression

where theJiS are the Jacobian factors for the transformation
from Cartesian to internal coordinates S.61,66 Jacobian free
energy contributions arise both for flexible and constrained bond
terms. (In the appendix of ref 61 it is shown that the formalism
outlined here is to a very good approximation also valid for
constrained bond terms.) If the free energy contribution from
a bond term is calculated with eq 20, any contribution from
Jacobian factors is included; the same is true for constraint

corrections calculated with eq 29. The PMF correction of
Pearlman and Kollman22 and the PF method suggested by
Pearlman70 compute the pmf-type contribution to the free energy
for systems with constrained bond terms without including the
Jacobian factor contribution.60,61 Consequently, these methods
avoid the need to correct for unphysical Jacobian factors, which
arise if bond lengths involving dummy atoms are shortened.
The contribution due to such a change in geometry is unphysical,
since dummy atoms are an artifact of the simulation methodol-
ogy,60,61 see the subsection on dummy atoms below. On the
other hand, methods that do not include the Jacobian factor
contribution in the free energy difference may omit physical
contributions that can arise; an example is the change of a
carbon-carbon bond into a carbon-oxygen bond. Most such
physical contributions tend to be small and any omission can
be corrected by the analytical techniques described in ref 61.

For a change in the equilibrium bond length and force
constant of a bond term (in three dimensions) for a molecule
interacting with a solvent environment, the contributions to the
free energy are

The terms∆AJ and ∆Avibr are defined in eq 31;∆APMF is
given by eq 25 or eq 28. An important difference from the
one-dimensional case discussed earlier is the dependence of∆A
on the change in bond length due to the Jacobian factor
contribution, even in the absence of a pmf-type term. It can be
evaluated separately as long as the RR approximation is valid.
This is not a necessary condition for correct simulations, which
always give the full∆A term, as in eq 33. The analytic
techniques discussed in this section that depend on the RR
approximation are required only to dissect the total bond free
energy into contributions, not to calculate it in a simulation.
We showed recently61 that use of the RRHO approximation may
also allow one to omit one leg of a thermodynamic cycle for
some systems.

Coupling Between Contributions.Within the RRHO ap-
proximation the free energy difference∆A ) ∆Abond arising
from a change in bond parameters (force constant and/or
equilibrium bond length) in single topology simulations can be
separated into three contributions, as reflected in eq 33. It was
shown that the potential of mean force type contribution is
caused by the change in nonbonded solute-solvent interactions,
although it is projected on to the bond free energy component.
In dual topology simulations, this contribution appears as a
nonbonded free energy component. If the RRHO approximation
is significantly in error for a given system,∆Abond obtained in
a simulation will contain contributions from coupling between
the three terms of eq 33.

The energy terms associated with flexible bonds (∆Avibr and
∆AJ) may be influenced by the interaction with the environment
(e.g., solvent). To illustrate this, we consider the case of
diatomic, polar molecules solvated in water. The nonbonded
interactions may affect the vibrational properties of the system;
thus, if the free energy difference between two such species
were computed, a different∆Avibr than in the gas phase would
be obtained. Similarly, the interaction with the environment
may change the average bond length of the solute; in a free
energy difference calculation this would lead to a∆AJ that is
slightly different from the result expected from eq 32. Both
types of coupling have been observed, e.g., refs 71 and 72. As
the coupling present in the solvated state does not occur in the
gas phase, there is a self-term contribution to the double free
energy difference of solvation, which is of interest in the context

Z(λ) ) V 4π ∫0

∞
dr r 2 exp[-âK(λ)(r - ro(λ))2] (30)

∆A ) -kBTln(rof/roi)
2 + (kBT/2)ln (Kf/Ki) ) ∆AJ + ∆Avibr

(31)

∆AJ ) -kBTln(∏
i

JiS
f/JiS

i) (32)

∆A ) ∆APMF + ∆AJ + ∆Avibr (33)
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of this study. However, such effects are expected to be small
in most cases. For example, in a detailed quantum mechanical
study of the effect of hydration onN-methylacetamide, a
maximum increase in the N-H bond length of 0.01 Å was found
due to hydrogen bonds;71 this would change the Jacobian free
energy contribution by 0.006 kcal/mol. Further, although the
free energy methodologies discussed here include coupling
contributions, the standard force fields commonly used for
solution studies17,20,21 may not be sufficient to describe such
effects correctly. For example, De Souza et al. investigated
frequency shifts induced by a simple solvent (liquid argon) for
a diatomic molecule (Br2) by computer simulation.73 To
correctly reproduce quantum mechanical results, they found it
necessary to use an anharmonic (cubic) oscillator term, as well
as a solute-solvent potential that depends on the bond length.
Neither of these are included in the force fields most often used
in macromolecular simulations.17,20,21

Coupling between nonbonded interactions and the vibrational
and Jacobian factor contributions can be determined from
explicit comparisons of simulation results using flexible bond
terms with those where bonds are constrained. The main
difference between constrained and flexible bond terms is the
absence of vibrational free energy contributions in the former;
therefore, any such coupling is missing from simulations using
constrained bond terms. If bond lengths are fixed by constraints,
the RR approximation is fulfilled for these degrees of freedom,
and eq 32 describing the Jacobian factor contribution is exact
in this case. These points are illustrated by the comparison
between rigid and flexible systems made in the companion
paper.

