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Time correlation functions describing the solvent relaxation around a molecule of coumarin-153 and a
benzophenone anion in acetonitrile are calculated using dynamical continuum theories of solvation with an
experimental dielectric functioa(w) including the resonance absorption region of the solvent. Apart from
the local model with a single molecular-shaped solute cavity of the solute studied previously, a new dynamic
local model with a double molecular-shaped cavity and a dynamic nonlocal theory with a spherical cavity are
presented, both of which introduce elements of solvent structure. It is shown that both local models, one- and
two-cavity, exhibit experimentally unobserved oscillations in the shorter time regiot ps, although the
experimental asymptote for> 1 ps for coumarin is obtained. The dynamics of the two-cavity model are not
seen to differ from those of the one-cavity model. The nonlocal dynamic theory is shown to be able to suppress
these oscillations, but the long-time asymptote differs markedly from that of the local theories. The nature of
this asymptote is studied analytically.

1. Introduction available TCF kinetic curves also includes short and intermediate

) ] time regions (10 fst<1 ps) for which, in theoretical calcula-
It was shown in recent theoretical papefshat an advanced  ions, an accurate description of the dielectric function in

continuum approach may be successfully used for studying time-jntermediate- and high-frequency regions'@1® » < 10*rad
dependent solvation phenomena. The key step in all continuumsfl) is required. As shown recenth?515the most effective way
treatments is to use the complex-valued solvent dielectric of jncorporating the dielectric function in this, the so-called
function €(w), a function of the angular frequenay, as a  resonance or far-infrared region (FIR)js by performing

phenomenological characteristic of solvent dynarfitThe straightforward numerical calculations using experimentally
corresponding dynamical equations prove to be a generalizationneasured data far(w).

of the static equilibrium equations of continuum solvation - . .
- . . ; The objective of the present work is to study systematically
theory, with the simple substitutiory—¢(w), whereeg is the S . . . .
L : the relative importance of the different ingredients in the
static dielectric constant. Therefore, advanced approaches can . . .
. L : . - “advanced continuum theories as they attempt to describe the
be classified by the level of sophistication used in their static .. . .
. . - .~ time dependence of solvent Stokes shifts. We consider separately
counterparts. In comparison to the earlier Born-like static

- . . . the role of the solute cavity shape and solvent molecular
solvation models with spherical solute cavittéspne may ) . . S
: ! o " - structure effects. The first effect of cavity shape is studied in
improve the theory by, first, considering cavities with a real

. ._terms of two modern advanced local theories. The simpler of
molecular shape and, second, by making allowance for spatial : . i
. . I these has been considered previotidhnd places the solute in
dispersion effects, bringing elements of the solvent molecular

. ! : a single cavity surrounding the solvent. The other local theory
structure into continuum theory. The former (cavity shape) effect .
was first studied with ellipsoid-shaped cavifiésand the attempts to model elements of solvent structure by placing the
" . solute within two surrounding caviti&s(more details below);
treatment was extended recently for cavities of arbitrary shéape. L .
- the layer between these cavities is said to correspond to the
The second (solvent molecular structure) effect was dlscussedﬁrst solvation shell
within the MSA810 and othet12 models and also by a : )
phenomenological nonlocal approd@tEach of these treatments The second effect due to solvent structure is developed from
used simple spherical approximations. Earlier studies were @ récent nonlocal electrostatic model, exp_I|C|tIy accounting for
mainly focused on the asymptotic long-time behavior of time the excluded volume of a soluté!°In the simplest version of
correlation functions (TCFs) and average decay characteristics? SPherical cavity, this second effect due to solvent molecular
extracted from measurements of time-dependent solvent Stokestructure is governed by the dimensionless paraniéea ratio

shifts67.11.1214The complete time domain of experimentally of the average size of the solvent (correlation lengtrand
solute (cavity radiug) particles. The local models correspond

- . . to the limiting casel/a — 0, and we obtain a hierarchy of
* E-mail: basil@cc.nifhi.ac.ru. . . .
T Laboratoire de Chemie Theique, Universitede Nancy |, B.P. 239, models: one-cavity local modet two-cavity local modet—
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The whole range of TCF time evolution is covered by using into two parts, two equations are obtained in two unknown
an accurate numerical representation of an experimental dielecfunctions, the real and imaginary parts of the total complex
tric function in the resonance frequency region. By combining surface charge density. It should be noted that the method
these techniques, a reliable conclusion concerning the generableveloped in ref 3 is completely equivalent to the time-
validity of continuum solvation models becomes available. We dependent BKO calculation, although its technical implementa-
shall learn that the double-cavity local model, developed for tion looks quite different.
calculating static nonequilibrium solvent effeétsgdoes not 2.2. Frequency-Resolved Cavity Model (FRCM).The
provide any dynamical effects differing from the simpler one- FRCM model’ is similar to the BKO model but differs by
cavity model. The nonlocal dynamical theory will, however, separating the inertialless (high-frequency) response of the
be seen to be capable of reducing oscillations, which are foundmedium from the inertial (low-frequency) one. The solute is
in the short-time kinetics of local calculaticrsut not observed surrounded by two surfaceS, and S, each of which is
in experiments; however, the model seems to predict a longerconstructed as a collection of spheres similar to the BKO model.

