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The Role of Bonded Terms in Free Energy Simulations: 1. Theoretical Analysis
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The role of the bonded (bond stretching and bond angle) force-field terms in free energy simulations is
examined. It is shown that the proper treatment of such terms depends on the choice of the free energy
methodology (single or dual topology). Furthermore, while there are no problems in describing changes in
bonded terms, care has to be used in creating or destroying them in a molecular dynamics simulation. An
approach that avoids the singularity caused by a bond with a zero force constant is outlined. Changes in
bond stretching or bond angle terms are shown to give rise to vibrational, Jacobian factor, and potential-of-
mean-force-type (pmf) contributions. The meaning of bond stretching and bond angle bending free energy
components obtained in single and dual topology simulations and their connection to these three contributions
is investigated. Due to the different end states used in single and dual topology simulations, the pmf contribution
is projected on different free energy components. In certain dual topology methods, vibrational and Jacobian
factor contributions are not included in the free energy difference. Therefore, single free energy differences
(e.g., the free energy difference between two molecules in the gas phase and in solution) often cannot be
compared directly between single and dual topology methods. However, identical double free energy
differences (e.g., free energy differences of solvation) are obtained in all cases. The present analysis emphasizes
the importance of the details of the simulation methodology in interpreting the results for bonded terms and
reconciles apparently contradictory findings in the literature.

1. Introduction whereAA; andAA; are the free energies of transfer S1 and S2,
. ) . respectively, from the gas phase into aqueous solution. Since
Free energy simulations have been successfully applied t0fee energies are state functions, a thermodynamic cycle (see
calculgte the free energy phangg for a \{arlety of procésdes. Figure 1) can be used to obtaAAsy, from the alchemical
They include protein stability,” ligand binding?® cooperat-  free energy differences calculated as the difference between the

ivity, 0 solvation!! and conformational equilibriZ2 Such free energy change of mutating S1 into S2 in solutidr)
simulations make it possible to probe the systems of interest atynq in the gas phaséAs);28 i.e.

the atomic level of detail and to obtain insights that would be

difficult to obtain experimentally. Although most calculated AAA,, = AA, — AA, (2)
overall free energy changes have been made in response to
experimental measuremerits? examples of predictions of free Similarly, the free energy difference for the binding of two

energy differences have been published (e.g., the free energyjigands, L1 and L2 to a protein, can be calculated from the free
difference of solvation between nucleic acid bas&or a study energy difference between the unbound ligands L1 and L2 in
of the thermodynamics of Ribonuclease T1 substrate interac-5g|ytion and the proteinligand complex involving L1 and

tions)1® Free energy simulations also have been used in force- | 5 9,18,19

field development®17 In alchemical processes of the type represented by the

Most free energy simulations are concerned withemical horizontal arrows in Figure 1, one can distinguish two types of
transformation$;'® in which one calculates the free energy changes in the potential energy functidrof the system. They
change resulting from the transformation of one molecule or are AU, corresponding to energy terms restricted to the part
one molecular fragment (e.g., an amino acid side chain) into of the system that is alchemically transformed (among others,
another. The physically significant quantity (e.g., the free the appropriate bond and bond angle terms belong into this
energy difference of solvation between two solutes or the free group), andAUiner, corresponding to the interactions between
energy difference of binding for two ligands) can be expressed the transformed portion and the rest of the system including
as a double free energy difference in almost all cases. Forthe solvent. To emphasize this separation, we write the total
example, the free energy difference of solvatigh\As, potential energyJ(1) as a function of the coupling parameter
between two solutes S1 and S2 is defined as / that formally describes the transformation from the initial to

the final state as
AAAg,, = AA, — AA (1)
U(l) = UO + AUintra(;t) + AUintel(/‘L) (3)
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AA;
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[e.g., cthane]

importance?” similar observations were reported by Rao éal.
and by Sun et &?

An essential question concerns the magnitude of any ne-
glected contribution to thAAA values when the terms arising
from AUjngq are omitted. Our purpose in this paper is to focus
on AAAsqy and to answer the question for bond stretch and
bond angle terms. In so doing we resolve some methodological
problems that have arisen in the calculation of these terms. The
investigation is aided by the decomposition of the total free
energy difference obtained from the calculations. The so-called
“component analysis” that allows one to do this has been
criticized as the resulting free energy components depend on
the simulation patB%31 We have shown elsewhere that the
results of a component analysis are meaniri§fidi*3and that
the choice of path provides an additional degree of freedom
that gives insights into different aspects of a free energy change.
The use of component analysis to study the importance of self-

[s2]

[e-g- methanol]

AA, AA;

v AA4 v
[(S 1)5012' ESZ)SOI‘Z[
[e-g- (ethane)s,,] [e-g., (methanol)y]

Figure 1. Thermodynamic cycle used to calculate the free energy
difference of solvation between two molecules S1 and S2 (e.g., ethane
and methanol).

are expressed as a sum of tefth¥2! Free energy differences
arising from the change inUjya have been referred to aslf- terms is an extension of earlier wotk?>33
term$ or intragroup perturbed interaction® a detailed de- We believe that an investigation of the type reported here is
scription of the contributions to the self-term that arise in the of considerable importance at the present time. In the past,
mutation lle 96 to Ala in the protein barnase is given in Prevost limited computer resources have prevented fully converged
et al’ calculations in some casé%** Also papers were published,
The published literature leaves unanswered a number ofas mentioned above, criticizing the significance of free energy
questions concerning the calculational methodology and the componentg?31.35 Since they are one of the more interesting
interpretation of the self-terms resulting froffUinya.  Along results of free energy simulations, there seems to have been a
the two alchemical steps of a thermodynamic cydéd and lull in methodological developments and applications during
AA4 in Figure 1), the terms in the potential function belonging the past few years, relative to the large number of papers
to AUinra are changed identically; i.e., the same transformation published between 1987 and 1992. The results of the present
is carried out in the gas phase and in solution. This has led to paper on treating bonded terms, the development of practical
the assumption that the self-terms cancel in the double free approaches for solving the so-called van der Waals endpoint
energy difference and that the contributions arising flthwwa  catastroph®-38 and the availability of accurate treatments of
can be omitted??* although the simulations making this |ong-range electrostatic effeéd°together provide a methodol-
assumption were made with the full potenFi_aI energy function ogy for meaningful free energy simulations. When combined
(eq 3). Such an approach has been criticifednd other  yjth sufficient computer time to obtain converged results and
workers have included\Uinra in the free energy difference 4 gg the calculation several times, free energy simulations are
formalism®71 In general, the free energy differences resulting oy ready for their rightful place in the microscopic analysis
from the two approaches are not identical. The contribution of mesoscopic systems. A good example of what can be done

AUinra to the free energy difference between S1 and S2.in 1,4y is given in a study of the difference in the free energy of
solution AAs), which also contains the soluteolvent terms i 4ing of asparagine and aspartic acid to aspat§gNA
corresponding tAUiner and possible coupling between the synthetas@®4.

interactions, is expected to be different from that in the gas phase . .
b gasp This paper addresses the important aspects of the role of

(AAg), which contains only the intrasolute terms. bonded t i imulati di ized
Bond and bond angle energy terms are an important part of onded terms n free energy simulations and IS organized as
follows. First, a brief review of the free energy formalism and

AUinra. Qualitatively different results concerning the importance L .
of bonded terms in self-term contributions have been obtained the path dependence of free energy components is given (section

in calculations of free energy differences that have included 28)- To analyze the role of bond stretching and bond angle
them. In a study on the free energy difference of unfolding bending terms in frge energy 5|mulgt|ons, a comparison is made
between wild-type barnase and the 196A mutantyBseet aF of_two ways of setting up the hy_brld potential energy_functlpn
reported a large self-term, which was attributed mainly to (single and dual topology) (section 2b). These two simulation

changes in bonded interaction in the folded and unfolded state.Methodologies involve different end states. It is shown that
Pearlman and Kollman have reported an “overlooked bond- the contributions resulting from the use of the different end states

stretching contribution to free energy differences” and also ¢ancel from the double free energy of interAgtAsy and that

concluded that self-terms (which they refer tarasaperturbed
group interactionycan be significan®? Nilsson and co-workers

they can be calculated analytically. Different (single) free
energy differences and, in particular, different free energy

have compared the results of calculations in which contributions components for the pieces of the thermodynamic cycle are

from bonded energy terms were included or omifte#f. They

obtained that provide insights into the meaning of free energy

found significant differences, but the results are inconclusive contributions from bonded terms. We then describe how to
because of convergence problems encountered in the simulationgiclude changes in bonded terms in the free energy formalism.
that included the bonded energy terms in the free energy The appropriate method depends on whether a single or a dual
formalism. This suggests that there are methodological prob-topology formalism is used. It is necessary also to distinguish
lems, as well as questions of interpretation, associated with thebetween changing the strength of a bond (section 2c) and
inclusion of bond length and bond angle terms in the free energy deleting or adding a bond (section 2d). Finally, some observa-
formalism. Harris and Loew recently presented some results tions regarding the analysis of free energies differences of
regarding these questions and found self-terms to be of little solvation are presented (section 2e). A numerical example
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illustrating a point made in the text concerning bond angle and  In most practical applications of eq 6, the second equality is
Urey—Bradley terms is presented in an appendix. used to take into account the fact that the required ensemble
The theoretical considerations presented in this paper areaverages converge only if initial and final state are not too
complemented and augmented by calculations of free energydissimilar. In eq 6kg is the Boltzmann constant] is the
differences for selected model systems in the companion faper. temperature, and the notatiaK[; in eqs 5 and 6 denotes a
We report the results and interpretation of free energy differ- classical statistical mechanical ensemble average in the canonical
ences of solvation between (i) one-dimensional diatomics, for ensemble, i.e.,
which the partition functions can be obtained with high precision
by numerical integration, (ii) between two diatomic molecules XQ = [z(,l)]‘1 Ldr X exp[~U(r,A)/ksT] (7)
in three-dimensions, which make it possible to study the effect
of altering bond parameters most clearly, and (iii) between whereZ is the configurational partition function amddenotes
ethane and methanol as an example of a realistic system.  the 3\ dimensional coordinate space withdesignating the
integration volume. The subscripton the ensemble average
2. Theory indicates that it is evaluated at a particular valuelof
2a. Review of the Free Energy Formalism.We begin with In the remainder of the paper, we use the TI formalism
a brief summary of the theory used in free energy simulations. because it leads to a direct relation between additive terms in
All formulas are developed in the canonical ensemble (constantthe potential energy function and additive terms in the free