Considerations Regarding Dummy Atoms.Free energy
contributions from changes in bond terms that involve dummy
atoms merit a special discussion as dummy atoms are a
necessary element of the single topology method.24 If the bond
term is left unchanged from its physical counterpart; i.e., the
same bond length and force constant is used for dummy atoms,
no free energy contribution arises. However, as mentioned
earlier, bond lengths to dummy atoms are often shortened to
reduce van der Waals type endpoint problems. In this case, a
pmf-type and a Jacobian factor contribution result. As discussed
above, the latter is unphysical since the change in bond length
does not correspond to a physical process,60,61 and the corre-
sponding free energy contribution should not be included in
the final result. The Jacobian factor contribution cancels from
a thermodynamic cycle if the same change in bond length is
introduced in both parts of the cycle. Alternatively, it can be
calculated analytically to a good approximation with the
Jacobian factor formalism (eq 32) and subtracted as appropriate.

The pmf-type contribution from a change in bond length to
dummy atoms is a physical contribution and must not be
omitted. When an atom becomes a dummy particle, all its
nonbonded interactions with the rest of the system are removed.
This can be done by turning off the nonbonded terms without
changing the bond length. In this case, only nonbonded free
energy components result. Alternatively, to achieve quicker
convergence the bonds are shrunk as the nonbonded terms are
decreased.54,60 In this case, different nonbonded free energy
components plus a pmf-type bonded contribution will result.
The pmf-type bond contribution is part of the free energy
difference of interest as it accounts for part of the loss of
nonbonded interactions with the rest of the system. Provided
that unphysical Jacobian factor contributions have been re-
moved, the sum of these two contributions (nonbonded plus

pmf) is equal to the nonbonded contribution from the calculation
with constant bond lengths.

Bond Angle Contributions.Bond angles are also described
by harmonic potentials in the typical molecular mechanics force
fields.17,20,21 The Urey-Bradley terms used in the new
CHARMM22 all-atom parameters are also harmonic73 and act
on 1-3 distances (two atoms bonded to the same atom). Thus,
all results and conclusions obtained for bond-stretching terms
apply essentially unchanged to bond angle and Urey-Bradley
terms.

To illustrate this point, we consider the partition function of
a nonlinear, triatomic molecule. It has the form66

where, for the triatomic molecule ABC,r is the distance between
B and A,r′ is the distance between C and B, andθ is the angle
∠CBA. The factor 8π2V results from the integration over the
degrees of freedom corresponding to the overall translation and
rotation of the molecule. The first two integrals are the partition
functions for the two bond stretching terms; they are identical
in form to the integral in eq 30. The third configurational
integral is for the angle term. The only difference in form
relative to the bond stretching terms is in the Jacobian, which
equals sinθ instead ofr2. If the system were described by two
bond-stretch terms inr and r′ plus a Urey-Bradley term
between A and C inr′′, then eq 34 would change slightly. In
this case, the limits of the integral go from 0 to∞ for r andr′
as before and from 0 tor + r′ for r′′, and the Jacobian factor
for the (full) system is 8π2Vrr′r′′.66 The Jacobians in all three
integrals in eq 34 change, reflecting that the 1-3 distance is
not independent ofr and r′.

In TI, the free energy differences from a change in bond angle
θ and/or force constantKθ can be calculated according to eq
20 with ∆x replaced by∆θ, where∆θ ) θ - θo(λ). Within
the RRHO approximation, the resulting free energy difference
contains a vibrational contribution for a change in force constant
(eq 19), a Jacobian factor contribution for a change in equilib-
rium bond angle, and, in the presence of solvent, a pmf-type
contribution if the equilibrium bond angle is changed. The
Jacobian factor contribution is proportional to ln(sinθf/sin θi)61

(unless one chooses the description using the Urey-Bradley
1-3 distance), which is usually small, as most equilibrium bond
angles are relatively similar; for the same reason, pmf-type
contributions are expected to be small. In contrast to bond
lengths, bond angle terms are usually not constrained by
SHAKE,75 so the calculation of a constraint correction is not
considered here. Coupling between vibrational and pmf-type
contributions may be more important than for bond stretching
terms as the force constants of bond angle terms are weaker.

A difficulty arises if a bond angle degree of freedom is
determined simultaneously by an angle term inθ and a Urey-
Bradley term in the 1-3 distance, which is frequently the case
in the new CHARMM all-atom force field.74 The full details,
including a numerical example, are given in the appendix.
Considering again the nonlinear triatomic molecule just used
as an example, one sees that in this case thethreedegrees of
freedom are described byfour parameters; i.e.,r, r′, r′′, andθ
are not independent from each other. To obtain analytical
formulas, this has to be taken into account properly. One
possibility is to keep the two bond lengths and the bond angle

Z(λ) ) V8π2∫0

∞
dr r 2 exp(-âK(λ)(r - ro(λ))2) ∫0

∞ ×
dr′ r′2 exp(-âK′(λ)(r - ro′(λ))2)∫0

π
dθ sin θ ×

exp(-âKθ(λ)(θ - θo(λ))2) (34)
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as the independent (nonredundant) internal coordinates. Thus
the Jacobian factor for the third atom remainsr′2 sinθ as before,
but the vibrational contribution from the bond angle force
constant has to be replaced by an effective term that accounts
for the influence of the Urey-Bradley term. This is equivalent
to approximating the combined bond angle and Urey-Bradley
potential energy by

As shown in the appendix,Kθ,eff is a function ofKθ, KUB, ro,
ro′, andθo. We stress that these considerations are not important
for free energy difference simulations based on molecular
dynamics, which correctly include all contributions, but are
relevant only to the decomposition of bonded free energy
contributions for purposes of analysis and interpretation based
on eq 33.