time scale than that suggested by local calculations. For the first cavity, contained within the internal surfegg
' the radii of the spheres are definedras= «rygw, wherex =
2. Methodology of Calculations 0.9 is a universal empirical factor, common for all solvents.
2.1. The Born—Kirkwood —Onsager (BKO) Model. This Here Fvaw IS the van der Waals radius of the p_artlcular atom.
method of computing static solvation effects is commonly The radiirz defining the external surfacg are given by

applied?® According to this model, the cavity for the solute is _ _
constructed as a union of interlocking spheres, each centered =1+ 0=0%gy+0 (2.5)
on an atom of the solute molecule. It is also known as the
polarizable continuum model (PCM).

The linear response approach relates the solute charge
distribution p to the response fiel@® via the expression

whered is another empirical constant, pertaining to the given
solvent (it correlates with the characteristic size of a solvent
molecule). Between the two surfaces the medium is modeled
by the inertialless high-frequency dielectric constantoutside
®=K o (2.1) of the outer cayity the medium is modeled by the static dielectric
constant,. This layer between the surfaces corresponds to the
whereK is a linear integral operator. In general, itis anonlocal first solvation shell. The FRCM scheme allows consistent
operator. Typically, an explicit representatiorkois in practice calculations of both equilibrium and nonequilibrium effegts,
unavailable; an approximation to it is provided by calculating which is impossible with the less flexible BKO scheffe.
a matrix representation defined on some limited basis of chargeCalculation of the electric field in this scheme amounts to
distributions pap (use of the double index is seen to be simultaneously solving two equations describing the surface
appropriate when a Cl treatment of the solute electronic structurecharge densities on the two cavities, namely(on the inner
is invoked). The definition for this matrix, known as the surface) and (on the outer).

reorganization matrix, In this paper, for the sake of simplicity in calculating solvation
dynamics, we apply to the FRCM model the assumption that
0= [ o.® the charge density on the outer surface is sufficiently small for
ac40) f Pan™ed its influence on the inner charge density to be neglettdthis
= fd3r Pk Pe (2.2) simplication would appear to be justified since the static

(w = 0) solvation energies calculated in this way agree

is taken from ref 2, with the sign given opposite to that of earlier sufficiently well (to within about 15%) with the exact static

publications?1-22Within the BKO (or PCM) model the response FRCM values. Using this approximation, the first equation,
field is given by describingo., may be separated from the second. It is then
identical to the ordinary BKO equation with dielectric constant
€» and so is solved using the BKO method mentioned above.

o(r) = f o’r (2.3) 0. then enters as a parameter into the second equation describing
o, which effectively becomes a BKO equation with scaled
(the integral being taken over the cavity surf&ewhereo is parameters. Similarly to the BKO case described above,
the surface charge density induced by the solute chares calculations of dynamics are performed by replacipgvith
determined by solving the following linear integral equation the complex numbes(w), thereby the equation in splits into
involving p: two equations describing the real and imaginary parts @ee

Appendix). Solving these equations proceeds in a similar way
— as for the BKO case.
o() = (1 ) {[Vp](r) * [(S+ 2o} (2.4) 2.3. Algorithm for Calculating the Response FunctionE-

. . (w) for Local Theories. The quantity we calculate is the inertial
wherer €S OperatorsV and S are defined explicitly in the partTin(w) of the reorganization matrik(ew) described in section
Appendix (hereS= S;;in eq A.2). 2.1 above. That isTin(w) = T(w) — T(w = ). For the purposes

As shown in ref 2, to calculate the-spectrum of the solvation  of this paper we considdr, to be a 2x 2 matrix based on the
energy, we need to determine the elements of the reorganizatiortwo charge distributions corresponding to the ground and first
matrix T(w), which can be derived in the same way as the excited electronic statespis = p1 and p2; = p2. More
elements of the static matriX(0) in eq 2.2, replacing the  complicated approaches will include other charge distributions

response fieldd with the complex quantityP(w), calculated in the basis set using a configuration interaction ideology, the
from eq 2.3 usings(w) instead ofc. The complex quantity  simplest case being a 8 3 matrix where the third charge
o(w) is calculated by replacing the dielectric constagitvith distribution is given by the transition charge density, but

the dielectric functione(w) in the BKO integral equation  this will not be required here. For each charge distribuppn
defining 0. When the resulting complex equation is separated we compute the corresponding polarization surface dewsity
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= o[ pi], for which the polarization potential is (see eq 2.3)

ai(r')

r— (2.6)

— 2 r
Dy(r) = [ dr
Note that since we are calculating the inertial reorganization
matrix here, we do not include the inertialless polarization
of the inner surface of the FRCM theory and it is to be
understood that in eq 2.6 we are referringste S,. This is the
FRCM counterpart of the BKO expression (2.3). We are thus
able to define the matriX(w) with elements (cf. eq 2.2)