volumeV, temperaturd, and number of particlel). Similar energy differenc&?01933 e , if AU is written as a sum of terms
expressions are valid at constant pres®ré, andN; in most
cases, the two types of results should be essentially the same, AU = zAUi (8)

|

although for a large volume change in an alchemical simulation,
a constant pressure calculation may be more appropriate.
the potential energy function of the system is given in the form
U = U, + AU, whereAU is the change in potential energy 1 _
relative to the reference system describedRythe (configu- Z j(; dA (AU, (2)/0A0) = ZAAi 9)
rational) free energy of the full system can be written in the
form A = A, + AA, whereAA is the free energy difference  This decomposition, which has been referred te@sponent
due to the change in the potential energy function. This is often analysis is exact and has proven to be a very useful tool for
referred to as a “perturbation”, although the calculational obtaining insights into the free energy change on the molecular
methods used in most studies are exact, in principle. The kineticlevel 5-8.10 However, such free energy components depend on
energy contribution can be calculated analytically or ignored the simulation path between the initial and final
since it cancels in a double free energy differehce. state819.30-32.344751 in contrast to the total free energy differ-
Two equivalent, exact expressions #8A are employed in  ence, which is a state function. To make clear this path
most free energy difference simulations. The first one is dependence, it is usef® to consider a system with two
commonly referred to as the thermodynamic integration method additive terms that contribute #U and to introduce separate
(T#344and the second as the exponential formula (EF) (also integration variables. and x4 associated witlAU; and AU,
denoted as the perturbation method or formula, even though itrespectively; that is,
is, in principle, an exact expressiof¥)* In both cases, one
starts by introducing a coupling parameterand writes the U(A,u) = Uy + AU () + AU,(u) (10)
potential energy function of the system as follows

ihe free energy differencAA is given by a sum of terms

The free energy componentA; is given by

U1) = U, + AUA) 4)
° L[ dr[8AU(r A)/a2lexpl-U(r 2 0)/ksT]

We refer to thisl-dependent potential energy function as a AA ) = L/; dt dr exp[-U(r A )k, T]
hybrid potential energy functiomecause in an alchemical fv P Au)lke 11
simulation it makes possible the smooth transformation of the )

initial system to the final state by introducing an intermediate A corresponding expression holds fak,(1). Both AA; and
(hybrid) system. The parametérranges betweehiniia and AA; are line integrals that depend on the integration path defined
Asinal, Which are commonly chosen as 0 and 1 so it = 0) by the parametersi(x). The coupling betweeh andu arises
corresponds to the reference systemzﬁm(il4= 0)=0),and  from the Boltzmann factor, which involves the total potential
U(4 = 1) to the perturbed system. In T**the free energy  energyU(i,4). Equations 8 and 9 correspond to what has been

difference between initiali(= 0) and final state( = 1) of the called the concerted linear path € x), in which all terms in
system is obtained as the potential function are changed in a concerted fashion
corresponding to the transmutation of one system into another.
A,A\zﬁ)lguL BAU(L)/0AT] (5) Since the free energy components are not unique, care is

required to establish their physical meaning in each application.
The nature of the coupling between free energy components
has been considered in a more general context in previous
work 819.323351 One property of the free energy components
is evident from egs 3, 7, and 8. Only energy terms that depend
on the coupling parameter give rise to free energy components.
AA = —kgT In [xp[~AU(1 = 1)ksTCLo = Thus, although a free energy component depends on all energy

—ksT ZIn@xp[—(AU(/li 1) — AUk TIO (6) terms of the system through the Boltzmann factor, it is projected

| ‘ on a specific term; i.e., o0AU(4) in eq 10. This implies that

where the integration has been performed with a variety of
methods; use of the trapezoidal rule is most common. In EF,
the same free energy difference is obtained as
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different free energy components can be obtained if different H, HJHG
hybrid potential energy functions are used to describe the /MG,
mutation of interest. One of the aims of this paper is to provide ‘ME/C‘IM /
insights concerning the physically meaningful interpretation of y \\“\\\w‘ s W Hy/Dy
these differences. 2

2b. Single and Dual Topology Simulations.Two distinct He/Ds
ways of implementing the hybrid potential energy function (eq (b)
4) are used in free energy calculations. We refer to them as H,
single and dual topologymethods? Calculations of the free
energy difference with the single or the dual topology method H H,
correspond to employing different hybrid potential energy ! HG,
functions; in particular, the number of degrees of freedom of Core /
the system used in the thermodynamic integration formula is W) el _ o0& c il Hy
different. It is necessary to understand this difference for an Hz\\\\“ """ 2
analysis of the effects on free energy components resulting from \
changes in bond and bond angle terms and the physical meaning (a) H
of such contributions. In fact, different end states are present H, 6

in the two methods, so even the total free energy differences Figure 2. (a) The hybrid ethane/methanol solute used in the single
are affected. However, as we show below, the same doubletopology simulations described in detail in ref 42. (b) The hybrid ethane/
free energy differences are obtained, which in most cases aremethanol solute used in the dual topology simulations described in detail
the quantities that can be measured directly (cf. the Introduction).in ref 42.

Single Topology.The single topology approach, as imple- ) . .
mented, for example, in the PERT module of CHARMMs as those in the system from which they originate as real
a one-to-one mapping process where every atom in the initial &10Ms;*2*%*but the treatment of dihedral and improper dihedral

state (e.g., ethane) has a counterpart in the final state (e.g.2n9les seems to vary. In some applications, the bond lengths

methanol). Any energy term that depends on an atom that Involving bonds to du_mmy fatorrslgs%re shortened to improve the

changes in the transformation is altered so that we can write Convergence of the simulatiof%2%° Such changes in bonded
terms to dummy atoms have to be treated specifically since they

U(rA) = Uy(r) + FA)U,a() + 9 Uja(r) - (12) can lead to nonphysical contributions to the free energy
differences of interest that have to be elimindié®t More

where Uq(r) is the part of the potential energy function that generally, the effect of differences between a system with
does not changeJiniial(r) contains the energy terms unique to  dummy atoms and the real system it represents (e.g., methanol
the initial state andUsia(r) those unique to the final state. The With two dummy atoms compared to methanol) has to be
variabler represents the system coordinates. Since the numberinvestigated and the required corrections have to be introduced.
of atoms does not change in the transformation, the coordinate Dual Topology. The dual topology approach differs from
space is conserved. The functioi@é) andg(l) are such that  the single topology method in that the parts of the system which
f(1=0) = 1, f(A=1) = 0 andg(A=0) = 0, g(1=1) = 1; it is are not the same in the initial and final state are defined
common, as in the PERT module of CHARMM, to U¢g) = simultaneously. Thus, the number of particles is increased,
1— 1, g(A) = 4 (a linear dependence @i, but other functions relative to the physical end states. This is exemplified for the
of 1 have been employed:53-55 Equation 12 is a generalization alchemical mutation of ethane to methanol in Figure 2b. The

of eq 4: for a linear dependence @neq 4 is obtained if one parts of the System that Change interact with the rest of the
definesUy = Uy + Uiniia, AU = Ufinal — Uinitiar.  S0me system, but not with each other. This is analogous to the use
programs (e.g., AMBER, GROMOS) implement the single Of replicas in the multiple copy simulation search method
topology method by mixing the parameters (force constants, (MCSS)*?> Multiple copies have been introduced also to
charges, etc.) rather than the entire potential energy function,improve the convergence of configurational free energy simula-
as in eq 126-58 This difference is not important for the present  tions® Examples of dual topology methods are implemented
analysis. in the BLOCK and TSM modules of CHARMM. The potential

In most alchemical simulations (e.g., ethane to methanol) the energy function for the dual topology method can be written
actual number of atoms in the initial and final state is different.
As stated above, the number of particles in the system is Y(" i finaid) = Uo(r) + () Ui (" Finitiar) +
assumed to be fixed in single topology calculations, so that it IA)Ysina(r I iina) (13)
is not the types of atoms but their number, i.e., the dimension
of the configuration space, that is conserved. To accomplish As in the single topology method (see above), the dependence
this,dummy atomare introduced for atoms which exist in one on the coupling parametéris often taken to be linear but it
state and have no counterpart in the othde.g., for the does not have to b&:5355 Also different coupling parameters
transformation of ethane to methanol in an all-atom model, two for different energy terms can be used. This latter capability is
of the hydrogen atoms of the methyl group, which is mutated implemented to some degree in the TSM module of CHARMM
into a hydroxyl group, are dummy atoms in the final state (see and in a modified version of the BLOCK modiie. The
Figure 2a)). The number of atoms in a single topology coordinates riniia andriina, respectively, are associated with
simulation is equal to the larger of the number of atoms of which the atoms that do not change, those that are present only in the
the initial and final system is composed. The dummy atoms initial state and those that are present only in the final state.
have no nonbonded energy terms; i.e., no van der Waals orEquation 13 emphasizes that the total number of degrees of
electrostatic terms are associated with them, but they arefreedom used in the simulation is larger than in either physical
connected to the rest of the system through bonded terms. Thesend state, i.e., the number of atoms in a dual topology simulation
bond and bond angle terms often are assumed to be the samé the sum of the number of atoms that change between the
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initial and final state, plus the number of atoms that remain the therefore, possible to choose ideal gas molecules for the end
same. Comparing egs 12 and 13, we see that the essentiastate in alchemical simulations. Since the convergence is likely

difference between the single topology method and the dual to be improved when bonds and bond angle terms are not made
topology method is that in the former the energy functiofnga or broken, this suggests that the bonded terms be made
andUjsing involve the same set of coordinates, while in the latter independent of the coupling parameter in dual topology simula-

Uinitiar @and Usingr involve different coordinates. Usually, there tions. As a consequence, there would be no bond and bond
are only a few more atoms in a dual topology simulation angle free energy components, in contrast to simulations which

compared to the single topology calculation, because the partsscale all the energy terms associated with the parts of the system
of the system that do not change (e.g., the solvent and thethat change. The significance of this is discussed in section

protein) are much larger than the part that does. 2e.