2d. Breaking or Making a Bond. We now consider the
possibility of breaking or making a bond; i.e., the situation where
Ki or Kf goes to zero. Such a process is required if one turns
off all energy terms (including bond terms) to dummy atoms
(single topology), or if one scales nonbonded and bonded
interactions alike in dual topology simulations, (i.e., if one
chooses an ideal gas atom end state, cf. section 2b). It is clear
that the expression for the free energy difference (eq 19) fails
in this case if it is used directly. Similarly, whenKf is set equal
to zero in eq 18, one obtains

which, upon integration, leads to an expression that diverges
logarithmically asλ goes to 1. In both eqs 18 and 19 the fact
that the system is confined to a volume V which would lead to
a finite value when a bond is broken is not taken into account.
To determine what happens, we consider eq 30, the partition
function of a three-dimensional harmonic oscillator, forK(λ)
f 0. Clearly, the RR approximation isnot applicable in this
case; i.e., one cannot setr2 ) ro

2 and take the term out of the
integral. Instead, since exp[-âK(λ)(r - ro(λ)]2 goes to unity
asK(λ) f 0, eq 30 becomes

where the upper limit of integration determines the system
volume. This is the expected result for the configurational
partition function for two noninteracting particles confined to
a volumeV. For the calculation of the equilibrium constant
between a diatomic and the two separated atoms in a volume
V, the bond energy of the diatomic would have to be taken into
account in the standard manner.46

Use of the formulation just described for bond breaking in
simulations leads to difficulties because the particles would have
to sample the full volume of the system. In most cases, this
leads to configurations which are unrealistic for any value of
the coupling parameter other than zero or one, and adequate
sampling is not realizable in simulations of finite length. Erratic
results were obtained in single and dual topology simulations
that attempted to break bonds in this way (S. Boresch & M.
Karplus, unpublished results). It seems likely that this is also
the reason for the convergence problems observed in refs 25
and 26. Since the TSM module of CHARMM used in these
calculations is a dual topology method the inclusion of the
coupling parameter for bond and bond angle terms led to
breaking and forming of bonds and bond angles.

One solution is to consistently use an ideal gas molecule end
state, i.e., not to scale any bond and bond angle energy terms.
The appropriateness of such an approach for the computation
of double free energy differences of physical interest defined
by thermodynamic cycles was already shown in section 2b,
subsection End States. Results identical to those from a single
topology simulation or a dual topology simulation using an ideal
gas atom end state are obtained. However, this is not true for
the individual single free energy differences since the end states
involved in the simulations are not the same. In addition, the
free energy components will be quite different. There are no
bonded contributions (as in a single topology simulation, section
2c) because these energy terms do not depend on the coupling
parameter if an ideal gas molecule end state is employed. The
respective contributions to the double free energy difference,
however, are not omitted, but enter indirectly through the
Boltzmann density as part of nonbonded free energy compo-
nents. This is discussed further in section 2e.

An alternative approach to the problem of creating or
annihilating a bond when an ideal gas atom end state is used is
to introduce a criterion for determining when a bond is broken.
The exact expression for the configurational free energy of a
bond described by a harmonic potentialU ) K/2(x - xo)2 is46

Here,kB is the Boltzmann constant, T the temperature, and K
the force constant. To obtain this result we setKi in eq 18
equal to zero (this corresponds to the formation of a bond with
force constant K) Kf) and for the integration introduce a lower
limit λ ) ε (rather thanλ ) 0), where the limiting value
corresponds to the use of a criterion for a broken bond. This
leads to the integral

The value ofε is chosen such that eq 39 yields the same result
as eq 38, i.e.,

The case of breaking a bond can be treated analogously by
carrying out the integration from zero to 1- ε, whereε )
2πkBT/Ki. These limits forλ can form the basis for calculating
the free energy difference of bond creation and annihilation in
a molecular dynamics simulation by use of eq 20, for example.

The boundε or (1 - ε) that yields the correct free energy
has a simple physical meaning. In dual topology free energy
simulations the effective force constant in the simulation is given
by K(λ) ) λK or (1 - λ)K when a linear dependence of the
coupling parameter is used. Thus,λ ) ε or 1 - ε corresponds
to the limiting (lowest) value of the force constant for which
the bond is considered to still exist. This value, denoted asKε,
is found for both bond formation and annihilation to be equal
to Kε ) 2πkBT. InsertingKε into eq 38 yields a zero free energy
since the expression in the logarithm, which is the configura-
tional partition function, equals unity. The configurational
partition function has the dimensionality of [L] in one dimension
(or [V] in three dimensions) so that the bound onλ corresponds
to a limiting force constantKε at which the particle samples a
unit length (or volume). The omitted range of integration, [0,ε]
for bond forming and [1-ε,1] for bond breaking, accounts for

Uangle+ UUB ≈ Kθ,eff (θ - θo)
2 (35)

〈∂U
∂λ 〉λ

) -
kBT

2
1

1 - λ
(36)

Z(λf0) ) V 4π ∫0

r
dr r 2 ) V2 (37)

A ) -
kBT

2
ln

2πkBT

K
(38)

A )
kBT

2 ∫
ε

1
dλ/λ (39)

ε ) 2πkBT/Kf (40)
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the fact that the free particle has access to the full lengthL (or
volume V) of the system, not just a unit length (or volume).
Since this is a constant contribution, the choice ofε and 1- ε

as the thresholds at which a bond is formed or broken is
appropriate.