T, = [opdr  ij=12 (2.7)
from which we deduce the inertial matrix by subtracting the
inertialless limit:

Tin,ij (w) = Tij(w) - Tij (w = ) (2.8)

For coumarin-153 we then define the complex endf@y)
= Ei(w) + iEx(w) to be the reorganization enerdyy(w)

E(0) = Ul®) = = 3T 14(®) + Ty 20) — T 1) -
Thai(®)) (29)
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ek, w) =€, + (g — €)A,(@)A(K) (2.14)
Note that eq 2.14 may be written as
ek, w) = €, + (e(w) — €,)AUK) (2.15)

and so we see once again that the dynamical calculation may
be considered as a simple substitutior @) for the dielectric
constante in the static calculation. In writing(k, @) in this

way, we neglect anlg dependence that could be assigned within
A, (w); incorporating them at the present time would make the
nonlocal problem intractable. We are, however, able to incor-
porate additionab dependence intd(k), as will be described
later, and so we havay(k) — Ak, w), which makes the
approach suggested by eq 2.14 quite universal.

We accept a one-mode Lorentzian model for spatial disper-
sion, for which an analytical expression for the solvation energy
is available'® Although modern molecular dynamics simulations
have demonstrated the existence of polegk corresponding
to oscillations in real space, it has been shown that their role is
suppressed by fluctuations in the cavity sizeA nonlocal
continuum theory has been developed that includes this effect,
ultimately obtaining a monotonic solvation energy as a function
of cavity radius. However, since this same result is obtained
more simply with the Lorentzian model, we will assume here
that the latter effectively incorporates the combined effect of
cavity fluctuations and poles in the dielectric function and may

This quantity can be considered as a solvation energy for the Pe employed for an empirical study of solvation effects. Spatial

charge distribution differencg, — p1.
For benzophenone we defifi€w) to be the inertial part of
the conventional ground-state solvation enet{w):

1_I—in,ll(w)

E@) = Ugl@) =5

(2.10)

E(w) measures the linear response of the solvent to the charge.paracteristic o

densityp and henceforth will be called the “response function”.

The TCFC(t) is expressed in terms &t), the inverse Fourier
transform ofE(w); this expression can be reduced to a formula
depending on the real pa(w)

Ey(w) sinwt
A

2 00
city=1- ;]; dw (2.11)
whereA is the energy changg&(w = 0) — E(w = ). A similar
expression depending on the imaginary @&ifw) also exists
(see Appendix A in ref 2), but eq 2.11 is more convenient in
practical numerical calculations since the real gaft) attains
its limits at high and low frequencies more quickly and so is
more reliable.
2.4. Nonlocal Theory.A nonlocal continuum theory has been

developed for practical calculations under the assumption of a

simple spherical ion, based on a simple analytical formula
for the solvation energd® A dynamical nonlocal calculation

is performed in this paper by making the substitution
€(k) — e(kw) in this formula (see below). Let us write the
simple dynamical functioa(w) (without spatial dispersion) and
the static nonlocal dielectric functiot{k) in the form

() =€+ (6 — €A, ()
(k) = €, + (6o — €a)AK)

(2.12)
(2.13)

Then a simple approximation to the full dielectric function
€(k, w) with both spatial and frequency dispersion may be given
by multiplying together the inertial parts of the functios(i®)
ande(k):

dispersion is therefore given by

1

AUK) = ——=

M= e
We obtain the response functi@fw) by substitutinge(w) for
€0, as already mentioned; also we may permit the correlation
length 1 to change, falling to zero at the high frequencies
«, Writing A(w). We calibrate the cavity radius
ap SO as to reproduce the solvation (or reorganization) energy
given by local calculations with a molecular-shaped cavity at
the static ¢ = 0) limit. The high-frequency nonlocal solvation
energy calculated using this radius is given by a Born-like
formula when we assumiw = «) = 0

2
€] 28,
and will in general differ from that given by the local theories
(with a molecular-shaped cavity(w) is given as the inertial
part of the nonlocal solvation enerdy,after removing the
inertialless partJ..:

(2.16)

(2.17)

1+ Je(w)le (coth@/i(w)) — Aw)la)
1+ Je(w)le,(coth@/A(w)) — A(w)la) + A(w)lay/e Je(w)

(2.18)

We make special note of the ratibda in this expression
(for w = 0). This ratio, comparing the average size of the solvent
particles to the solute, may be considered a measure of the
degree of nonlocality of the system. The local limit is obtained
wheni/a — 0. More attention will be paid to this ratio in the
Discussion.

3. Parametrization of the Dielectric Function

3.1. Definition of e(w). We make use of an experimentally
determine® complex dielectric functiore(w) for acetonitrile.
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Lower frequency microwave data were modeled by a single
Debye functiof with parameters, = 35.8,eM" = 3.51, and
7p = 3.37 ps. The corresponding Debye peak in the absorption
spectrum (imaginary part) lies at 1.5 ctn A resonance peak
in the absorption spectrum of acetonitrile at higher (FIR)
frequencies and located approximately at 69 thad been used
by Maroncelli by subtracting extrapolated microwave é&ata
from experimental FIR dat¥. The corresponding real part of
the resonance peak was calculated numerically using the
Kramers-Kronig relations. Thus the full dielectric function
€(w) was obtained by adding the microwave Debye function to
the FIR resonance data, yielding a static dielectric value of
€(w = 0) = 35.9 and a high-frequency constanteaf= 1.80,
in agreement with the usual estimatergf (for acetonitrile®
np = 1.34).

