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Various patterns of standing waves are found beyond the onset of the short-wave instability in a model reaction-
diffusion system. These include plain and modulated stripes, squares, and rhombi in systems with square and
rectangular geometry and patterns with rotational symmetry in systems with circular geometry. We also find
standing waves consisting of periodic time sequences of stripes and rhombi, stripes and squares, and stripes,
rhombi, and hexagons. The short-wave instability can lead to a much greater variety of spatio-temporal patterns
than the aperiodic Turing and the long-wave oscillatory instabilities. For instance, a single oscillatory cycle
can display all the basic patterns related to the aperiodic Turing instabilitysstripes, hexagons, and inverted
hexagons (honeycomb)sas well as rhombi and modulated stripes.

I. Introduction

Wave patterns that arise from the oscillatory instability with
finite wavelength (short-wave instability) have been much less
thoroughly studied than those arising from the aperiodic Turing
or the long wave oscillatory instability.1,2 We have shown
recently that the short-wave instability may be a source of a
great variety of spatio-temporal patterns in one-dimensional
media. These patterns include pure and modulated traveling and
standing waves, alternating waves, asymmetric standing-
traveling wave patterns and target patterns.3-5 Here we expand
our investigations to two-dimensional systems. As a guide to
the patterns that may be expected, one can consider both the
one-dimensional patterns arising from the wave instability and
the two-dimensional patterns associated with the aperiodic
Turing instability. In the latter case, the basic patterns are known
to be hexagons and stripes.2 In this paper, our primary goal is
to study various types of standing waves at low degrees of
supercriticality.

II. Model

We have developed a three-variable reaction-diffusion model
that exhibits the wave instability.3 The model is based on the
following reaction scheme:

Here Si are the initial reagents; Pj are the final products; and X,
Y and Z are the intermediates, whose concentrations are the
dynamic variables. C is a catalyst, and XC is the catalytic

complex, whose reactions (R6) are assumed to be governed by
Michaelis-Menten kinetics. The autocatalytic reaction (R1) is
a principal source of instability in a variety of reaction schemes.6

The wave instability results from the additional feedback loop:
Z is the catalyst for X formation (R2), while X is the catalyst
for Z formation (R4). The simpler scheme (R1)-(R5) generates
the wave instability in the corresponding reaction-diffusion
system; however, a much larger domain of the wave instability
can be obtained with the additional reactions (R6) and (R7).3

The reaction-diffusion model in its dimensionless form
corresponding to reaction scheme (R1)-(R7) is

where∆ is the Laplacian operator and

Km is the Michaelis constant of reaction (R6), and the con-
centrations of species other than X, Y, and Z are taken to be
constant.

In the simulations presented here we setDx ) Dy ) 0, which
gives the largest domain of the wave instability. The valuemc
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≈ 28.56915 corresponds to the short-wave bifurcation andmh

≈ 26.79767 to the spatially independent Hopf bifurcation.3 The
domain of pure short-wave instability is found formh < m <
mc. We refer toε ) (mc - m)/mc as the degree of supercriticality.
The maximum of the dispersion curve (see Figure 1), occurs at
a wavelength of approximately 3.426 space units. We refer to
this value as the intrinsic wavelength in what follows. The
intrinsic wavelength is nearly independent ofm in the domain
of pure short-wave instability.

In our simulations we keep constant the following param-
eters: g ) 1 × 10-4, a ) 0.9, b ) 0.2, n )15.5, and we vary
the parameterm and size of the system.

Boundary and Initial Conditions. All simulations are done
with zero flux boundary conditions.

In the majority of our simulations, we employ as initial
conditions (IC) the homogeneous steady state with random
uncorrelated deviations added to thex variable at each point of
the two-dimensional grid. The random deviations are uniformly
distributed on the interval(0.2 (18% of the steady-state value
of x).

In some simulations, we employ regular patterns of local
perturbations that correspond to the expected patterns of standing
waves. In a few cases, we use the stationary patterns obtained
from previous simulations as our IC in order to investigate the
stability of the pattern at different values of the degree of
supercriticality.