For a harmonic oscillator in three dimensions, eq 38 is
replaced by

wherero is the equilibrium bond length and the first term arises
from the Jacobian factor. We choose to exclude the Jacobian
factor contribution (first term) from consideration as it can
always be dealt with analytically to a very good approximation.
The second term of eq 41 is identical to eq 38. However, the
interpretation ofK f Kε changes slightly. The volume factor
for the second atom of a three-dimensional harmonic oscillator
is 4πr2 (the Jacobian) times a thickness which is a measure of
the average vibrational amplitude of the bond; i.e., (2πkBT/K)1/2;
for K f Kε, this thickness is equal to unity. A discussion of
the relationship between the configurational partition function
and the volume accessible to each atom of the molecule is given
in refs 61 and 66.

The introduction of a cutoff for the existence of a bond avoids
the problem that arises when ideal gas atom end states are used.
For typical values of the force constant for bond-stretching
terms, i.e.,K > 100 kcal/(mole Å2)), the value ofε is ε e 1/100.
The TI integral would be best approximated if the simulation
were run at the end points, i.e., atλ ) ε or 1 - ε. However,
this gives rise to two complications. At such small (large) values
of λ, one may encounter van der Waals type end point problems
for the nonbonded interaction terms.36 In addition, the con-
vergence behavior of〈∂Ubond/∂λ〉λ at e.g.,λ ) 0.01 or 0.99 is
slow (S. Boresch & M. Karplus, unpublished results, refs 25
and 26). Both difficulties can be avoided since the analytical
behavior of〈∂Ubond/∂λ〉λ is known (see eq 36). This is illustrated
in Figure 3, where〈∂U/∂λ〉λ, as well as∫0

λ〈∂U/∂λ〉λ dλ are
depicted as a function ofλ. The full line is the analytical
function. Data points taken from simulations of a one-
dimensional harmonic oscillator with a force constant of 500
kcal/(mole Å2) for various values ofλ are overlaid in Figure
3a; in the case of a single one-dimensional harmonic oscillator
the simulation is clearly well behaved, but this is not likely to
be true in general. The plots show the strongly varying behavior
of the integrand which will cause problems for numerical
integration (as mentioned above) unless a large number of data-
points is used in the vicinity of the endpoint. In analogy to the
approach proposed by Simonson36 for the van der Waals
endpoint problem, it suffices to calculate a few points at
intermediate values ofλ (say between 0.1 and 0.9) to fit these
values toCo + C1/λ or Co + C1/(1 - λ) (whereCo andC1 are
constants) and to integrate this function analytically betweenε

and 1 (or 0 and 1- ε). In principle, this type of procedure has
to be repeated for each bonded term (bond, bond angle, and
Urey-Bradley term) that is changed in the mutation, as the
limiting value of λ ) ε is a function of the respective force
constant. Whether this is necessary to obtain accurate results
if double free energy cycles are of interest has to be investigated.

In a number of applications of the BLOCK module of
CHARMM6,7 sizable bond free energy components were
reported. As already mentioned, BLOCK is a dual topology
method, and in its standard implementation bonded energy terms
are scaled byλ. In the applications, no calculations were made
at or close to the end pointsλ ) 0 and 1. This avoided the

convergence problems encountered in refs 25 and 26, but the
validity of the results is not clear since the limits for the integral
do not correspond to those that have been shown here to yield
the correct values for bond making or bond breaking. The use
of double differences with the same cutoff forλ should result
in a cancelation of the errors in the two separate calculations.
This is exact for an isolated harmonic oscillator and is expected
to be approximately correct for the more complex cases
considered. The effect of coupling with nonbonded terms can
give nonzero contributions, but the results of calculations
presented in the companion paper suggest that they are small.
Thus, it is most likely that the significant bonded contributions
obtained in refs 6 and 7 are due to noise in the calculations.
Sun et al.29 have commented on the calculations in ref 6.
Repeating the computation of the free energy difference of
unfolding ∆∆Aunf, between the Ala 96 mutant of barnase and
wild type with a single topology methodology, they found only
negligible contributions from bonded energy terms to∆∆Aunf

from a component analysis. The difference between a single
and a dual topology approach was identified as the main reason
for the different components obtained, and the nature of the
practical problems encountered when attempting to form or
remove a bond were recognized on the basis of theoretical
considerations and model calculations. While we agree with
much of the analysis of Sun et al., three points need to be
clarified. (i) Sun et al. used a single topology in a thought
experiment to mimic dual topology (as already described in
section 2b). While sufficient to identify the source of the
problems resulting in the artificially large bond components of
ref 6, this hybrid approach is not identical to the dual topology
methods implemented in CHARMM. (ii) Sun et al. imply that
the divergence of the integrand (eq 36) “may be removed when

A ) -kBT ln (4π2ro
2) - (kBT/2)ln(2πkBT/K) (41)