As was mentioned above, there is no generally accepted
formula for fitting the experimental data for dielectric dispersion

Parsons et al.
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Figure 1. Time correlation functionsC(t) for coumarin-153 in
acetonitrile. The calculated curves from both one-cavity (BKO) and
two-cavity (FRCM) local theories are compared with the experimental

in the resonance region. In most of the calculations presentedcrve c(t) for a point dipole in a spherical cavity is also given for
here we use the original numerical data for the resonance peakcomparison.

of ¢(w), as was similarly done in refs 1, 3, and 28. We also
attempted approximating th&w) in this region using several
analytical functions, the ideas of which were described in ref
29 (see discussion in section 5).

3.2. Definition of A(w). We accept a value of = 6.68 A
for the correlation length for acetonitrile, calibrated using
experimental solvation energies as in ref 19. In the local BKO
and FRCM theories the parameters relating to the size of the
solute, i.e., the cavity size and, in the FRCM theory, the distance
0 between the two surfaces, do not change with frequency. The
corresponding situation in the nonlocal theory is when the
solvent correlation lengtii(w) remains constanti(w) = 4.
However, it is more realistic to expect that there is no spatial
dispersion at high frequencies. A simple mddalllows 1(w)
to fall monotonically from the static value dfto zero:

A

1+ o’

Mw) = (3.1)

where 1f; characterizes the center of the frequency region in
which A(w) undergoes the transition frointo 0. Following the
methodology of ref 13, we gauge the valuerpfelative to the
longitudinal time constant, = 7pe./eg. FOr acetonitriler. =
0.169 ps. The corresponding frequency i$ 5.91 cnt?, lying
between the Debye and resonance peak$w). The values of

7; which we will consider are; = 7., 7./2, andr /4 as well as
the limiting case of constarit, t; = O.

4. Results

The response functioB(w) was calculated as outlined above,
and the desired TCF function numerically computed using eq
2.11. In contrast to our previous papere consider here only
the time-domain representation of the computed kinetics, since,

moment was equal to 5.8 D, compatible with the experimé&htal
value 6.55 D. Th&g — S transition causes a charge displace-
ment from the amino group to the coumarin ring system,
resulting in anS; dipole moment 13 D (PM3/CI calculations),

in accord with experiment&land AM1/CP-32data. The distance
between inner and outer spheres in the FRCM model was set
ato = 2.2 A so as to reproduce the reorganization enétgy

0.17 eV given by an exact static FRCM calculation (whére

= 1.8 A%).

The calculated TCF functions are compared with available
experimental data in Figure 1. It is noteworthy that the BKO
(one-cavity) and FRCM (two-cavity) time correlation functions
are essentially identical, even though the absolute values of the
static reorganization energies differ greatly (BKO, 0.49 eV;
FRCM, 0.17 eV). The TCF for a point dipole in a spherical
cavity of radiusa is also shown in Figure 1 for comparison
and is seen to be close to the other calculated curves. The
formula is

(@) — 1 (Aw)?

Blw)=- 2¢(w) +1 o

(4.1)

whereAu = 7.2 D, the difference between the dipole moments
in the ground and first excited states of coumarin-153,anrd

4.2 A, the spherical radius giving the same cavity volume for
coumarin-153 as that from the BKO calculations. These two
parameters are not in fact essential since they are canceled out
in C(t). We note that the short-time decay may be approximately
described with a Gaussian functid Contrary to experiment,
both approaches show damped oscillation in the region varying
from 0.1 to 1 ps. Comparison of the obtained TCFs with the
curves computed in previous papers for C-153 in acetonitrile,
see Figure 21 in Ref 5 and Figure 4 in ref 3 enables us to come

as mentioned above, there are no general formulas availableto the following conclusions (as mentioned above, the calcula-

for comparison that may fit the calculated valuesEg) in

the resonance region. Cet€ole or Davidsor-Cole models

of dielectric dispersion are usually presented as functions in
the frequency domain but seem to be available only for the
orientational regiondy < 102rad s, t > 1 ps).

4.1. TCF of Coumarin-153 in Acetonitrile. (BKO and
FRCM Treatments.) The gas-phase geometry of coumarin-
153 in the ground electronic state was found by standard
optimization procedures using the PM3 method. The geometry
of C-153 in the first excited singlet state was taken to be the
same as that of the unexcited molecule. The value of the dipole

tions of ref 3 are at a theoretical level almost identical to our
BKO calculations, the only difference being in the parametri-
zations):

1. Different methods of theoretical simulatiéf®f the short-
time and long-time (asymptotic) decay provide a similar
behavior in the TCFs.