III. Numerical Procedure

The reaction-diffusion system (eq 1) was converted to a
system of ordinary differential equations (ODE) by the method
of lines (central difference spatial discretization with a uniform
mesh). The resulting large ODE system was integrated with the
stiff solver CVODE utilizing the sparse matrix linear equation
solver.7 Zero flux boundary conditions were used in all
simulations. The grid size ranged from 80× 80 to 400× 400
grid points. We checked for spurious results of discretization
by varying the spatial resolution of the grid. The number of
grid points per intrinsic wavelength was always at least 10. The
error tolerance of the CVODE solver was set to 1× 10-6. A
fast Fourier transform (FFT)8 was used to obtain two-
dimensional Fourier power spectra of the patterns. Since the
FFT requires a grid with 2n nodes, the calculated patterns were
linearly interpolated to the next largest power of two grids. For
rectangular and square systems, eq 1 was represented in
Cartesian coordinates, while polar coordinates were used for
circular systems. In the latter case, the central point of the circle

was still represented in Cartesian coordinates to avoid a
numerical singularity.

IV. Results

In this work we investigate a small neighborhood of the wave
bifurcation with degree of supercriticalityε e 0.02. Figure 1
shows dispersion curves (real partR of the complex eigenvalues
vs wavenumberk) for three values ofm used in our numerical
experiments. The maximum valueR occurs at the wavenumber
kmax, which defines the intrinsic wavelength. Form ) 28.53,
28.50, and 28.00, the degrees of supercriticality areε ) 0.0014,

Figure 1. Dispersion curves at low degree of supercriticality in the
vicinity of the short-wave bifurcation. Curve: (I ) m ) 28.53; (II ) m )
28.50; (III ) m ) 28.00.

Figure 2. Development of standing waves from random initial
conditions. Size of system 40× 40 space units,m ) 28.5. Values of
x are quantified with 256 gray levels: white corresponds to the maxi-
mum value ofx, black to the minimum value. Time (in dimensionless
time units): 0 (a); 1000 (b); 2000 (c); 3000 (d); 4000 (e); 15 000 (f).

Figure 3. Square pattern in 20× 20 system,m ) 28.5 (ε ) 2.4 ×
10-3): (a) snapshots ofx (adjacent images are one-twelfth period apart);
(b) amplitude ofx oscillations showing positions of nodes (black
domains) and antinodes (white domains) of standing waves; (c) two-
dimensional Fourier spectrum calculated from the amplitude ofx
oscillations.
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0.0024, and 0.02, and the intervals ofk corresponding to unstable
modes are 1.671-1.991, 1.616-2.042, and 1.155-2.421,
respectively (see Figure 1). The period of oscillation is about
0.62 time units; this value does not change significantly in our
range of supercriticality.

For brevity, we shall use here the term “stationary pattern”
to refer to an established regime as opposed to a transient.

1. Transient Patterns. The transients in these simulations
are often quite lengthy, especially for random IC and larger
systems. For a square system of 100× 100 space units and
larger it often requires more than 20 000 time units to establish
stationary patterns. For a system of 20× 20 space units
stationary patterns appeared within 5000 time units. Figure 2
shows two examples of transient patterns for a 40× 40 square
system withm ) 28.5. Gray levels in Figure 2 correspond to
the x variable, with white signifying high concentration and
black low concentration. The first image in each series represents

the initial conditions; the last image displays a snapshot of the
stationary pattern. The early stages of evolution show the same
type of irregular cell structure, with random elements of
hexagonal and square symmetry, though the final stationary
patterns are quite different in these two examples.

2. Stationary Patterns in Square Systems.To reveal the
range of stationary patterns and to estimate the relative sizes of
the basins of attraction for the patterns, we performed sets of
20 simulations with identical parameters and different random
initial conditions. The results are summarized in Table 1.

A. Square System 20× 20, m ) 28.5 (E ) 2.4 × 10-3).
Figure 3a shows a cycle of oscillation of a stable square pattern.
The sequence shown consists of 12 snapshots of thex-variable;
adjacent images are one-twelfth of a period apart. The pattern
consists of two mutually perpendicular sets of stripes that
oscillate with a phase shift ofπ/2. Figure 3b presents the
amplitude of thex-variable oscillations, thereby showing the
positions of the nodes (black spots) and antinodes (white spots)
of the standing waves.