(a)

Figure 3. Theoretical behavior of〈∂Ubond/∂λ〉λ (Figure 3a) and
∫0

λ〈∂Ubond/∂λ〉λ dλ (Figure 3b) as a function of the coupling parameter
λ for a harmonic oscillator with force constantK ) 500 kcal/(mol Å2)
and equilibrium bond lengthxo ) 1.526 Å based on eq 36. The points
in Figure 3a were obtained from simulation. Note that the plot ranges
only between 0 and 1- ε, whereε is given by eq 40.
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nonlinear coupling is introduced between this vibrational mode
and other modes of the system”. Contrary to the van der Waals
end point problem,36 this is not the case here. The integral over
eq A5 of ref 29 withk1 ) 0 (which is essentially equivalent to
eq 36) is logarithmically divergent, regardless of the dependence
on the coupling parameter. The correct solution, as shown in
this chapter, lies in the use of physically appropriate limits of
integration, i.e.,ε and 1- ε rather than 0 and 1). Finally, (iii)
while the different treatment of bonded terms in single and dual
topology is emphasized, it is not made clear (as shown in section
2b and discussed further in section 2e) that the use of an ideal
gas molecule end state is correct and does not omit any
contributions to∆∆Aunf.

The analysis of bond stretching terms carries over to bond
angle terms. Apparent theoretical problems can be removed
by considerations similar to those used to obtain eq 39, i.e., by
introducing appropriate limits of integration. From eq 34
integrating over a bond angle degree of freedom with zero force
constant does not give the full volumeV of the system, but the
volume element expected for the Jacobian of the transformation
from Cartesian into internal coordinates, i.e.,∫0

+π sin θ dθ ) 2.
In practical applications, similar problems as for bond terms
are observed. Forλ f 0 (or 1) the system will sample the full
range of angles between-π and+π; however, as most of these
angle values correspond to high energies in the original system,
〈∂Uangle/∂λ〉λ becomes increasingly noisy and converges slowly
(S. Boresch & M. Karplus, unpublished results). These dif-
ficulties can be avoided either by the use of an ideal gas
molecule end state, i.e., angle terms are not scaled byλ, or by
the introduction of a cutoff for the existence of the angle. The
ε defined in eq 40 can also be used for bond angle terms. In
free energy simulations using the CHARMM all-atom force
field74 an alchemical mutation may also change a bond angle
degree of freedom described by a bond angle plus a Urey-
Bradley term into one that is only described by a bond angle
term (or vice versa). Since this is equivalent to a change in the
effective bond angle force constantKθ,eff rather than a removal
of a bond angle degree of freedom (cf. the discussion given at
the end of section 2c and in the Appendix), no special practical
problems are encountered in this case.

2e. Meaning of Components in the Free Energy Differ-
ences of Solvation. Since the free energy change in TI is
projected on theλ-dependent terms, care has to be used in
interpreting the results, including that for the bonded contribu-
tions to the free energy of solvation. This is all the more
important as theλ-dependent terms in the hybrid potential energy
function vary not only with the path used for the simula-
tions8,19,32,33,51but also with the simulation methodology (single
or dual topology), cf. section 2b. To analyze the meaning of
the bonded and the self-terms (see Introduction), we compare
the chemical and alchemical paths in the thermodynamic cycle
used to compute the free energy difference of solvation between
ethane and methanol (Figure 1) with respect to the role of bond
and bond angle free energy components. Numerical results for
this model system are presented in the companion paper.42

Vertical (chemical paths∆A1 and ∆A2 in Figure 1) and
horizontal arrows (alchemical paths∆A3 and∆A4 in Figure 1)
correspond to different processes. Along the chemical paths 1
and 2, the two solutes (e.g., ethane and methanol) are transferred
from the gas phase into solution, so the hybrid potential energy
function is of the form

and the free energy difference is equal to

sinceUsoluteis independent ofλ. There is no difference between
a single and a dual topology calculation, as a single solute is
transferred from the gas phase into solution in both cases. Along
the chemical paths, theλ-dependent perturbation term in the
potential energy function consists only of solute-solvent
interactions; i.e.,only nonbonded interactions (van der Waals
and electrostatic terms in the usual force fields) are changed;
consequently,only nonbonded free energy components are
obtained for the free energy differences∆A1 and∆A2. It follows
that the same is true for the free energy difference of solvation
calculated as∆∆Asolv ) ∆A2 - ∆A1.

The interaction of the solute with the solvent can alter the
average bond lengths and bond angles and/or vibrational
frequencies of the solutes. If any of these properties are different
in the gas phase and in solution, they contribute to the free
energy difference. Such contributions are projected onto the
solute-solvent interaction terms in the chemical transformations.
They are included in eq 43 through the Boltzmann weighting
factor that depends on the full potential energy function,U(λ)
(see eqs 7 and 11). Thus, neither explicit bond(ed) free energy
components nor, for that matter, components that have their
origin in changes of intramolecular nonbonded interactions
caused by structural changes due to solvation are obtained along
the chemical paths. This corresponds to the analysis of Ben-
Naim (e.g., ref 76) who argues that the influence of solvent on
bond and bond angle terms (hard internal degrees of freedom)
can be expressed as an additive term; i.e., the free energy of a
solvated molecule is written as the free energy of the molecule
in the gas phase plus the solvation contribution. Although an
approximation, in general, such an approach is correct for
systems described by the classical mechanical and pairwise
additive potentials commonly used in computer simula-
tions.17,20,21