For the dual topology method, the energy expression must 1he above analysis shows that single and dual topology
be based on mixing potentials as in eq 13; that is, the methods generally use different hybrid potential energy functions
transformation from the initial to the final state cannot be done (€ds 12 and 13) and that the end points of the simulation can
by mixing parameters, as, for example, in the GROMOS be different. This is a consequence of the different philosophy
implementation of the single topology method. This is analo- behind the single and dual topology method and the requirement
gous to free energy simulations based on QM or QM/MM that the number of atoms does not change in the simulation;
potential function§*65where the initial and final state must be  I-€-, in the dual topology method the total number of particles
fully represented because the quantum mechanical energycOrreésponds to the sum of rini, andrfna, even if some of
function is not separable. In the dual topology methods, there them do not interact with anything at the end points. As an
is a choice concerning the scaling of the bonded interactions in illustration, the hybrid molecules used in a calculation of the
the parts of the system that are modified, as well as of the free energy difference of solvation between ethane and methanol
bonded interactions of the modified portions with the rest of are depicted in Figure 2a for the single topology and Figure 2b
the system. It is possible to scale the bonded terms, as is dond©r the dual topology method. Since the end points are not the
necessarily for the nonbonded terms, or not to scale them. TheSame, different free energy changes for one step of a thermo-
former approach corresponds to an ideal asnend state for ~ dynamic cycle are expected to result from the two methods.
the parts of the system that are changed in the dual topologyThe difference in end'pomts cancels from the Fhermodynamlc
method (e.g., in going from AB to'B’, the initial state consists cycle; therefore, |de_nt|cal double freg energy dlffferences, such
of the AB molecule (which interacts with solvent) and ideal @S the free energy difference of solvation, are obtalr_led. To show
gas atoms Aand B, while the final state consist of the ideal this, We.address here the.role of dummy atoms (WhICh are clearly
gas atoms A and B and the molecultBA(which interacts with ~ UnPhysical). Further differences between single and dual
solvent)). This means that certain bonds and angles are brokenfOP0l0gy methods, as well as the choice between an ideal gas
formed at the respective end points; in the example, the AB atom and an ideal gas molecule end state, are considered in
bond is broken and the B’ bond is created. A number of ~ S€ction 2e. _
studies carried out with the BLOCK and TSM modules of The use of ideal gas molecule end states raises the problem
CHARMM have used such ideal gas atom end states. If the that the endpoints in the simulation do not necessarily cor-

bonded terms are not scaled, the end state corresponds to ideaEfSpond to the real system. In single topology simulations when
gas molecules in the example, the end states consist of dummy atoms are required, there are additional atoms (the

molecules AB and /B', but in the initial state only AB interacts ~dummy atoms) bonded to the system of interest. Similarly, in

with the solvent, while in the final state only B! interacts with ~ dual topology simulations the parts of the molecule which at

the solvent. Whether or not the bonded terms are scaled, the’[he respective end points do not interact with the rest of the

parts of the system that change (AB an®BAin the example) sygtem are present and bonded .to the system. Such fragments,
do not interact with each other throughout the simulation. which usually have only harmon_lc bond and b_ond angle_ terms,
. . 0 not affect the free ener ifferences of interest; dihedra
In single topology methods when dummy atoms are intro d t affect the f gy diff fint t; dihedral

. . i s T angles to dummy atoms (which are not harmonic terms) can
gumctﬁghi?;aig t??hg]gggige g; g;zcgtﬁ ?%ggfg:snﬁq’o?eigréf\rlsalways be turned off, as is the case in the calculations reported
. . . in the companion paper. To show that the dummy atom terms
ideal gas atoms) arises. If the bonded terms connecting thecancel wep consi(;)erpa system that differs from {j‘nysical
dummy atoms to the rest of the molecule are reduced to zero in !

o e system it attempts to mimic by one dummy atom connected
the end states, they are transformed into ideal gas atoms; if the\/ia a harmonic bond stretching term and a harmonic bond angle

bonded terms to the dummy atoms are not altered, they remajnterm; at the end state the dummy atom has no nonbonded
part of the molecule. The latter procedure has been used iNjnseractions. By methods analogous to those used in deriving
practice. However, as already mentioned, the bond lengths 10 554pyian factor&.,56the contribution from the dummy atom can
dummy atoms are often changed and this can lead to effectsyq tactored out in the configurational partition function, which
that have to be considered. can be written as

End States.There is a conceptual question and a technical
question concerned with the choice of end states. Here we focus, __ - 2 - IPRY. .
on the conceptual aspect; the technical issue associated WitiZ z f dr r* expCAK(r = ro)’) f do'sing x
making or breaking a bonded term is considered in section 2d. exp(—ﬁKH(H—Bo)z) (14)
Since the thermodynamic cycles employed in most alchemical
free energy simulations contain molecules in the initial and final Here Z' is the partition function of the real system; the two
states (see Figure 1), there is no need to break or make bondsintegrals correspond to the harmonic bond and bond angle term
This is true for all applications of free energy simulations in of the dummy atom. They add a constant term in the parallel
which the transformation does not involve covalent bond pieces of the thermodynamic cycle of interest and, consequently,
dissociation; studies of the free energy differences of solvation, cancel from the double free energy difference. Furthermore, if
ligand binding, and protein stability are of this type. It is, one wanted to know a single free energy difference and needed
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to correct for the presence of the dummy atoms, the respectivefor a harmonic oscillator and from it the free energy difference
terms could be calculated on the basis of eq 14. If anharmonicthat is introduced by changing the force constant and the bond
terms are used in the force field, the first part of the simulation length46 It is useful for the present analysis to do the
could change the anharmonic terms involving atoms that becomecorresponding calculation in the Tl formalism. We employ a
dummy atoms into fitted harmonic terms. Whether the resulting single topology hybrid potential energy function of the type used
harmonic energy terms involving the dummy atoms are removed in AMBER or GROMOS. It has the form

depends on the choice of atom vs molecule end state. Equation

14 can be used to account for the contributions of the harmonic  AU(x,A) = [(1 — A)K; + AK{] {x = [(1 — A)xy; + Axoqf]}2

terms. 16
Dual Topology in Single Topology FrameworlRn interest- (16)

ing application of the theory involves attempts to mimic a dual Herex is the position of the particl is the force constank,
topology calculation with a program that includes only the single genotes the equilibrium bond length, and i and f stand for initial
topology method. This has been proposed and applied by ang final state, respectively. To calculate the free energy
Pearlmaf? and more recently discussed by Sun eéPaBimilar difference, we need the ensemble aver@y#aA[j, as in eq 5.

to the dual topology method, the parts of the system which are Introducing the shorthandx = x — [(1 — A)xo, + %o, we
not the same in the initial and final state were defined gptqin ' -

simultaneously. In the initial state, all atoms representing the

final state were dummy atoms and vice versa. The configuration 0AU _ = _ _
space was, therefore, the same as in the dual topology method, 91 (K Ki)AXZ I = DK+ AKJ2AX(% 1 = %)
i.e., the total number of degrees of freedom was equal-to 17
rnit + rina. However, the hybrid potential function was not 17

the same as given by eq 13. The nonbonded parameters, i.eThe ensemble averag®U/dil] as defined in eq 7 can be

the van der Waals parameterando, as well as the charges calculated analytically. It is equal to

of the physical atoms were scaled as a function of the coupling

parameter. This can be written as QU(/I) B KsT Ki — K (18)

A 7T 2 K+AK —K)
U(r ool fina) = Uo(r) +
Uinit (" Finits (1= A)0iies (1 = Aéiies (1 — A)ie) + Substitution into eq 5 yields
Usinal(" ¥ finatr AGinair A€inais Afina) (15) ke T

AN, = > In(K{/K;) (19)

One sees from eq 15 that similar to a standard dual topology

method (eq 13) the potential energy terms describing the initial which is the expected result for the free energy change when a
and final state act on different coordinates. However, the one-dimensional harmonic oscillator is transformed into another.
interaction parameters, rather than the energy terms, were scaleg¢t js assumed that the particle masses do not change so that
by 4. Bond and bond angles involving dummy atoms, i.e., the there is no kinetic energy contributidf. As can be seen from
respective other half of the system were not changed; thiseq 19, the free energy difference is independent of the
corresponds to the ideal gas molecule end state discussed abovequilibrium bond lengtix; i.e., the only contribution arises from

So far this approach has been applied only to the model the change in the force constant. Qualitatively, this result
calculation of changing ethane into ethane; see ref 52, althoughcorresponds to the fact that the free energy change arises from
not all technical details are made clear in that paper, (e.g., thethe entropy, which depends on the “size” of the configuration
treatment of the dihedral angle terms is not specified explicitly). space available to the oscillator and not on where it is located
Sun et af® utilized the idea to make clear the difference between (as determined by,). Since a change in force constant alters
single and dual topology simulations, although it should be kept the vibrational frequency of the oscillator, we refer to this type
in mind that these “dual topology” calculations are not identical of free energy contribution agibrational. To do the corre-

to the use of the BLOCK or TSM module of CHARMM.  sponding calculation with a molecular dynamics simulation,
Nevertheless, eq 15 presents an interesting ansatz for combininggAU/aA[] is evaluated from a trajectory at eathi.e., from

elements of parameter mixifRy>® and the dual topology  eq 17, it is necessary to determine
method.