Figure 3c displays the two-dimensional Fourier spectrum
calculated from Figure 3b; the range on each axis isλ-1 ∈ (-1,
1), whereλ is the wavelength of the amplitude pattern. The
dots indicate the locations of the major peaks in the Fourier
spectra. The large dots represent Fourier peaks whose sizes are
at least 75% of the largest peak; the squares signify peaks
between 50% and 75% of the maximum; and small dots show
peaks between 25% and 50% of the maximum. The central peak,
which simply represents the spatial average, is not shown.

The Fourier spectrum in Figure 3c consists of four peaks of
equal magnitude located at ((0.6, 0), and (0,(0.6). The

TABLE 1: Relative Occurrency of SW Patterns (%)

pattern

size ε a b c d e fig

20× 20 0.0025 55 25 15 *a

20× 20 0.01 25 20 20 15 10 5
40× 40 0.0025 35 15 15 10 10 6
40× 40 0.01 55 20 15 10 7
20× 19 0.0025 40 15 15 10 10
20× 19 0.01 35 25 20 10 11

a Figure 3 shows patterna, Figure 4 patternb, and Figure 5 pattern
c.

Figure 4. Rhombic pattern in 20× 20 system,m ) 28.5 (ε ) 2.4 ×
10-3).

Figure 5. Stripe-rhombic pattern in 20× 20 system,m ) 28.5 (ε )
2.4 × 10-3).
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corresponding wavelength of the standing wave envelope is
1.667. The wavelength of the instantaneous pattern is twice as
large, i.e.,λhor ) λver ) 3.333. This wavelength is close to the
intrinsic wavelength and allows exactly six wavelengths in the
20 × 20 system in each direction. The corresponding wave-
number, 1.885, lies close to the middle of the unstable domain
shown in Figure 1.

The square pattern illustrated in Figure 3 emerged in 11 of
the 20 simulations, which suggests that the probability for such
a pattern to evolve from random IC exceeds 50%.

A different pattern, a rhombic one, is shown in Figure 4.
Frames 2 and 8 display a simple rhombic pattern with 3λhor )
L ) 20 and 5λver ) 20; frames 5 and 11 show this pattern rotated
by π/2. Accordingly, the Fourier spectrum in Figure 4c shows
two sets of four major harmonics, which correspond to
wavelengthsλ1 ) 6.666 andλ2 ) 4 in both the vertical and
horizontal directions. Other frames display complex rhombic
patterns. This sequence of rhombic patterns occurred in 5 of
our 20 simulations (see Table 1).

Figure 5 shows a pattern that emerged in 3 simulations and
that can be described as an interplay of stripes and rhombi.
Frames 2 and 8 display a pattern of straight stripes showing
moderate amplitude modulation with 6λhor ) 20; frames 6 and
12 show a simple rhombic pattern with 4.5λhor ) 20 and 4λver

) 20. The Fourier spectrum in Figure 5c contains the major
harmonics with corresponding peaks at ((0.6, 0), ((0.45, 0),
and (0,(0.4).

B. Square System 20× 20,m ) 28.0 (E ) 2 × 10-2). Figure
6 shows typical patterns for a larger degree of supercriticality.
Each spatio-temporal pattern is displayed with six images. The
first four columns portray a sequence of four spatial patterns of
the x value; adjacent images are one-quarter period apart. The

fifth column shows the amplitude of thex-oscillations and the
positions of the nodes and antinodes of the standing waves. The
two-dimensional Fourier spectra are depicted in the last frame.
The patterns are presented in order of the frequency of their
occurrence, with the top row containing the most frequently
found pattern; the same mode of presentation is used in Figures
7-9 as well.