The hybrid potential energy function describing the alchemi-
cal paths (the horizontal arrows in Figure 1) has the form

where we useµ instead ofλ to indicate that the coupling
parameter corresponds to a different process than that
considered in eq 42, (i.e., the process described by eq 44 is
that of transmuting ethane to methanol. The quantity
∆Usolute(µ)_corresponds to the change in intrasolute interactions
and∆U′solute-water(µ) gives the corresponding change in solute-
solvent interactions. The∆U′solute-water(µ) in eq 44 is not the
same as∆Usolute-solvent(λ) of eq 42; the former describes the
change in solute-solvent interactions due to the alchemical
mutation, whereas the latter describes the process of transferring
ethaneor methanol from the gas phase into solution. The
alchemical free energy difference is given by

A comparison of eqs 43 and 45 makes clear that different
free energy components are to be expected. Equation 45
contains components that arise from the intramolecular changes
in the solute which are not present in eq 43. In the ethane to
methanol case, as well as most other practical applications, these
include changes in bonded energy terms. A difference in the
free energy of solvation calculated along the alchemical pathsU(λ) ) Usolute+ ∆Usolute-water(λ) (42)

∆A ) ∫0

1
dλ〈∂∆Usolute-water/∂λ〉λ (43)

U(µ) ) Uo + ∆Usolute(µ) + ∆U′solute-water(µ) (44)

∆A ) ∫0

1
{〈∂∆Usolute/∂µ〉µ + 〈∂∆U′solute-water/∂µ〉µ} (45)
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∆A4 and ∆A3 can contain contributions from the change in
intrasolute interactions. If they are identical in solution and in
the gas phase, they cancel in∆∆Asolv. In a number of
calculations mentioned in the Introduction it was, in fact,
assumed that they were identical without verification.

The difference in free energy components along the alchemi-
cal and chemical paths reflects what has been called theglobal
path dependence of thermodynamic integration.32 The total
double free energy difference of solvation is the same for the
two paths. However, the explicit calculation of the free energy
contributions from the changes in the intramolecular potential
of the solute for the gas phase and solution along the alchemical
paths makes it possible to determine the influence of solvent
on these degrees of freedom (the self-terms), which is “hidden”
along the chemical paths. In the ethane/methanol transmutation
(Figure 1) the self-terms (orintraperturbed-group interactions22)
contribute to∆∆Asolv only if they are not equal in∆A3 and
∆A4. A self-term contribution to∆∆Asolv found along the
alchemical paths provides information on the influence of
solvent on the properties of the solutes. Such a separation of
the intrasolute from the solute-solvent terms is not directly
available from calculations along the chemical paths.

For the interpretation of components obtained along the
alchemical paths∆A3 and∆A4, the differences between single
and dual topology methods (the latter with and without scaling
of bonded terms) have to be taken into account as well (section
2b). There are no bonded free energy components if an ideal
gas molecule end state is used in dual topology simulations. It
is important to note that calculations carried out in this manner
omit vibrational and Jacobian factor free energy contributions,
while pmf-type contributions are projected on the nonbonded
free energy components. Thus, different single free energy
differences for the gas phase (∆A3) and solution calculation
(∆A4) are obtained, reflecting the different end states used in
the simulations compared to a single topology or a dual topology
calculation in which an ideal gas atom end state is used.
However, as analogous contributions are omitted in the gas
phase and in solution, the double free energy difference∆∆Asolv

is not affected. This is the case even if coupling between
bonded terms and nonbonded solute-solvent interactions is
important. Similar to the chemical paths, any influence of the
nonbonded terms on the intramolecular degrees of freedom is
implicitly included in the Boltzmann factor that determines the
distribution which contributes to the configuration integral (eqs
5, 7, and 11). Dual topology simulations in which bonded terms
are scaled to a limiting value ofλ as described in section 2d
(ideal gas atom end state) are expected to include all bonded
free energy contributions and, thus, to yield the same free energy
differences in the gas phase and in solution that are obtained in
single topology simulations.

3. Summary

Bond stretching and bond angle bending terms in the energy
functions have led to problems in free energy simulations. The
theoretical investigation of these terms reported here makes clear
that several factors are essential in order to calculate them
correctly and to obtain a meaningful interpretation of the results.
The role and importance of bonded energy terms was shown to
depend on the simulation methodology (single or dual topology).
If a bond (angle) term is changed in an alchemical mutation
using single topology, the resulting free energy difference arises
from the three physical effects: (i)Vibrational contributions
from changes in the force constants, (ii)Jacobian factor
contributions from changes in the equilibrium bond lengths and

bond angles in the absence of nonbonded interactions, and (iii)
pmf-typecontributions which result from the change in non-
bonded interaction (e.g., solute-solvent interactions) if the
equilibrium (average) geometry of a molecule is altered.
Applying constraints to keep the bonds rigid is a special case,
in which vibrational terms are eliminated, but there can still be
pmf-type and Jacobian factor free energy contributions if the
equilibrium bond length of a constrained bond term (i.e., the
target distance of the constraint) is changed. The same three
contributions are obtained in dual topology methods when an
ideal gas atom end state is used; however, the pmf-type free
energy contribution is projected on nonbonded free energy
components. In dual topology methods using an ideal gas
molecule reference state, vibrational and Jacobian factor con-
tributions are not included in the computed free energy
difference. This results in different single free energy differ-
ences for individual steps of a thermodynamic cycle; however,
identical double free energy differences are obtained.