2c. Contribution of Bonding Terms in Alchemical Free AUH — (K _
Energy Simulations. We now turn to the question of calculat- % (K = K) mxz +
ing the contributions from changes in bond stretching and bond [(1 — DK + AK{] 2[AX) (%1 — X,) (20)
angle bending terms in free energy simulations. Analysis of
the bonded energy terms provides a way of determining the eq 20, which was first given by Simonson and Bger?® makes
physical meaning of the free energy components associated withclear how to include changes in bond terms in the TI formalism.
them. We show that the bond or bond angle free energy It is generally straightforward to obtain accurate values for the
components have vibrational, potential-of-mean-force type and required ensemble averag@s[] and[Ax[] (see the companion
Jacobian factor contributions. In what follows, we present the paper and ref 61). The excellent convergence behavior in such
formulation for bond length terms and then briefly describe the a TI calculation contrasts with problems that can arise when
results for bond angles. EF is used. Pearlman and Kollnfdmeported severe conver-
Vibrational Contributions. We consider first the free energy  gence problems when attempting to calculate the free energy
differences that arise from changing a one-dimensional harmonicchange between two harmonic oscillators with EF. The
oscillator into another in the absence of other interactions (i.e., difficulty arises from an interesting difference between Tl and
in the gas phase). In classical statistical mechanics, it is EF. In Tl (cf. eq 5) the time averages (as in eq 20) are
straightforward to calculate analytically the partition function evaluated for the value dfat which the simulation is performed.
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By contrast, in EF (as in eq 6) averages of the fagmp(—
BAU(Li+1)d have to be determined; i.e., the exponential of the
energy function atli;; must be evaluated for configurations
sampled at;. This can lead to very slow convergence for bonds
if the regions sampled fohU(4;+1) andAU(4;) do not overlap
well. Severance et al. have recently shown that this limitation
can be overcome in EF by correcting for the change in
equilibrium bond lengthr, as a function of the coupling
parametef; i.e., they observed that the potential energy function
of a bond term can be rewritten as

U() = KAIX(®) — xA]° = KAIAXD]*  (21)
if X(t) (the instantaneous bond length) is written as
X(t) = X,(4) + Ax(t) (22)

(cf. eq 7 of ref 67). The convergence problem encountered by
Pearlman and Kollm&A occurs exactly because of tiiede-
pendence ok,: In the EF formalism, one needs to compute
the difference (see eq 6)

U410 — UML) = K@) (%, (1) — Xo(ir ) =
K(2)0%, (1) — (1)) (23)
The notationx;,(t) in eq 23 makes clear that the instantaneous

value of the bond length is calculated with a potential corre-
sponding tol;, in general,x;(t) and x,(4i+1) will be quite
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parameter. Withxo(A=0) = X, and X,(A=1) = X, ¢ the free
energy difference (eq 5) becomes
AA= [*"dx, BAU/AX] (25)
Xo,i )

where BAU/dXL, is the average force acting along the bond.
Even if the parameters describing the interactions between the
harmonic oscillator (“solute”) and external forces (“solvent”)
are constant, i.e., in a physical system this would mean that
van der Waals parameters and charges remain the same, the
average solutesolvent interaction energy and, consequently,
[BAU/axL, can change as a function xf. Equation 25 is the
definition of the change in potential of mean force for the
interaction of two particles as a function of their distangé®
We, therefore, refer to the free energy contributions to bonded
terms arising from external forces pmf-typecontributions.

Frequently, bonds are kept fixed by means of constraints, of
which SHAKE?®® is the one that is most commonly used in
molecular dynamics simulations. In the presence of such
constraints, there is nabrational contribution to the free energy
difference since the bond degree of freedom has been removed.
This is an approximation, though the neglected effect is likely
to be small. Howeverpmf-typecontributions still exist and
have to be taken into account. The general theory of introducing
holonomic constraints in free energy difference calculations is
summarized in section 4.4 of ref 48. Here we only consider
the case of constraining bond lengths; in this case the pmf-
contribution can be obtained as follows (cf. section 4.5 of ref
48). If the equilibrium bond length changes as a function of

different; hence., the first term in_eq 23 Wi||. be large so that tr_le the atom types in an alchemical transformation, the target
convergence will be slow upon insertion into eq 6. To avoid gistance of the constraint becomes a function of the coupling
this problem, Severance et al. suggest taking into account thep,rameter.. We use a constraint potential of the form, cf. ref
A-dependent part of(t) by replacingx;,(t) by xy,.,(t) = Xo(4i+1) 48
+ AXx(t), based on the second expression in eq 21. In this case,
eq 23 becomes Ucondd) = u(2)0(x,(A))
where d(x(4)) is the constraint that depends on the target
distancexy(4)
which is well behaved. Although it is not clear that eq 24 is 5 5
exact, its use leads to correct results, at least within certain error 0(%(4) = X" — (%,(4))"=0
|6II‘;1.I'[S, as demonstrated by the test calculations presented in refwith_xo_(/l) _ (1_ I + Wor andu(d) is the_Lagrang_ian |

External Forces or Potential-of-Mean-Force Type Contribu- tmhultlf[)llecrj thdat IS determlnetc)i ftrr(?m the ?%ﬁggt equation in
tions. Although in the isolated harmonic oscillator the free e236an %r 2r;1a[1hner (e.gl.t! yf euseo h MS'?g egs. id
energy depends only on the force constant and not on the bondg.’ i » an I ' | e resu |dr!g ree energy change for a rgl
length, this is not true when external forces are present; their latomic molecule in one dimension 1S

effect is analogous to that which arises in transforming an 1 1
. ol A= [ DU 02025 = ~2 [ %) [Xes — WG

(26)

U(ki1y) — U(L) = [K(iy) — KADIAX(®?  (24)

(27)

anharmonic oscillator. To examine the influence of external
forces (e.g., the harmonic oscillator interacts with a field or is
immersed in solvent), we consider the case in which the force \yhere the term involving the derivativiz/aA cancels because
constant is unchanged but the equilibrium bond length is of eq 27.

increased or decreased. Equation 20 simplifiesatoU/oAL] A number of publications have compared methods for
= 2KIAX{ (Xof — %o,)- Foran isolated harmonic oscillator (€.9.,  calculating such “constraint” or “pmf" corrections; a good
in the gas phaseJAx[j is zero for all values of. since the  gverview can be found in ref 60. In addition, this contribution
potential is symmetric aboug(4). This is in accord withthe  can also be calculated based on the generalization of eq 28 to
theoretical result that the change in bond length does not affectmore than one constraint as first pointed out by van Gunsteren
the free energy ( eq 19). In the presence of interactions (e.9.,and co-workerg® apparently, this possibility is not well-known.

in solution or in the presence of an external electric field for a The derivative of the free energy due M. bond length
dipolar oscillator),[Ax[] can deviate from zero and a nonzero constraints depending on the coupling paramétisr

contribution to the free energy difference can result. The free

energy change is introduced by the altered average bond length

induced by the presence of external forces; i.e., it reflects the 0AJ0A = BU ,,{A)/0AL] =
change in potential of mean force acting on the oscillator as a
function of its bond lengthx,. To show this we transform to
the equilibrium bond lengtlx,, instead ofi, as the coupling

N,

—2 Z@kg Xok(A) Xot = Xoiid
k= (29)

Clearly, only those bonds whose equilibrium bond length is
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changed need to be considered. Equation 29, which is identicalcorrections calculated with eq 29. The PMF correction of
to eq 4.5.9 of ref 48, is only valid for bond length constraints. Pearlman and Kollm&A and the PF method suggested by
It forms the basis for the method to compute constraint Pearlmaf compute the pmf-type contribution to the free energy
corrections used in the PERT module of CHARMM C24b1 and for systems with constrained bond terms without including the
subsequent versions of the program (S. Boresch, unpublished)Jacobian factor contributidi®:6* Consequently, these methods

Jacobian Factor ContributionsThere is one more contribu-  avoid the need to correct for unphysical Jacobian factors, which
tion that can appear as part of the bonded free energyarise if bond lengths involving dummy atoms are shortened.
components in single topology simulations for flexible bonds The contribution due to such a change in geometry is unphysical,
or as part of the constraint correction for constrained bond terms.since dummy atoms are an artifact of the simulation methodol-
Since it has been analyzed in detail recently and shown to ogy 26! see the subsection on dummy atoms below. On the
involve Jacobian factofd,we describe it here only briefly. The  other hand, methods that do not include the Jacobian factor
same contributions have been formulated somewhat differently contribution in the free energy difference may omit physical
in earlier work and referred to @asoment of inertia correctiof% contributions that can arise; an example is the change of a
or dynamic stretch free energi€$ The simplest case where carbonr-carbon bond into a carberoxygen bond. Most such
such a contribution arises is in a three-dimensional harmonic physical contributions tend to be small and any omission can
oscillator’® We associate the three translational degrees of be corrected by the analytical techniques described in ref 61.
freedom with the Cartesian coordinates of the first atom and For a change in the equilibrium bond length and force
describe the position of the second atom in polar coordinatesconstant of a bond term (in three dimensions) for a molecule
relative to the first atom. The configurational partition function interacting with a solvent environment, the contributions to the
of the system expressed in terms of these coordinates is free energy are

Z(A) =V 4z [ drr® exp[-pKA)(r — ry(A);] (30) AA= Aoy + AR+ ARy, (33)

The termsAA; and AAir are defined in eq 31AApur is
given by eq 25 or eq 28. An important difference from the
one-dimensional case discussed earlier is the dependende of
on the change in bond length due to the Jacobian factor
contribution, even in the absence of a pmf-type term. It can be
evaluated separately as long as the RR approximation is valid.
This is not a necessary condition for correct simulations, which
always give the fullAA term, as in eq 33. The analytic
techniques discussed in this section that depend on the RR
approximation are required only to dissect the total bond free
energy into contributions, not to calculate it in a simulation.
We showed recentfy that use of the RRHO approximation may
also allow one to omit one leg of a thermodynamic cycle for
some systems.