2. Oscillations in the region from 0.1 to 1 ps appeared in all
calculations that explicitly took into account the resonance
absorption region ir(w).

The fact that the second effect is observed in all theoretical
treatments incorporating resonance may suggest that the local
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Figure 2. Time correlation function€(t) for a benzophenone anion  Figure 3. Time correlation functions for a benzophenone anion in
in acetonitrile. The calculated curves from both one-cavity (BKO) and acetonitrile, calculated using nonlocal theory. Calculations are made
two-cavity (FRCM) local theories are compared with calculations from using various estimates of the cavity radiagsee text) with fixed
nonlocal theory 4 = 6.68 A, a = 2.35 A) for various values of the  correlation lengthi; i.e., the nonlocality ratiol/a is systematically
nonlocal transition time; (see section 3.2). The curve resulting from  varied. The curve foi/a— « is calculated from eq 4.6. The limiting
the Born solvation energy for a point charge in a spherical cavity is Born curve g/a = 0 is also shown for comparison.

also given for comparison.

Another distinction between the local and nonlocal theories
theories used in these studies are not altogether adequate fois represented by the long-time asymptotic tails of the TCFs.
working in the resonance (and therefore short- and intermediate-In this region, corresponding to the low-frequency limit—> 0
time) region. in the frequency domain, the correlation length (3.1) attains its

4.2. TCF of a Benzophenone Anion in Acetonitrile.The constant asymptotic valuw) = 4 and the TCF behavior is
geometry of an benzophenone anion was taken to be the sameompletely determined by the ratida, characterizing the size
as that of the neutral molecule found by standard optimization difference between the solvent and solute particles. The differ-
procedures using the PM3 method. The value of the dihedral ence is well illustrated in Figure 2, where, for the same value
angle between the planes of benzene rings was taken to°be 30 for 1/a, the TCF asymptote becomes independent;ofthe
Its charge distribution was calculated within a standard quantum- quantity switchingl(w) from 4 to 0. On the other hand, in the
chemical BKO procedure based on a semiempirical PM3 Born approximation, the TCF is independent of the cavity radius.
schemé. The total solvation energy calculated by the BKO We can see from a comparison of the local BKO and Born
theory was—241 kJ mof’. The radius for the nonlocal curves in Figure 2 that the spherical cavity model works
calculation was calibrated to produce the same value, the resultsufficiently well for the present case of a multimodé&v)
being ap = 2.35 A. The corresponding inertialless solvation (contrary to the single-mode Debye case, where the effect of
energy for this radius is 131 kJ mot?, differing from the BKO the cavity shape is important). This leads us to believe that the

value of —102 kJ mot ™. same spherical approximation invoked in our nonlocal calcula-
The results from the local BKO and FRCM theories and from tions is more or less reliable.
nonlocal theory with various values of the quantiy(2.18) We study the effect of changing the ratiéa by applying

are presented in Figure 2. There is again no significant differencedifferent definitions of the ion radius. If we calibrageusing
between the local curves. The curve corresponding to the Bornthe inertial solvation energy, calibrating eq 2.18 for= 0 to
solvation energy is also given and is shown to be relatively Us— U, from the BKO calculations, then we obtain the smaller
close to the local curves. However, we see a clear difference invalue a,, = 1.52 A. If on the other hand we define radias
the TCF curves of the local and nonlocal theories. Accounting such that the spherical volume in the nonlocal model equals
for solvent structure enables the nonlocal theory to significantly the molecular volume of the complex cavity used in the BKO
smoothe the oscillations seen in the local BKO theory. This calculations Y = 223 A3), then we arrive at a larger valua,
indicates its importance in theoretically describing the shape = 3.76 A. The corresponding TCF curves are compared in
of the TCF function in the intermediate-time region, since no Figure 3 for purely nonlocal calculations;(= 0). We see a
oscillations are usually observed experiment&f{Note also clear gradation from a curve with minor oscillations to the local
that when we consider the various nonlocal curves correspondingBorn curve with noticeable oscillations. The gradual approach
to different values ofr;, (see eq 3.1), we find a natural to the local curve is seen in both the asymptote for latgerd
progression leading from the local BKO results with strong in the increasing amplitude in the oscillations. A curvedor
oscillations to the purel(w) = 4) nonlocal results with aimost 10 A is also given in Figure 3 to confirm this tendency, which
no oscillations. This observation is not difficult to explain: for shows that the contribution of the small-time resonance mode
small values ot; the transition ini(w) from A to O takes place is maximal in the limiting local case and falls as the degree of
at very high frequencies, away from region whe(e) has a nonlocality is increased. This tendency may be expressed
significant value, and so the solvent dynamics essentially quantitatively by fitting the TCF curve to a sum of two
behaves as in the pure nonlocal case. 7Asncreases, the  exponential functions:

transition inl(w) starts to touch the region of the peaks(w)

and so part of response functi@fw) starts to take on a local Cit)= Wlef'”1 + erft'rz 4.2)
character. Whenm is large enough, the nonlocal character of

the system is lost in the intermediate-time region and the TCF  (Three exponential functions may possibly be even more
behaves as a local-theory function, with corresponding strong accurate, but two are sufficient for the present argument.) This
oscillations. type of model will, of course, average out the oscillations.
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TABLE 1: Coefficients for a Two-Exponential Fit to the
Time Correlation Functions (Including the Solvent
Resonance Region) from Nonlocal Theory for Various
Values of A/a?