With increasing degree of supercriticality, the patterns become
less symmetric. In Figures 3 and 4 the Fourier spectra haveC4

symmetry, and Figure 5 showsC2 symmetry; in Figure 6 all
patterns have Fourier spectra withC2 symmetry. Comparison
of Figures 6a and 4b shows the distortion of the rhombic pattern
with increasing degree of supercriticality. The regular square
pattern of Figure 3 emerges only rarely at the higher degree of
supercriticality, and in most cases one can see a dislocation in
the pattern (Figure 6b). This dislocation is caused by a phase
shift of a half period between the left- and rightmost parts of
the pattern. This same type of square pattern with a dislocation
is seen with its transients in Figure 2. The boundary between
the phase-shifted domains is always a narrow stripe-shaped
domain.

All patterns shown in Figure 6c-e display stripes with a
wavelength of 3.333 space units at some phase in their cycle.
During most of the cycle, however, the patterns differ signifi-
cantly, as can be seen in the sequences of consecutive frames
and in the amplitude patterns. It is evident that with the
increasing degree of supercriticality the probability of appear-
ance of simple symmetric patterns diminishes, while less
symmetric patterns emerge more often.

C. Square System 40× 40.We repeated the above numerical
experiments in a system of double the length at both values of
the degree of supercriticality. Figure 7 displays the patterns

Figure 6. Standing wave patterns in 20× 20 system,m ) 28.0 (ε ) 2 × 10-2). First four images in each sequence display spatial patterns ofx;
images are one-quarter period apart. Fifth image shows amplitude of oscillations and positions of nodes and antinodes of standing waves. Last
frame of each sequence depicts two-dimensional Fourier spectra calculated from amplitudex oscillations. Patterns: (a) rhombi; (b) squares with a
dislocation; (c) stripes-rhombi I; (d) stripes-rhombi II; (e) modulated stripes.
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obtained form ) 28.5 (ε ) 2.4 × 10-3). The most commonly
found pattern for low degree of supercriticality is the rhombic
pattern (Figure 7a). The square pattern is not as frequent for
the larger as for the smaller system. As we see in Table 1, the
ratio of occurrences of the square and rhombic patterns is
roughly 2:1 in the smaller system and 1:2 in the larger one.
The pattern in Figure 7c represents modulated stripes; this
pattern was not obtained in the smaller system. The pattern in
Figure 7d is another variant of the rhombic pattern, while Figure
7e is the pattern that resembles that shown in Figure 6d.

Figure 8 displays the patterns found form ) 28.0 (ε ) 2 ×
10-2). The most typical patterns here are modulated stripes,
observed in 11 cases out of 20. Again, there is a relatively low
probability for the square pattern to develop from random IC
in this larger system. It takes a very long time to synchronize
the entire pattern. Figure 8d shows the square pattern, which is
still not stationary after 20 000 time units. The amplitude frame
shows the pattern clearly, but it does not contain any information
about phases at different locations. The snapshots of thex
variable in Figure 8d show the phase shift across the system.

Figure 7. Standing waves in 40× 40 system,m ) 28.5 (ε ) 2.4 × 10-3). Patterns: (a) rhombi I; (b) squares; (c) modulated stripes; (d) rhombi
II; (e) stripes-rhombi.

Figure 8. Standing waves in 40× 40 system,m ) 28.0 (ε ) 2 × 10-2). Patterns: (a) modulated stripes; (b) stripes-rhombi; (c) modulated stripes
with a dislocation; (d) squares.
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Continuation of the simulations eventually leads to a pattern
identical to that of Figure 7b.

3. Patterns in Rectangular Systems.The patterns found in
square systems illustrate that the dominant patterns are squares,
rhombi, and modulated stripes. Even in relatively large square
systems (up to 200× 200 atm ) 28.5), we were unable to
obtain standing waves consisting of unmodulated stripe patterns
or hexagonal patterns. One plausible explanation is that our no
flux boundaries produce an excessive perturbation to the,
presumably sensitive, hexagonal structure. To check this
hypothesis, we performed another set of simulations with
rectangular systems, whose boundaries corresponded to the zero
flux lines of hexagonal patterns. Thus the sizes were taken close
to Nλi/2 × Mλix3/4, whereλi is the intrinsic wavelength. In
one set of simulations this condition was satisfied only ap-
proximately, while in the second it was fulfilled quite closely.