Coupling Between ContributionsWithin the RRHO ap-
proximation the free energy differen@®A = AAyong arising
from a change in bond parameters (force constant and/or
equilibrium bond length) in single topology simulations can be
separated into three contributions, as reflected in eq 33. It was
shown that the potential of mean force type contribution is
caused by the change in nonbonded setst@vent interactions,
although it is projected on to the bond free energy component.
AA= —kgTIN(r o1 )* + (KgT/2)In (KJ/K) = AA;+ AA In duagl1 topoI(E)gyl simulations, this contribution %);)pearrs) as a

(31) nonbonded free energy component. If the RRHO approximation
is significantly in error for a given system\Ayong Obtained in

The first term in eq 31 is the free energy difference due to the & simulation will contain contributions from COUpling between
Jacobian factorAAy); the second term is the vibrational free the three terms of eq 33.

energy contribution given in eq 19. For the general cA%®, The energy terms associated with flexible bontis,r and
can be calculated analytically within the RR approximation for AAj) may be influenced by the interaction with the environment

any change in molecular geometry by use of the expression (€.9., solvent). To illustrate this, we consider the case of
diatomic, polar molecules solvated in water. The nonbonded

AA, = _kB-nn(I—l Jisf/ Jisi) (32) interactions may affect the vibrational properties of the system;
i thus, if the free energy difference between two such species
were computed, a differe@tAyipr than in the gas phase would
where theJis are the Jacobian factors for the transformation be obtained. Similarly, the interaction with the environment
from Cartesian to internal coordinates’’$8 Jacobian free may change the average bond length of the solute; in a free
energy contributions arise both for flexible and constrained bond energy difference calculation this would lead td\4,; that is
terms. (In the appendix of ref 61 it is shown that the formalism slightly different from the result expected from eq 32. Both
outlined here is to a very good approximation also valid for types of coupling have been observed, e.g., refs 71 and 72. As
constrained bond terms.) If the free energy contribution from the coupling present in the solvated state does not occur in the
a bond term is calculated with eq 20, any contribution from gas phase, there is a self-term contribution to the double free
Jacobian factors is included; the same is true for constraint energy difference of solvation, which is of interest in the context

Here,V is the volume of the system and results from the
integration over the coordinates of the first particle, and the
factor 4r arises from the integration over the two polar
coordinatesy and ¢ describing the orientation of the second
particle with respect to the first. The remaining integration in
the configurational partition function is over the distance
between the two particles. This is analogous to the integration
for a one-dimensional oscillator, except for the presence of the
factor r2, which comes from the Jacobian factdrsin ¢ that
arises in the transformation of the Cartesian coordinates of the
second particle to polar coordinates with respect to the first.
As indicated, the limits of integration are between zero @nd
rather than betweentco and-+oo for the one-dimensional case.
For most values of the force constdftthe distance between
the two particles is limited to a very narrow range neaiso
that the rigid rotor (RR) approximation can be used; it
corresponds to the limiK — « in eq 30. In this limit,r? is
replaced byr,?2 which can be taken out of the integral. The
free energy difference between two isolated three-dimensional
harmonic oscillator is then
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of this study. However, such effects are expected to be small pmf) is equal to the nonbonded contribution from the calculation
in most cases. For example, in a detailed quantum mechanicalwith constant bond lengths.

study of the effect of hydration oiN-methylacetamide, a Bond Angle ContributionsBond angles are also described
maximum increase in the\H bond length of 0.01 A was found by harmonic potentials in the typical molecular mechanics force
due to hydrogen bond4;this would change the Jacobian free fields172921 The Urey-Bradley terms used in the new
energy contribution by 0.006 kcal/mol. Further, although the CHARMM22 all-atom parameters are also harméhand act
free energy methodologies discussed here include couplingon 1—3 distances (two atoms bonded to the same atom). Thus,
contributions, the standard force fields commonly used for all results and conclusions obtained for bond-stretching terms
solution studie¥-2%21may not be sufficient to describe such apply essentially unchanged to bond angle and bipdley
effects correctly. For example, De Souza et al. investigated terms.

frequency shifts induced by a simple solvent (liquid argon) for ~ TO illustrate this point, we consider the partition function of
a diatomic molecule (B} by computer simulatio®® To a nonlinear, triatomic molecule. It has the f&fm

correctly reproduce quantum mechanical results, they found it . .

necessary to use an anharmonic (cubic) oscillator term, as wellZ() = V8’ [ "dr r* exp(BKA)(r — r(A))") [ x

as a solutesolvent potential that depends on the bond length. ) o i

Neither of these are included in the force fields most often used dr' 12 exp=AK'(A)(r — r5'(2))7) [, d6 sin 6 x

i i i ,20,21
in macrqmolecular simulatiorig: . . o exp(—pK,(A)(0 — 00(/1))2) (34)
Coupling between nonbonded interactions and the vibrational
and Jacobian factor contributions can be determined from ynere, for the triatomic molecule ABEjs the distance between
explicit comparisons of simulation results using flexible bond g and A 1 is the distance between C and B, ahis the angle
terms with those where bonds are constrained. The maincBA. The factor &2V results from the integration over the
difference between constrained and flexible bond terms is the gegrees of freedom corresponding to the overall translation and
absence of vibrational free energy contributions in the former; yotation of the molecule. The first two integrals are the partition
therefore, any such coupling is missing from simulations using functions for the two bond stretching terms; they are identical
constrained bond terms. If bond lengths are fixed by constraints, in form to the integral in eq 30. The third configurational
the RR approximation is fulfilled for these degrees of freedom, integral is for the angle term. The only difference in form
and eq 32 describing the Jacobian factor contribution is exactrelative to the bond stretching terms is in the Jacobian, which
in this case. These points are illustrated by the comparison equals sirg instead ofr2. If the system were described by two
between rigid and flexible systems made in the companion bond-stretch terms im and r’ plus a Urey-Bradley term
paper. between A and C in"’, then eq 34 would change slightly. In
Considerations Regarding Dummy Atom&ree energy  this case, the limits of the integral go from O<ofor r andr’
contributions from changes in bond terms that involve dummy as before and from O to + r' for r”, and the Jacobian factor
atoms merit a special discussion as dummy atoms are afor the (full) system is &2Vrr'r"".%6 The Jacobians in all three
necessary element of the single topology metHotf.the bond integrals in eq 34 change, reflecting that the3ldistance is
term is left unchanged from its physical counterpart; i.e., the not independent of andr_'. )
same bond length and force constant is used for dummy atoms, !N Tl, the free energy differences from a change in bond angle
no free energy contribution arises. However, as mentioned ¢ and/or force constar, can be calculated according to eq
earlier, bond lengths to dummy atoms are often shortened to20 With Ax replaced byAf, whereA6 = 6 — 64(4). Within
reduce van der Waals type endpoint problems. In this case, at"€ RRHO approximation, the resulting free energy difference
pmf-type and a Jacobian factor contribution result. As discussed contains a V|brat|pnal contrlbutlon for achange in forcg constant
above, the latter is unphysical since the change in bond length(€d 19), @ Jacobian factor contribution for a change in equilib-
does not correspond to a physical proc®$3,and the corre- rium _bon_d ar_lgle, and,_l_n t_he presence of s_olvent, a pmf-type
sponding free energy contribution should not be included in contrll_)utlon if the eqwhprlu_m bond gngle IS chf_;ln_ged. The
the final result. The Jacobian factor contribution cancels from Jacobian factor contribution is p(oportlonal to In(8ifsin 6)°*
a thermodynamic cycle if the same change in bond length is (unles_s one choo_ses_ the description using the *#.B*?d'ey
introduced in both parts of the cycle. Alternatively, it can be 1-3 distance), W.h'Ch IS _us_ual!y small, as most equilibrium bond
calculated analytically to a good approximation with the angles are relatively similar; for the same reason, pmf-type

. , ._._contributions are expected to be small. In contrast to bond
Jacobian factor formalism (eq 32) and subtracted as appropriate .
lengths, bond angle terms are usually not constrained by

The pmf-type contribution from a change in bond length 0 SHAKE, 7S so the calculation of a constraint correction is not
dummy atoms is a physical contribution and must not be considered here. Coupling between vibrational and pmf-type
omitted. When an atom becomes a dummy particle, all its contributions may be more important than for bond stretching
nonbonded interactions with the rest of the system are removed.+erms as the force constants of bond angle terms are weaker.
This can be done by turning off the nonbonded terms without A difficulty arises if a bond angle degree of freedom is
changing the bond length. In this case, only nonbonded free determined simultaneously by an angle ternfiand a Urey-
energy components result. Alternatively, to achieve quicker Bradley term in the 43 distance, which is frequently the case
convergence the bonds are shrunk as the nonbonded terms arg the new CHARMM all-atom force field* The full details,
decrease#®0 In this case, different nonbonded free energy including a numerical example, are given in the appendix.
components plus a pmf-type bonded contribution will result. Considering again the nonlinear triatomic molecule just used
The pmf-type bond contribution is part of the free energy as an example, one sees that in this casettee degrees of
difference of interest as it accounts for part of the loss of freedom are described dgur parameters; i.er, r', r'”, and6
nonbonded interactions with the rest of the system. Provided are not independent from each other. To obtain analytical
that unphysical Jacobian factor contributions have been re-formulas, this has to be taken into account properly. One
moved, the sum of these two contributions (nonbonded plus possibility is to keep the two bond lengths and the bond angle
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as the independent (nonredundant) internal coordinates. Thus One solution is to consistently use an ideal gas molecule end
the Jacobian factor for the third atom remaifissin 6 as before, state, i.e., not to scale any bond and bond angle energy terms.
but the vibrational contribution from the bond angle force The appropriateness of such an approach for the computation
constant has to be replaced by an effective term that accountsof double free energy differences of physical interest defined
for the influence of the UreyBradley term. This is equivalent by thermodynamic cycles was already shown in section 2b,
to approximating the combined bond angle and UrByadley subsection End States. Results identical to those from a single

potential energy by topology simulation or a dual topology simulation using an ideal
gas atom end state are obtained. However, this is not true for
Uangie T Uus & Kgerr (0 — 6,) (35) the individual single free energy differences since the end states

involved in the simulations are not the same. In addition, the

As shown in the appendiXg er is a function ofKy, Kug, o, free energy components will be quite different. There are no