In principle, all three contributions (vibrational, pmf-type,
Jacobian factor) can couple with each other. Of particular
interest is coupling between vibrational and pmf-type contribu-
tions. We reiterate that all three methodologies (single topology,
dual topology with an ideal gas atom or molecule end state)
include such effects correctly. Since Jacobian factor and
vibrational contributions (but not coupling contributions!) are
omitted in dual topology simulations using an ideal gas molecule
reference state, a comparison of free energy components
obtained with these three different methods allows one to
distinguish these contributions. Further, vibrational degrees of
freedom are absent in systems where bond terms are constrained,
so simulations with and without constraints can be used to
explore the importance of such coupling.

The origin of the problems arising if bonds or angles are
broken or made was analyzed. Such problems can be avoided
by use of a hybrid potential energy function in alchemical free
energy calculations that does not scale the bonding terms. This
can be achieved by the introduction of unphysical systems in
the representation of the initial and/or final state. In single
topology simulations, dummy atoms are used to keep the number
of atoms in the system constant (cf. the situation in the ethane
to methanol example, Figure 2a), and in all published work the
force constants of the bond and bond angle terms connecting
them to the rest of the system have been included. In dual
topology simulations using an ideal gas molecule end state, the
molecular fragment remains bonded harmonically to the rest
of the system; all other interactions with the rest of the system
are switched off. Thus, one obtains a “dummy molecular
fragment” as the end state (cf. Figure 2b). Consequently, in
both methodologies one or both endstates are not identical to
the physical system they attempt to mimic. The unphysical
modifications that may be necessary to accomplish an alchemical
mutation have to be taken into account, which has not been
done in all published work.13,23 It was shown that if treated
properly the artifacts of the simulation (i.e., the parts of the
hybrid system that are not present in the real system they mimic)
do not affect the result of the double free energy differences of
interest. Alternatively, a limiting value of the coupling param-
eter (and thus the force constant) at which a bond or angle is
considered broken can be used in the free energy simulation.

The focus of this paper has been the computation of correct
double free energy differences defined by a thermodynamic
cycle. In many cases this is the physically relevant quantity.
The considerations and techniques presented here are equally
useful when an absolute; i.e., single, free energy difference is
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required. In this case, even more attention has to be paid to
the artifacts that may be introduced by the simulation methodol-
ogy. As just discussed, bond and bond angle terms to dummy
atoms are maintained in single topology calculations (e.g., refs
22, 24, and 54). If the contributions resulting from these terms
are treated consistently, they cancel from a thermodynamic
cycle. To obtain correct single free energy differences, the
necessary correction can be calculated analytically61 by use of
the techniques developed by Herschbach et al.66 In dual
topology simulations the bond and bond angle terms of the two
molecular fragments that represent the initial (reactant) and final
(product) state, respectively, can be kept intact (ideal gas
molecule end state) or they can be reduced to an appropriate
threshold (ideal gas atom end state); details of the approach are
discussed in section 2d. This resembles the single topology
case, i.e., vibrational and Jacobian factor contributions (there
are no others!) of the extraneous atoms bonded harmonically
to the physical system (the “dummy molecular fragment”) can
be computed analytically. The latter approach gives essentially
an absolute free energy difference. The single contribution
omitted by the method outlined in section 2d is a correction for
the unit volume implicit inε (eq 40 instead of the true volume
of the (simulation) system. The need for such a correction is
reminiscent to the need to choose a standard state in the
calculation of absolute binding affinities.77

As discussed in the Introduction, there is considerable
confusion in the literature regarding both theoretical and
practical aspects of the role of bonded terms in free energy
simulations. We defer a detailed discussion of this point to the
end of the companion paper, in which results of model
calculations illustrating the conclusions drawn here are reported.
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Appendix: Analytical Calculation of a Free Energy
Difference Involving the Simultaneous Change of a Bond
Angle and Urey-Bradley Term

To illustrate the difficulty arising if a bond angle degree of
freedom is determined simultaneously by an angle term inθ
and a Urey-Bradley term in the 1-3 distance, we consider
again the nonlinear triatomic molecule used at the end of section
2c. The four internal coordinates r, r′, r′′, and θ are not
independent since there are only 3 degrees of freedom. The
(gas phase) free energy of a polyatomic molecule within the
rigid rotor, harmonic oscillator (RRHO) approximation is given
by61,66

The JiS are the Jacobian factors discussed in the main text,
and |FS| is the determinant of the force matrix in the internal
coordinates used, i.e., it has elementsFij,S ) ∂2U/∂r i∂r j, where
U is the potential energy of the system andr i andr j are internal
coordinates. As long as the number of internal coordinates and
the number of degrees of freedom are the same, the force matrix
is diagonal (e.g., for a triatomic system described by two
harmonic bond stretching terms and one bond angle energy term,
|FS| ) KK′Kθ). To be able to use eq A1, the internal coordinates
have to be nonredundant. This is not the case if the Urey-

Bradley energy term is added sincer′′ ) r′′(r,r′,θ). Once one
decides on a subset of nonredundent coordinates, theJiS can be
used as before; however, there are off-diagonal elements in the
force matrix since the potential energy is expressed as a function
of all four (redundant) coordinates. For the triatomic model
system, evaluating the elements ofFS is tedious, but straight-
forward: One first carries out the double differentiation, then,
in accord with the RRHO approximation, simplifies the resulting
expressions by replacingr′′ by ro′′, i.e., the equilibrium 1-3
distance. A program capable of symbolic manipulation aids in
the computations.