A. Rectangular System 20× 19. Figure 9 shows typical
stationary patterns for low degrees of supercriticality (m) 28.5).
The vertical axis of each frame is the longer side of the rectangle.
The most common pattern found here is a rhombic pattern, like
that seen in square systems. The other three patterns, however,
are seen only in rectangular systems. These include unmodulated
stripes (Figure 9b) and hexagon-stripe patterns (Figures 9c,d).

Some of the snapshots in Figure 9d show simple hexagonal
patterns. However, the spatio-temporal pattern is dominated by
horizontal stripes, which appear in the Fourier spectrum as the
major peaks corresponding toλver ) 3.333; the second largest
pair of peaks, atλhor ) 3.8, belongs to the hexagonal structure,
which also modulates the amplitude of the stripes. Figure 10
presents the stable oscillatory cycle of this pattern in more detail.
The cycle runs through simple stripes to modulated ones, then
to rhombi, hexagons, rhombi, and then inverted hexagons
(honeycomb), rhombi, modulated stripes and simple stripes.

The pattern in Figure 9c is a hexagon-stripe pattern with two
dislocations. The oscillations in the middle part of this pattern
are shifted by half a period from those at the sides. This behavior
is analogous to that of the square pattern with a dislocation
shown in Figure 6b.

Figure 11 shows patterns for the same rectangular system
but with a higher degree of supercriticality (m ) 28.0). As in

the case of square systems, the higher degree of supercriticality
leads to instability of the more symmetric patterns, resulting,
in a majority of cases, in combinations of stripes and rhombic
patterns (Figure 11a) or modulated stripes (Figure 11b). Stripe-
hexagonal patterns are also found in several cases, as shown in
Figure 11c. The pattern in Figure 11d is a combination of stripes
and squares. We have not obtained simple stripes, squares,
rhombi, or hexagons at this higher degree of supercriticality.

B. Rectangular System 41.112× 41.538.In terms of the
intrinsic wavelengthλi, the size of this system can be represented
as 12λi × 14λi sin(π/3), a choice designed to minimize the
perturbing effects of the no flux boundary conditions on a

Figure 9. Standing waves in 20× 19 system,m ) 28.5 (ε ) 2.4 × 10-3). The vertical axis of each frame is the longer side of the rectangle.
Patterns: (a) rhombi; (b) simple stripes; (c) stripes-rhombi-hexagons with two dislocations; (d) stripes-rhombi-hexagons.

Figure 10. Stripes-rhombi-hexagons pattern in 20× 19 system,m
) 28.5 (ε ) 2.4 × 10-3).
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hexagonal structure. Figure 12 shows two runs form ) 28.53
(degree of supercriticalityε ) 0.0014). The rhombic pattern
shown in Figure 12a evolved from random initial conditions.

The second run was started from a superposition of three
sinusoidal waves whose wave vectors formed an equilateral
triangle, i.e., a perfectly fitted hexagonal structure, with one of
the wave vectors perpendicular to the longer side of the
rectangle. In this latter case, the orientation of the wave vectors
of the pattern remained unchanged for about 3000 time units.
However, the original hexagonal structure gradually evolved
into two systems of plane waves whose oscillation phases were
shifted byπ/2. The first system appeared as a set of stripes
with 12λhor ) Lhor ) 41.112, aligned along the longer boundary;
the second system formed a rhombic pattern. Eventually, the
evolution resulted in the stationary pattern shown in Figure 12b.

At one stage of the cycle, when one system of stripes was
vanishing and the other emerging, their superposition formed
hexagons. The entire sequence was as follows: stripes (S1)f
hexagonsf rhombi f hexagonsf stripes (S2). The system
of stripes S2 was shifted half a spatial period with respect to
the system S1. These oscillations persisted unchanged fromt
≈ 12 000 to the end of the run att ≈ 20 000 time units.

4. Stationary Patterns in Circular Systems.In search of
simple hexagonal structures, we also performed simulations for
a system with circular geometry, which, presumably, should
favor hexagons. We found both spatially regular and irregular
patterns.

We performed two sets of 10 simulations withm ) 28.5 (ε
) 2.4× 10-3) and different random initial conditions: one set
for a system of radiusR ) 10.0 space units and a second with
R ) 10.278) 3λi. The results are shown in Figure 13.