ro, andf,. We stress that these considerations are not importantbonded contributions (as in a single topology simulation, section
for free energy difference simulations based on molecular 2¢) because these energy terms do not depend on the coupling
dynamics, which correctly include all contributions, but are parameter if an ideal gas molecule end state is employed. The
relevant only to the decomposition of bonded free energy respective contributions to the double free energy difference,
contributions for purposes of analysis and interpretation basedhowever, are not omitted, but enter indirectly through the
on eq 33. Boltzmann density as part of nonbonded free energy compo-
2d. Breaking or Making a Bond. We now consider the  nents. This is discussed further in section 2e.
possibility of breaking or making a bond; i.e., the situation where ~ An alternative approach to the problem of creating or
Ki or Kr goes to zero. Such a process is required if one turns annihilating a bond when an ideal gas atom end state is used is
off all energy terms (including bond terms) to dummy atoms to introduce a criterion for determining when a bond is broken.
(single topology), or if one scales nonbonded and bonded The exact expression for the configurational free energy of a
interactions alike in dual topology simulations, (i.e., if one bond described by a harmonic potential= K/2(x — Xo)? is*
chooses an ideal gas atom end state, cf. section 2b). It is clear

that the expression for the free energy difference (eq 19) fails keT 27ksT
in this case if it is used directly. Similarly, whéq is set equal A=——In—g (38)
to zero in eq 18, one obtains
U keT 1 Here, kg is the Boltzmann constant, T the temperature, and K
%ﬂ =— %17 (36) the force constant. To obtain this result we Egtin eq 18

equal to zero (this corresponds to the formation of a bond with
which, upon integration, leads to an expression that divergesorce constant k= Ky) and for the integration introduce a lower
logarithmically asi goes to 1. In both eqs 18 and 19 the fact lIMit 4 = € (rather thani = 0), where the limiting value
that the system is confined to a volume V which would lead to corresponds-to the use of a criterion for a broken bond. This
a finite value when a bond is broken is not taken into account. !€ads to the integral

To determine what happens, we consider eq 30, the partition

function of a three-dimensional harmonic oscillator, K(i) A= Efl di/i (39)

— 0. Clearly, the RR approximation isot applicable in this 2 Je

case; i.e., one cannot sét= ry? and take the term out of the

integral. Instead, since expBK(A)(r — ro(1)]2 goes to unity The value ofe is chosen such that eq 39 yields the same result
asK(1) — 0, eq 30 becomes as eq 38, i.e.,

Z(—0)=V4r [jdrr’=V’ (37) € = 27kg TIK, (40)

where the upper limit of integration determines the system The case of breaking a bond can be treated analogously by
volume. This is the expected result for the configurational carrying out the integration from zero to-1 ¢, wheree =
partition function for two noninteracting particles confined to 27kgT/K;. These limits ford can form the basis for calculating
a volumeV. For the calculation of the equilibrium constant the free energy difference of bond creation and annihilation in
between a diatomic and the two separated atoms in a volumea molecular dynamics simulation by use of eq 20, for example.
V, the bond energy of the diatomic would have to be takeninto  The bounde or (1 — ¢) that yields the correct free energy
account in the standard manrér. has a simple physical meaning. In dual topology free energy
Use of the formulation just described for bond breaking in simulations the effective force constant in the simulation is given
simulations leads to difficulties because the particles would have by K(1) = AK or (1 — 1)K when a linear dependence of the
to sample the full volume of the system. In most cases, this coupling parameter is used. Thuss € or 1 — € corresponds
leads to configurations which are unrealistic for any value of to the limiting (lowest) value of the force constant for which
the coupling parameter other than zero or one, and adequatdhe bond is considered to still exist. This value, denoteld.as
sampling is not realizable in simulations of finite length. Erratic is found for both bond formation and annihilation to be equal
results were obtained in single and dual topology simulations to K. = 27kgT. InsertingK. into eq 38 yields a zero free energy
that attempted to break bonds in this way (S. Boresch & M. since the expression in the logarithm, which is the configura-
Karplus, unpublished results). It seems likely that this is also tional partition function, equals unity. The configurational
the reason for the convergence problems observed in refs 25partition function has the dimensionality df][in one dimension
and 26. Since the TSM module of CHARMM used in these (or [V] in three dimensions) so that the bound/ocorresponds
calculations is a dual topology method the inclusion of the to a limiting force constaniK. at which the particle samples a
coupling parameter for bond and bond angle terms led to unitlength (or volume). The omitted range of integrationg][O,
breaking and forming of bonds and bond angles. for bond forming and [+e¢,1] for bond breaking, accounts for
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the fact that the free particle has access to the full lehgtbr
volume V) of the system, not just a unit length (or volume).
Since this is a constant contribution, the choice ahd 1— ¢
as the thresholds at which a bond is formed or broken is
appropriate.

For a harmonic oscillator in three dimensions, eq 38 is
replaced by

A= —kTIn (47°17) — (kg T/2)IN(27k T/K)  (41)

wherer, is the equilibrium bond length and the first term arises
from the Jacobian factor. We choose to exclude the Jacobian
factor contribution (first term) from consideration as it can
always be dealt with analytically to a very good approximation.
The second term of eq 41 is identical to eq 38. However, the
interpretation oK — K, changes slightly. The volume factor
for the second atom of a three-dimensional harmonic oscillator
is 4712 (the Jacobian) times a thickness which is a measure of
the average vibrational amplitude of the bond; i.emkgA/K)Y2
for K — K., this thickness is equal to unity. A discussion of
the relationship between the configurational partition function
and the volume accessible to each atom of the molecule is given
in refs 61 and 66.

The introduction of a cutoff for the existence of a bond avoids

the problem that arises when ideal gas atom end states are used.

For typical values of the force constant for bond-stretching
terms, i.e.K > 100 kcal/(mole &), the value ok is € < 1/100.
The TI integral would be best approximated if the simulation
were run at the end points, i.e.,/at= € or 1 — ¢. However,
this gives rise to two complications. At such small (large) values
of 4, one may encounter van der Waals type end point problems
for the nonbonded interaction terr#fs.In addition, the con-
vergence behavior dbUpond 910 at e.g.,A = 0.01 or 0.99 is
slow (S. Boresch & M. Karplus, unpublished results, refs 25
and 26). Both difficulties can be avoided since the analytical
behavior ofdUpond 9AL] is known (see eq 36). This is illustrated
in Figure 3, where@U/dAL], as well as/@BU/OAL AL are
depicted as a function of. The full line is the analytical
function. Data points taken from simulations of a one-
dimensional harmonic oscillator with a force constant of 500
kcal/(mole &) for various values ofl are overlaid in Figure
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Figure 3. Theoretical behavior offdUyonddA] (Figure 3a) and
JEBUpond 9AL] dA (Figure 3b) as a function of the coupling parameter
A for a harmonic oscillator with force constait= 500 kcal/(mol &)

and equilibrium bond lengtk, = 1.526 A based on eq 36. The points
in Figure 3a were obtained from simulation. Note that the plot ranges
only between 0 and t ¢, wheree is given by eq 40.

convergence problems encountered in refs 25 and 26, but the
validity of the results is not clear since the limits for the integral
do not correspond to those that have been shown here to yield
the correct values for bond making or bond breaking. The use
of double differences with the same cutoff fbishould result

in a cancelation of the errors in the two separate calculations.
This is exact for an isolated harmonic oscillator and is expected
to be approximately correct for the more complex cases
considered. The effect of coupling with nonbonded terms can

3a; in the case of a single one-dimensional harmonic oscillator give nonzero contributions, but the results of calculations
the simulation is clearly well behaved, but this is not likely to presented in the companion paper suggest that they are small.
be true in general. The plots show the strongly varying behavior Thus, it is most likely that the significant bonded contributions
of the integrand which will cause problems for numerical obtained in refs 6 and 7 are due to noise in the calculations.
integration (as mentioned above) unless a large number of data-Sun et aP® have commented on the calculations in ref 6.
points is used in the vicinity of the endpoint. In analogy to the Repeating the computation of the free energy difference of
approach proposed by Simon$brfor the van der Waals  unfolding AAA,y, between the Ala 96 mutant of barnase and
endpoint problem, it suffices to calculate a few points at wild type with a single topology methodology, they found only
intermediate values of (say between 0.1 and 0.9) to fit these negligible contributions from bonded energy termsAAA ¢
values toC, + Cy/4 or G, + Cy/(1 — A) (whereC, andC; are from a component analysis. The difference between a single
constants) and to integrate this function analytically between and a dual topology approach was identified as the main reason
and 1 (or 0 and ¥ ¢). In principle, this type of procedure has  for the different components obtained, and the nature of the
to be repeated for each bonded term (bond, bond angle, andoractical problems encountered when attempting to form or
Urey—Bradley term) that is changed in the mutation, as the remove a bond were recognized on the basis of theoretical
limiting value of 1 = ¢ is a function of the respective force considerations and model calculations. While we agree with
constant. Whether this is necessary to obtain accurate resultgnuch of the analysis of Sun et al., three points need to be
if double free energy cycles are of interest has to be investigated.clarified. (i) Sun et al. used a single topology in a thought
In a number of applications of the BLOCK module of experiment to mimic dual topology (as already described in
CHARMMS.7 sizable bond free energy components were section 2b). While sufficient to identify the source of the
reported. As already mentioned, BLOCK is a dual topology problems resulting in the artificially large bond components of
method, and in its standard implementation bonded energy termsref 6, this hybrid approach is not identical to the dual topology
are scaled by. In the applications, no calculations were made methods implemented in CHARMM. (ii) Sun et al. imply that
at or close to the end poinfs= 0 and 1. This avoided the the divergence of the integrand (eq 36) “may be removed when
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nonlinear coupling is introduced between this vibrational mode and the free energy difference is equal to

and other modes of the system”. Contrary to the van der Waals

end point problend® this is not the case here. The integral over A= [ diBAU a (43)
eq A5 of ref 29 withk; = 0 (which is essentially equivalent to J; sote-vatel 947
eq 36) is logarithmically divergent, regardless of the dependence