AMa Wi 71 (PS) Wa 72 (pS)
0 (Born) 0.9 0.07 0.1 0.8
0.7 0.75 0.09 0.25 0.9
1.8 0.55 0.10 0.45 1.12
2.8 0.48 0.11 0.52 1.32
4.4 0.42 0.11 0.58 1.52
0 0.31 0.16 0.67 2.34

aC(t) = wy exp(—t/r1) + w. exp(—t/tz). The calculations for the
limit A/a— c are made using eq 4.6. The limiting local born result is

Parsons et al.

it 1+ AMay/ege,
A)=1+—=[1+ Jeo) Olw? (4.7)
2 1+ AMay/e e

wherer,_is the longitudinal time constamt = tpeg/e... Formula

4.7 suggests that, within a first-order analysis, the nonlocal
dynamical functionA(w) can be described approximately by
two Debye functions of equal weighting:

0.5
-iot,

0.5
1-iwt,

A@) =1 + O[w? (4.8)

also shown for comparison. The time constants may be compared withand consequently the TCF will H&(t) ~ 0.5 exp¢-t/z.) + 0.5

the longitudinal and Debye time constants for acetonitrile= 0.169
ps andrp = 3.37 ps, respectively.

Results are presented in Table 1. Here we distinctly see that as

the nonlocal ratiol/a increases, the weight of the long-time

mode increases. The time constant of the short-time mode

remains mostly unchanged over all valuesd/at it is completely
dominant wheni/a = 0 but drops in significance as/a

exp(—t/zy). Heret, is the larger “nonlocal” time constant

1+ Aay/ege,,

T (4.9)
"1+ Maye e,

Th =

It follows that the slow time constant seen for the extreme
nonlocal limit in Figure 3 and Table 1 is, again to a first-order

increases. The time constant of the long-time mode, on the approximation, none other than the Debye constant:

contrary, increases with increasif, reaching a limiting value
whenl/a — o (see section 4.3 below).

4.3. Analysis of the Low-Frequency (Long-Time) Limit
of the Nonlocal Theory. The extreme nonlocal limit may be
analyzed more carefully by studying eq 2.18 analytically.
Although ultimately asi/a — o, the solvation energy will

lim 7,=

T
Aa—oo P

(4.10)

The difference between the values of the weights and time
constants of the two modes shown here from those given in
Table 1 is presumably due to the higher order terms and the

remain unchanggd_kinetically at the value of the inertialless fact that the figures in the table include the resonance region,
solvation energy? given by eq 2.17, we are nevertheless able pjike the asymptotic values given here. To follow the transition
to describe separately the dynamics as this limit is being reachedyg the local limit in a similar way, the Taylor expansion must

Here we are mainly interested in the long-time tail, i.e., low
frequencies; therefore we write in eq 2A@) = 1. Using the
limit coth x ~ 1/x for smallx, we find that the solvation energy
reduces in the extreme nonlocal limit to

2
lim  E(w)= —Q(i— L) 1 (4.3)
Ala—oo 2a\e., €(@)|1+ iayeje()
It is expedient to write this expression in the form
E(w) = EA(w) (4.4)

whereEy = E(w = 0) andA(w = 0) = 1. Although in the
nonlocal limiti/a— oo, Eg falls to zero, the dynamical function
A(w), which is given by the formula

1+ Aaye le

1+ M

1le,, — 1le(w)
lle, — 1le,

Alw) = (4.5)

€, le(w)

does not disappear. In the extreme nonlocal limit the réféo
cancels out and\(w) may be written as

e(w) — €, €

Ae) = (@)

p—y (4.6)

The corresponding TCF is shown in Figure 3 and its two-
exponent fit given in Table 1. The long-time tail may be studied
further by inserting a Debye function with relaxation timg

for e(w) (valid for smallw) into eq 4.5 and finding the Taylor
expansion:

be drawn from the full expression eq 2.18. This will clearly
yield the resultr, = 7, for the long-time decay kinetics when
AMa— 0; incidently, formula eq 4.9 also reproduces this result.
That is, the dynamics for our nonlocal spherical model reduces
to the single-exponential dynamics of the simplest dynamical
continuum theory. The nature of the nonlocal time constgnt
would appear to suggest that the Lorentzian nonlocal dielectric
function used here (eqgs 2.14 and 2.16), is consistent with the
Onsager “inverted snowball” pictuf describing orientational
relaxation only, in which solvation relaxation far from the ion
(“a” large) is characterized by and close to ion @’ small)

by 7p. It seems reasonable to expect that the more complex
kinetics found by considering the relaxation of solvation shells
independenti? could be obtained in continuum theory by using
more realistic models of the nonlocal dielectric functfén.