Extending this exact approach to larger systems quickly
becomes very complicated. The following approximations may,
therefore, be useful for estimates in larger systems. As Urey-
Bradley terms in the CHARMM force field74 are an additive
correction to the standard bond angle terms, we replace the bond
angle force constantKθ by an effective bond angle force constant
Kθ,eff which includes the effect of the Urey-Bradley term in
the potential energy function in an approximate manner, i.e.,
Uangle + UUB ≈ Kθ,eff(θ - θo)2 (cf. eq 35 in section 2c). This
maintains the diagonal form ofFS. The simplest possible
expression forKθ,eff uses the sum of bond angle and Urey-
Bradley force constant, i.e., one writesKθ,eff ) Kθ + KUB. A
much better approximation can be obtained from a comparison
of the diagonal force matrix in the absence of the Urey-Bradley
term and the full expression with off-diagonal elements with
the Urey-Bradley term. For typical values of the force
constants, the largest change can be expected for∂2U/∂2θ, i.e.,
the diagonal element for the bond angle degree of freedom. It
is given by

and provides an expression forKθ,eff that takes into account the
interdependence of the four internal coordinates. The procedure
just outlined blurs the distinction between vibrational and
Jacobian factor contributions. However, this only reflects the
dependence of the 1-3 distance and the bond angleθ on each
other. An approximate separation can be accomplished by
comparing the results obtained withKθ,eff ) Kθ + KUB to those
with Kθ,eff on the basis of eq A2, since the effect which the
change of equilibrium geometry (ro, ro′, θo) has on the free
energy contribution from a Urey-Bradley term is included only
in the latter.

We conclude this appendix with a numerical example for a
model triatomic molecule. Table A1 lists the bonded parameters
that are different in the initial and final state; there are no
nonbonded interactions in the system and the parameters for
the 1-2 bond areK12)250 kcal/(mole Å2), ro,12)2 Å.

Thus, aside from the change in the 2-3 bond stretching term,
which is straightforward to calculate, we expect a vibrational
contribution from the bond angle term, since Kθ changes, and
a Jacobian factor contribution from the Urey-Bradley term
because of the change in 1-3 distance.

Approaches for computing analytically the free energy
difference for such a system are described in ref 61. The
reference result for this alchemical mutation is obtained by
adding the contribution due to the change in moment of inertia
∆AI, which is not negligible for such a small system, to the

A ) -kBTln
(2πkBT)3N/2-3

|FS|1/2
∏

i

JiS (A1)

TABLE A1

parameters initial state final state

ro,23(Å), K23(kcal/(mol Å2)) 1.5/250.0 1.0/500.0
θo(deg.), Kθ(kcal/(mol rad2)) 110./25.0 110./50.0
ro,13(Å), KUB(kcal/(mol Å2)) 2.88/25.0 2.52/25.0

Fθθ ) ∂
2U/∂2θ ) Kθ + K′′(ro

2ro′
2 sin2 θ/ro′′

2) ≈ Kθ,eff (A2)
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free energy difference obtained from a normal-mode analysis
of the initial and final state,∆ANM; see eq 14 of ref 61. (This
approach assumes that the masses are not changed.) The
alternative approach of adding the vibrational and Jacobian
factor free energy differences (cf. Equation 31) has to take into
account the redundancy of the internal coordinates as described
above. We compare the reference result (∆Aexa) and the equally
exact result based on eq A1 using the full force matrix with all
off-diagonal elements (labeled M3) with those obtained ignoring
the Urey-Bradley term (∆ANUB) and the two approximations
including the Urey-Bradley term. The simpler approach
assuming thatKθ,eff ) Kθ + KUB is labeled M1, whereas the
second, more elaborate, method (M2) uses expression eq A2
for Kθ,eff. The results obtained are summarized in Table A2
(all values are in kcal/mol).

In Table A2, we first list separately the two contributions
(∆AI, ∆ANM) to the reference result∆Aexa. The fourth entry
∆ANUB omits the Urey-Bradley term and was obtained from
the Jacobian contribution due to the change in the 2-3 bond
length plus the vibrational contributions due to the changes in
K23 andKθ, cf. Table A1. The resulting free energy difference
is 15.7% too high. Although a crude approximation (Kθ is
simply replaced by the sumKθ + KUB), the agreement of∆AM1

with ∆Aref is much better (4.6% too high). The second
approximate free energy difference (∆AM2) is accurate within
1%. The results of the two exact methods (∆Aexa, ∆AM3) agree
as they must. Finally, it is interesting to compare the values
for Kθ,eff in M1 and M2 to those ofKθ (Table A1). Using
method M1, Kθ,eff equals 50 and 75 kcal/(mol rad2) for initial
and final state, respectively. When using approach M2, these
values change to 48.9 and 63.9 kcal/(mol rad2), reflecting the
influence of the changed 2-3 bond length that is omitted in
method M1.
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