. . - sinceUsoutels independent of. There is no difference between
on the coupling parameter. The correct solution, as shown in

his ch lies in th t ohvsicall e limits of a single and a dual topology calculation, as a single solute is
this chapter, lies in the use of physically appropriate imits of 5 sterred from the gas phase into solution in both cases. Along

intggration: .e.¢ and 1~ e rather than 0 and 1_)' Finally, (i) the chemical paths, thé-dependent perturbation term in the
while the different treatment of bonded terms in single and dual potential energy function consists only of solusmlvent

topology is emphasized, it is not made clear (as shown in sectionineractions; i.e.pnly nonbonded interactions (van der Waals
2b and discussed further in section 2e) that the use of an idealyng glectrostatic terms in the usual force fields) are changed;
gas molecule end state is correct and does not omit any consequently,only nonbonded free energy components are
contributions toAAApf. obtained for the free energy differenc®s; andAAs. It follows

The analysis of bond stretching terms carries over to bond that the same is true for the free energy difference of solvation
angle terms. Apparent theoretical problems can be removedcalculated af\AAsoy = AA> — AA;.
by considerations similar to those used to obtain eq 39, i.e., by The interaction of the solute with the solvent can alter the
introducing appropriate limits of integration. From eq 34 average bond lengths and bond angles and/or vibrational
integrating over a bond angle degree of freedom with zero force frequencies of the solutes. If any of these properties are different
constant does not give the full volunveof the system, butthe  in the gas phase and in solution, they contribute to the free
volume element expected for the Jacobian of the transformationenergy difference. Such contributions are projected onto the
from Cartesian into internal coordinates, UQ;','” sing do = 2. solute-solvent interaction terms in the chemical transformations.
In practical applications, similar problems as for bond terms They are included in eq 43 through the Boltzmann weighting
are observed. For— 0 (or 1) the system will sample the full ~ factor that depends on the full potential energy functid(%)
range of angles betweenr and-+; however, as most of these  (see egs 7 and 11). Thus, neither explicit bond(ed) free energy
angle values correspond to high energies in the original system,components nor, for that matter, components that have their
[@Uangid0AL} becomes increasingly noisy and converges slowly ©rigin in changes of intramolecular nonbonded interactions
(S. Boresch & M. Karplus, unpublished results). These dif- caused by structural changes due to solvation are obtained along
ficulties can be avoided either by the use of an ideal gas the chemical paths. This corresponds to the analysis of Ben-
the introduction of a cutoff for the existence of the angle. The bond and bond angle terms (hard internal degrees of freedom)
¢ defined in eq 40 can also be used for bond angle terms. Incan be expressed as an additive term; i.e., the free energy of a
free energy simulations using the CHARMM all-atom force ;olvated molecule is written as the free energy of the molecule
field™ an alchemical mutation may also change a bond angle In the gas phasg plus the solvation contrlbutlon.. Although an
degree of freedom described by a bond angle plus a-trey approximation, in general, such_ an approa(_:h is correct fpr
Bradley term into one that is only described by a bond angle syst_e_ms descrlped by the classical mgchanlcal and pairwise
term (or vice versa). Since this is equivalent to a change in the "’,‘dd't'l‘;ezo ;plotentlals commonly used in computer simula-
effective bond angle force constafy o rather than a removal ~ 1ONS="= , , . ,
of a bond angle degree of freedom (cf. the discussion given at 1€ hybrid potential energy function describing the alchemi-
the end of section 2¢ and in the Appendix), no special practical ¢ Paths (the horizontal arrows in Figure 1) has the form

roblems are encountered in this case. ,
P U(/’{) = Uo + AUsolute(:u) + AU solut&watel(/'t) (44)

2e. Meaning of Components in the Free Energy Differ-
ences of Solvation. Since the free energy change in Tlis hare we useu instead of to indicate that the coupling

projected on thel-dependent terms, care has to be used in parameter corresponds to a different process than that
interpreting the results, including that for the bonded contribu- ~nsidered in eq 42, (i.e., the process described by eq 44 is
tions to the free energy of solvation. This is all the more hat of transmuting ethane to methanol. The ~quantity
important as the-dependent terms in the hybrid potential energy Ay, ..{x)_corresponds to the change in intrasolute interactions
f_unct|on vary not onIy_W|th th_e path used for the smula- andAU'soue wate(1t) gives the corresponding change in sotute
tions®19.32.3351gyt also with the simulation methodology (single  solvent interactions. ThAU'soue wate(t) in €q 44 is not the

or dual topology), cf. section 2b. To analyze_ the meaning of ggme asAUgoue-soven(4) Of €q 42; the former describes the
the bonded and the self-terms (see Introduction), we comparechange in solutesolvent interactions due to the alchemical
the chemical and alchemical paths in the thermodynamic cycle mytation, whereas the latter describes the process of transferring

used to compute the free energy difference of solvation betweengthaneor methanol from the gas phase into solution. The
ethane and methanol (Figure 1) with respect to the role of bond g|chemical free energy difference is given by

and bond angle free energy components. Numerical results for

this model system are presented in the companion Japer. AA = 1 AU aull + AU’ 3 45
Vertical (chemical paths\A; and AA; in Figure 1) and ‘/(‘){ sotud & solte-vate! ﬂ';l} (49)

horizontal arrows (alchemical patitshs and AA, in Figure 1) A comparison of eqs 43 and 45 makes clear that different

correspond to different processes. Along the chemical paths 1 ee energy components are to be expected. Equation 45
and 2, the two solute_s eg., e'Fhane and methgnol) are_transferre ontains components that arise from the intramolecular changes
from the gas phase into solution, so the hybrid potential energy iy the solute which are not present in eq 43. In the ethane to
function is of the form methanol case, as well as most other practical applications, these
include changes in bonded energy terms. A difference in the
U() = Usoie T AUgoiuie-watel4) (42) free energy of solvation calculated along the alchemical paths
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AA; and AAs can contain contributions from the change in bond angles in the absence of nhonbonded interactions, and (iii)
intrasolute interactions. If they are identical in solution and in  pmf-typecontributions which result from the change in non-
the gas phase, they cancel mAAgy. In a number of bonded interaction (e.g., solutsolvent interactions) if the
calculations mentioned in the Introduction it was, in fact, equilibrium (average) geometry of a molecule is altered.

assumed that they were identical without verification. Applying constraints to keep the bonds rigid is a special case,

The difference in free energy components along the alchemi- in which vibrational terms are eliminated, but there can still be
cal and chemical paths reflects what has been calledltimal pmi-type and Jacobian factor free energy contributions if the
path dependence of thermodynamic integratforiThe total equilibrium bond length of a constrained bond term (i.e., the

double free energy difference of solvation is the same for the target distance of the constraint) is changed. The same three
two paths. However, the explicit calculation of the free energy contributions are obtained in dual topology methods when an
contributions from the changes in the intramolecular potential ideal gas atom end state is used; however, the pmf-type free
of the solute for the gas phase and solution along the alchemicalenergy contribution is projected on nonbonded free energy
paths makes it possible to determine the influence of solvent components. In dual topology methods using an ideal gas
on these degrees of freedom (the self-terms), which is “hidden” molecule reference state, vibrational and Jacobian factor con-
along the chemical paths. In the ethane/methanol transmutatiortributions are not included in the computed free energy
(Figure 1) the self-terms (@mtraperturbed-group interactiord difference. This results in different single free energy differ-
contribute toAAAsoy Only if they are not equal iMMAs and ences for individual steps of a thermodynamic cycle; however,
AA4. A self-term contribution toAAAsey found along the identical double free energy differences are obtained.
alchemical paths prOVideS information on the influence of In princip|e, all three contributions (VibrationaL pmf_type’
solvent on the properties of the solutes. Such a separation ofjacobian factor) can couple with each other. Of particular
the intrasolute from the solutesolvent terms is not directly interest is coupling between vibrational and pmf-type contribu-
available from calculations along the chemical paths. tions. We reiterate that all three methodologies (single topology,
For the interpretation of components obtained along the dual topology with an ideal gas atom or molecule end state)
alchemical path&As and AA,, the differences between single include such effects correctly. Since Jacobian factor and
and dual topology methods (the latter with and without scaling vibrational contributions (but not coupling contributions!) are
of bonded terms) have to be taken into account as well (sectionomitted in dual topology simulations using an ideal gas molecule
2b). There are no bonded free energy components if an idealreference state, a comparison of free energy components
gas molecule end state is used in dual topology simulations. It obtained with these three different methods allows one to
is important to note that calculations carried out in this manner distinguish these contributions. Further, vibrational degrees of
omitvibrational and Jacobian factor free energy contributions, freedom are absent in systems where bond terms are constrained,
while pmf-type contributions are projected on the nonbonded so simulations with and without constraints can be used to
free energy components. Thus, different single free energy explore the importance of such coupling.
differences for the gas phasaAs) and solution calculation The origin of the problems arising if bonds or angles are
(AA;) are obtained, reflecting the different end states used in y1en or made was analyzed. Such problems can be avoided
the simulations compared to a single topology or a dual topology py, ;se of a hybrid potential energy function in alchemical free
calculation in which an ideal gas atom end state is used. gqrqy calculations that does not scale the bonding terms. This
However, as anal_ogous contributions are O'T_““ed in the gas can pe achieved by the introduction of unphysical systems in
phase and in solutlor), the double free energy d'ﬁer.ma's""’ the representation of the initial and/or final state. In single
is not affected. This is the case even if c.oupllng' betvyeen topology simulations, dummy atoms are used to keep the number
bonded terms and nonbonded sotuselvent inferactions is ¢ 41omg in the system constant (cf. the situation in the ethane
important. Similar to the chemical paths, any influence of the to methanol example, Figure 2a), and in all published work the

ponpqnded terms on the intramolecular degrees of fr.eedom 'Storce constants of the bond and bond angle terms connecting
implicitly included in the Boltzmann factor that determines the them to the rest of the system have been included. In dual

distribution which contributes to the_conf_igura;ion integral (eqs topology simulations using an ideal gas molecule end state, the
57,and 11). Du_al _tqpology simulations |n_wh|ch bondt_ad erMs  olecuiar fragment remains bonded harmonically to the rest
are scaled to a limiting value df as descrlbeq in section 2d of the system; all other interactions with the rest of the system
(ideal gas atom _end_ state) are eXpeCt.Ed to include all bondedare switched off. Thus, one obtains a “dummy molecular

fr_ee energy pontnbunons and, thUS’ to ylel_d the same free ?nerg.yfragment” as the end state (cf. Figure 2b). Consequently, in
differences in the gas phase and in solution that are obtained iNhoth methodologies one or both endstates are not identical to

single topology simulations. the physical system they attempt to mimic. The unphysical
modifications that may be necessary to accomplish an alchemical
mutation have to be taken into account, which has not been