5. Discussion

Simple spherical continuum models predict monoexponential
TCF kinetics when the solvent model contains a single relaxation
mode (a Debye solverit}* This deficiency is removed by taking
into account nonspherical solute shapes; with such a modifica-
tion polyexponential kinetics may be seen even for a Debye
solvent}2370n the other hand, this obvious drawback of Born-
like solvation theories disappears when real multimode solvent
models are considered; in this case, which is intrinsically
polyexponential, local continuum calculations with both spheri-
cal and molecular-shaped solute models predict very similar
results. They all reproduce satisfactorily experimental poly-
exponential TCF kinetic curves provided accurate dielectric
function based on experimental measurements are introduced
as input dath®® (see also the present work).

We mention here that although for this paper we calculated
the time correlation function numerically, we did in fact also
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attempt approximating the calculated response fundgmn) Award No. RC1-202 of the U.S. Civilian Research and
with several analytical functions (cf. ref 29) for which inverse Development Foundation for the Independent States of the
Fourier transforms are known. The accuracy of this procedure Former Soviet Union (CRDF) and by the International Associa-
was found to be lower than the numerical inverse Fourier tion for the Promotion of Cooperation with Scientists from the
transform of egs 2.9 and 2.10, in the sense that the long-timeNew Independent States of the Former Soviet Union (project
asymptote in the TCF far > 1 ps significantly deviated from  INTAS-RFBR 95-0182). M.V.B. and M.V.V. also acknowledge
the experimental curve. However, the analytical models could financial support from the Russian Foundation for Basic
be useful for establishing the limiting behavior tor- 0, which Research (grant No. 96-03-32544 and No. 96-15-97465).

is reported to have a Gaussian sh&p®:3’ The E(w) curves
were found to be best modeled by a combination of Gaussian
functions, whose imaginary parts produced either a broad peak
(w exp[-13(w? — @?)]) or a narrow peak (expfr¥(w — ®)?] We consider two cavities bounded by the surfaSeénner
— exp[-7¥w + @)?) (the latter in the resonance region) and surface) ands, (outer surface). The dielectric function is
modified Debye functions of the type 1/((Liwt)(1 — i0wTw)),

Appendix: Approximate FRCM Equations with
Complex-Valued ¢(m)

T << 7 (in the orientational region). Each of these functions, 1 (insides)
whose inverse Fourier transform and hence TCF can be €(w) =1 € ' (betweerS, ands,)  (A.1)
calculated analytically, has the correct asymptotic behavior of €1(w) T iey(w) (outsideS,)

1l/w? as w — o, which corresponds to short-time Gaussian ] ] ) .
behavior in the TCF:C(t) = 1 — bt, t — 0 for some constant W€ may define a series of surface integral operarg, j =
b. Finally, we note also in this context that the narrow-peak 1+ 2), &cting on an arbitrary functidr), by

Gaussian function generates an oscillating TCF (the other two N 2, e

are monotonic). Therefore the fact, described below, that the ij(r) = fq dra(rr) f(r') res (A.2)
local BKO and FRCM theories produce an oscillating TCF

suggests that this particular peak is exaggerated by thesewvhere

theories. However, for the sake of an accurate description of

the TCF for the asymptote at> 1 ps, we have reported here alr,r) =
only the results from numerical transformations.

The situation looks more complicated when a nonlocal We also define the operatdt
solvation theory is invoked. For Debye solvents, a nonlocal
approach always yields polyexponential kinetics, even with V() = f o a(r, r)p(r') (A.4)
spherical solute models (which in fact are the only models
tractable in a nonlocal theory). This is seen from the results of Here p(r) is the solute charge density, contained in the first
the present work as well as from earlier MSA treatmént§, ~ cavity. If we then label the inner surface charge density.as
which are in fact a special case of nonlocal theory. When and the outer asy = o1 + ioz, we find that under the
working with real multimode dielectric functions, a significant @PProximation described in section 2.2 (neglecting the influence
discrepancy between local and nonlocal treatments still remains.Of the outer surface charge on the inner), the FRCM equdfions
First, the nonlocal approach is found to smoothe oscillations in "€duce to
the TCF curve in the intermediate time interval (0.19p$ < 1 1\ .~ .
1 ps). Such oscillations, not characteristic of experiments, appear e = 4—71(1 - e_)[VP + S0, +210,]  r<S§ (A5)
in all local calculations when a resonance mode is included in *
the dielectric function, no matter how sophisticated the treatment 5 g
of the solute shape. Second, local and nonlocal theories differ

0 1
an(r) Ir — r'|

(A.3)

significantly in describing the long-time exponential tails of the 1 €o | .~ N N
TCF curves. This observation, made in the present work, can 7~ 27\~ ™ (o) Vo + S0, + S0 +210]  1€S
be understood in terms of the basic nonlocal paraniééethe (A.6)

ratio of the average sizes of solvent and solute partidles<

0 in the local theories). However, our observations are made
only for the limited case of an ionic solute, for which
experimental tests are mostly unavailable at the present time.
Itis likely that solvent relaxation in the vicinity of dipolar solute 0, = i [(Vo(r) + §,0.) + (5, + 21)0,] — k(S5 + 271)0,
particles will not be so remarkably dependent on the solute size. (A7)
We are presently unable to judge the real importance of this . . . .

size effect, but the ambiguity could be resolved by further 02 = «[(Vp(r) + $,00.,) + (S, + 27)01] — 14(Sy, + 27)0,
theoretical studies of nonlocal dynamical effects for dipolar (A.8)
solutes. Systematic experimental measurements of TCFs for

solutes of varying size in the same solvent would also be where
relevant for this purpose.