In the circular geometry, the symmetry of the patterns depends
strongly on the degree of supercriticality. Form ) 28.5 (ε )
2.4 × 10-3), most patterns possess rotational symmetry. In
almost all the cases the symmetry was a multiple of 3 (e.g.,
hexagonal patterns), as illustrated by Figure 13. In Figure 13c,
however, the C9 symmetry pattern occupying the major part of
the system coexists with the C4 pattern in the center. When the
size of the system is not a precise multiple of the intrinsic
wavelengthλi, the periphery of the domain lacks rotational
symmetry while the bulk of the system possesses it (Figure
13a,b).

For the higher degree of supercriticality,m ) 28.0 (ε ) 2 ×
10-2), even with the matched size of the system (R ) 3λi), we
were unable to obtain regular patterns. We have obtained time-
periodic sequences of irregular patterns consisting of spots and
stripes. These patterns remained spatially irregular as long as
the simulations proceeded (up to 50 000 time units).

V. Discussion

We have shown previously that standing waves are the only
stable patterns that emerge from the short wave instability at
low degrees of supercriticality and zero flux boundary conditions

Figure 11. Standing waves in 20× 19 system,m ) 28.0 (ε ) 2 × 10-2). Patterns: (a) stripes-rhombi; (b) modulated stripes; (c) stripes-
rhombi-hexagons; (d) stripes-squares.

Figure 12. Patterns near the onset of short-wave instability,m ) 28.53 (ε ) 1.4 × 10-3) in 41.112× 41.538 system: (a) rhombi evolving from
random initial conditions; (b) stripes-rhombi-hexagons evolving from hexagonal initial conditions.
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in one-dimensional systems.3 Here we have investigated what
types of standing waves occur in two-dimensional systems at
low degrees of supercriticality. We have found simple and
modulated stripes, squares, and rhombi. We have also seen
cycles that oscillate between instantaneous stripes and rhombic
patterns, and patterns consisting of sequences of stripes, rhombi,
and hexagons.

We were unable to obtain simple hexagonal patterns in
matched rectangular systems, even when we started from initial
conditions very close to the expected pattern. This finding stands
in contrast to results for two-dimensional patterns arising from
the aperiodic Turing instability in reaction-diffusion systems.
In the latter case, the basic patterns are hexagons and stripes,
while stable squares or rhombi have not been found.2,9

On the other hand, the single oscillatory cycle shown in Figure
10 displays all the basic patterns related to the aperiodic Turing
instability: stripes, hexagons, and inverted hexagons (honey-
comb), as well as rhombi and modulated stripes. It seems likely
that the short-wave instability can give rise to an even greater

variety of spatio-temporal patterns than the aperiodic Turing
and the long-wave oscillatory instabilities.

With random initial conditions, the frequency of occurrence
of various patterns should be proportional to relative areas of
their basins of attraction. In our simulations, in square systems
of smaller size at a low degree of supercriticality, the dominant
pattern is squares. As the degree of supercriticality and/or the
system size is increased, rhombic patterns become dominant,
and then modulated stripes occur most frequently. We note also
that we find a significant number of stable patterns that contain
defects or dislocations due to phase shifts between oscillations
in neighboring regions. Some of the patterns presented in this
paper have been studied earlier by Dionne et al. from the point
of view of their symmetry without considering their stability.10

In circular systems we find regular patterns with elements of
C6, C9, and C4 symmetry. All regular patterns consist of spots;
we have not found regular patterns containing stripe elements.

This paper presents only the first step in the study of standing
wave patterns in two-dimensional systems. The most crucial
test of the significance of our results lies in the experimental
search for the fascinating patterns that these simulations have
generated. We hope that modifications of the BZ and CIMA/
CDIMA chemical oscillators, which have yielded the majority
of known chemical patterns,11 will result in emergence of the
short-wave instability and the corresponding patterns. One can
estimate the expected scale of such patterns. The characteristic
wavelength of the patterns in our model is 3.43, and the period
of oscillations is about 0.62. The typical period of oscillation
in liquid-phase reactions is about 1 min. The scaling in eq 2
then gives the characteristic wavelength of the expected patterns
as about 1 mm.
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