Bond stretching and bond angle bending terms in the energydone in all published worké23 |t was shown that if treated
functions have led to problems in free energy simulations. The Properly the artifacts of the simulation (i.e., the parts of the
theoretical investigation of these terms reported here makes cleahybrid system that are not present in the real system they mimic)
that several factors are essential in order to calculate themdo not affect the result of the double free energy differences of
correctly and to obtain a meaningful interpretation of the results. interest. Alternatively, a limiting value of the coupling param-
The role and importance of bonded energy terms was shown to€ter (and thus the force constant) at which a bond or angle is
depend on the simulation methodo|ogy (Sing|e or dual topo|ogy) considered broken can be used in the free energy simulation.
If a bond (angle) term is changed in an alchemical mutation  The focus of this paper has been the computation of correct
using single topology, the resulting free energy difference arisesdouble free energy differences defined by a thermodynamic
from the three physical effects: (dibrational contributions cycle. In many cases this is the physically relevant quantity.
from changes in the force constants, (Iacobian factor The considerations and techniques presented here are equally
contributions from changes in the equilibrium bond lengths and useful when an absolute; i.e., single, free energy difference is

3. Summary
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required. In this case, even more attention has to be paid toTABLE Al

the artifacts that may be introduced by the simulation methodol- parameters initial state final state
ogy. As just discussed, bond and bond angle terms to dummy

atoms are maintained in single topology calculations (e.g., refs gjfg(fgi)'(f;((iii'.l,((ﬁ%'| 62%)) 11%)%255(()) 0 11%)'.%%(.)8 .
22,24, and 54). If the contributions resulting from these terms ' (&), kUB(kcall(mol £2) 2.88/25.0 2.52/25.0

are treated consistently, they cancel from a thermodynamic
cycle. To obtain correct single free energy differences, the Bradley energy term is added since= r"(r,r',0). Once one
necessary correction can be calculated analyti®ally use of decides on a subset of nonredundent coordinatesglcan be
the techniques developed by Herschbach € aln dual used as before; however, there are off-diagonal elements in the
topology simulations the bond and bond angle terms of the two force matrix since the potential energy is expressed as a function
molecular fragments that represent the initial (reactant) and final of all four (redundant) coordinates. For the triatomic model
(product) state, respectively, can be kept intact (ideal gas system, evaluating the elementskafis tedious, but straight-
molecule end state) or they can be reduced to an appropriateforward: One first carries out the double differentiation, then,
threshold (ideal gas atom end state); details of the approach aren accord with the RRHO approximation, simplifies the resulting
discussed in section 2d. This resembles the single topologyexpressions by replacing’ by ro", i.e., the equilibrium 3
case, i.e., vibrational and Jacobian factor contributions (there distance. A program capable of symbolic manipulation aids in
are no others!) of the extraneous atoms bonded harmonicallythe computations.
to the physical system (the “dummy molecular fragment”) can  Extending this exact approach to larger systems quickly
be computed analytically. The latter approach gives essentially becomes very complicated. The following approximations may,
an absolute free energy difference. The single contribution therefore, be useful for estimates in larger systems. As-drey
omitted by the method outlined in section 2d is a correction for Bradley terms in the CHARMM force field are an additive
the unit volume implicit ine (eq 40 instead of the true volume  correction to the standard bond angle terms, we replace the bond
of the (simulation) system. The need for such a correction is angle force constart, by an effective bond angle force constant
reminiscent to the need to choose a standard state in theKgest Which includes the effect of the UreyBradley term in
calculation of absolute binding affiniti€s. the potential energy function in an approximate manner, i.e.,
As discussed in the Introduction, there is considerable Uange + Uus ~ Koei(6 — 00)? (cf. eq 35 in section 2c). This
confusion in the literature regarding both theoretical and maintains the diagonal form ofs. The simplest possible
practical aspects of the role of bonded terms in free energy expression foKye uses the sum of bond angle and Utey
simulations. We defer a detailed discussion of this point to the Bradley force constant, i.e., one writég e = Ky + Kyg. A
end of the companion paper, in which results of model much better approximation can be obtained from a comparison
calculations illustrating the conclusions drawn here are reported.of the diagonal force matrix in the absence of the UrByadley
term and the full expression with off-diagonal elements with
Acknowledgment. We thank Tom Simonson, Georgios the Urey-Bradley term. For typical values of the force
Archontis and Arnaud Blondel for helpful discussions. This constants, the largest change can be expectegffds?o, i.e.,
work was supported by a grant from the National Institute of the diagonal element for the bond angle degree of freedom. It

Health.

Appendix: Analytical Calculation of a Free Energy
Difference Involving the Simultaneous Change of a Bond
Angle and Urey—Bradley Term

To illustrate the difficulty arising if a bond angle degree of
freedom is determined simultaneously by an angle terré in
and a Urey-Bradley term in the 43 distance, we consider
again the nonlinear triatomic molecule used at the end of section
2c. The four internal coordinates r, r'’, and 6 are not

independent since there are only 3 degrees of freedom. The

(gas phase) free energy of a polyatomic molecule within the
rigid rotor, harmonic oscillator (RRHO) approximation is given
by61,66

(A1)

The Jis are the Jacobian factors discussed in the main text,
and |Fg| is the determinant of the force matrix in the internal
coordinates used, i.e., it has elemefifs = 82U/dr;rj, where
U is the potential energy of the system anelndr; are internal

is given by
Fop = 0°U10°0 = K, + K"'(r,2ry 2 sir? 0Ir") ~ K o (A2)

and provides an expression 1dp ¢ that takes into account the
interdependence of the four internal coordinates. The procedure

just outlined blurs the distinction between vibrational and

Jacobian factor contributions. However, this only reflects the
dependence of the-13 distance and the bond andgleon each
other. An approximate separation can be accomplished by
comparing the results obtained wikh e = Ky + Kyg to those
with Ky eff On the basis of eq A2, since the effect which the
change of equilibrium geometry( ro, 65) has on the free
energy contribution from a UreyBradley term is included only

in the latter.

We conclude this appendix with a numerical example for a
model triatomic molecule. Table Al lists the bonded parameters
that are different in the initial and final state; there are no
nonbonded interactions in the system and the parameters for
the 1-2 bond areK;,=250 kcal/(mole &), ro,1=2 A.

Thus, aside from the change in the 2bond stretching term,
which is straightforward to calculate, we expect a vibrational
contribution from the bond angle term, since ghanges, and
a Jacobian factor contribution from the UreBradley term

coordinates. As long as the number of internal coordinates andbecause of the change ir-3 distance.

the number of degrees of freedom are the same, the force matrix Approaches for computing analytically the free energy
is diagonal (e.g., for a triatomic system described by two difference for such a system are described in ref 61. The
harmonic bond stretching terms and one bond angle energy termyeference result for this alchemical mutation is obtained by
|[Fs| = KK'Kg). To be able to use eq Al, the internal coordinates adding the contribution due to the change in moment of inertia
have to be nonredundant. This is not the case if the Yrey AA,, which is not negligible for such a small system, to the
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TABLE A2
AA, 0.315
AANM 0.459
AAexa= AA+AAwm 0.774
AANuB 0.896
AAm1 0.810
AAwmz 0.769
AAwm3 0.774

free energy difference obtained from a normal-mode analysis
of the initial and final statepAAwwm; see eq 14 of ref 61. (This

approach assumes that the masses are not changed.) Th
alternative approach of adding the vibrational and Jacobian
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factor free energy differences (cf. Equation 31) has to take into 328 551. _ _ _
account the redundancy of the internal coordinates as described (24) Van Gunsteren, W. F. I€omputer Simulation of Biomolecular

above. We compare the reference reshfidy) and the equally
exact result based on eq Al using the full force matrix with all
off-diagonal elements (labeled M3) with those obtained ignoring
the Urey-Bradley term AAyug) and the two approximations
including the Urey-Bradley term. The simpler approach
assuming thaKyer = Ky + Kyg is labeled M1, whereas the
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second, more elaborate, method (M2) uses expression eq A273-281.

for Kget. The results obtained are summarized in Table A2

(all values are in kcal/mol).
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In Table A2, we first list separately the two contributions 585.

(AA;, AAuw) to the reference resuliAcxa The fourth entry

AAnus Omits the Urey-Bradley term and was obtained from

the Jacobian contribution due to the change in th& dond

(32) Boresch, S.; Karplus, MJ. Mol. Biol. 1995 254, 801-807.

(33) Archontis, G.; Karplus, MJ. Chem. Phys1996 105 11246~
11260.
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length plus the vibrational contributions due to the changes in van Gunsteren, W. FRrotein Eng.1993 6, 289-295.

Koz andKy, cf. Table Al. The resulting free energy difference

is 15.7% too high. Although a crude approximatidfy (is
simply replaced by the suiy + Kyg), the agreement okAu
with AAws iIs much better (4.6% too high).

1%. The results of the two exact methods®¢y, AAusz) agree

as they must. Finally, it is interesting to compare the values

for Kypef in M1 and M2 to those oK, (Table Al). Using
method M1, K e+ equals 50 and 75 kcal/(mol r§dor initial

and final state, respectively. When using approach M2, these

values change to 48.9 and 63.9 kcal/(mol3adeflecting the

influence of the changed-2 bond length that is omitted in

method M1.
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