By separating the real and imaginary parts of the latter equation,
we obtain two simultaneous equations for the real and imaginary
parts ofo for each value ofv:

1 €wf1
==|1- (A.9)
- AT (@) ()
Acknowledgment. The authors would like to thank Prof. € €2
M. Maroncelli for kindly providing thes(w) resonance data for 1 €€y
acetonitrile and the experimental data for the TCF of coumarin- k2= 1r 5 5
153 in acetonitrile. The research was made possible in part by (€)™ + ()




1178 J. Phys. Chem. A, Vol. 103, No. 9, 1999

References and Notes

(1) Hsu, C.-P.; Song, X.; Marcus, B.Phys. Chem. B997, 101, 2546.

(2) Basilevsky, M.; Parsons, D.; Vener, Nl.Chem. Physl998 108
1103.

(3) Song, X.; Chandler, DJ. Chem. Phys1998 108 2594.

(4) Ovchinnikov, A. A.; Ovchinnikova, M. YZh. Eksp. Teor. FiZ1969
62, 2583, in Russian.

(5) Horng, M.; Gardecki, J.; Papazyan, A.; Maroncelli, 8.Phys.
Chem.1995 99, 17311.

(6) van der Zwan, G.; Hynes, J. J. Phys. Chem1985 89, 4181.

(7) Bagchi, B.; Castner, E. W.; Fleming, G. R.Mol. Struct.1989
194 171.

(8) Wolynes, P. GJ. Chem. Phys1987 86, 5133.

(9) Rips, |.; Clafter, J.; Jortner, J. Chem. Phys1988 88, 3246.
(10) Rips, I.; Clafter, J.; Jortner, J. Chem. Physl1988 89, 4288.
(11) Bagchi, B.; Chandra, AAdv. Chem. Phys1991 80, 1.

(12) Rips, I. InUltrafast Reaction Dynamics and $eht EffectsGaudel,
Y., Rossky, P. J., Eds.; AIP Press: New York, 1994; pp-3344.

(13) Kornyshev, A.; Kuznetsov, A.; Phelps, D.; Weaver, MChem.
Phys.1989 91, 7159.

(14) Maroncelli, M.J. Mol. Lig. 1993 57, 1.

(15) Song, X.; Marcus, R]J. Chem. Phys1993 99, 7768.

(16) Boettcher, C.; Bordewijk, Plheory of electric polarization2nd
ed.; Elsevier: Amsterdam, 1978; Vol. 2.

(17) Basilevsky, M.; Rostov, I.; Newton, MChem. Phys1998 232
189.

Parsons et al.

(18) Basilevsky, M.; Parsons, . Chem. Phys1996 105 9734.

(19) Basilevsky, M.; Parsons, 0. Chem. Phys1998 108 9107.

(20) Tomasi, J.; Persico, MChem. Re. 1994 94, 2027.

(21) Basilevsky, M. V.; Chudinov, G. E2hem. Phys1991 157, 345.

(22) Basilevsky, M. V.; Chudinov, G. E.; Newton, M. @hem. Phys.
1994 179, 263.

(23) Newton, M.; Basilevsky, M.; Rostov, Chem. Phys1998 232
201.

(24) Basilevsky, M.; Chudinov, G.; Rostov, |.; Liu, Y.-P.; Newton, M.
J. Mol. Struct. (THEOCHEM)1996 371, 191.

(25) Basilevsky, M. and Parsons, D. Chem. Phys1998 108 9114.

(26) Firman, P.; Marchetti, A.; Xu, M.; Eyring, E.; Petrucci,B5Phys.
Chem.1991, 95, 7055.

(27) Arnold, K.; Yarwood, J.; Price, AMol. Phys.1983 48, 451.

(28) Song, X.; Chandler, D.; Marcus, R. Phys. Chem1996 100,
11954.

(29) Basilevsky, M.; Chudinov, Gl. Chem. Phys1995 103 1470.

(30) Moyland, C.J. Phys. Chem1994 98, 13513.

(31) Baumann, W.; Nagy, ZPure Appl. Chem1993 65, 1729.

(32) McCarthy, P.; Blanchard, G. Phys. Chem1993 97, 12205.

(33) Carter, E.; Hynes, J. Chem. Phys1991 94, 5961.

(34) Maroncelli, M.; Maclnnis, J.; Fleming, Gciencel989 243 1674.

(35) Onsager, LCan. J. Chem1977, 55, 1819.

(36) Bruehl, M.; Hynes, JJ. Phys. Chem1992 96, 4068.

(37) Smith, B.; Staib, A.; Hynes, £hem. Phys1993 176, 521.



