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Advanced Continuum Approaches for Treating Time Correlation Functions. The Role of
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Time correlation functions describing the solvent relaxation around a molecule of coumarin-153 and a
benzophenone anion in acetonitrile are calculated using dynamical continuum theories of solvation with an
experimental dielectric functionε(ω) including the resonance absorption region of the solvent. Apart from
the local model with a single molecular-shaped solute cavity of the solute studied previously, a new dynamic
local model with a double molecular-shaped cavity and a dynamic nonlocal theory with a spherical cavity are
presented, both of which introduce elements of solvent structure. It is shown that both local models, one- and
two-cavity, exhibit experimentally unobserved oscillations in the shorter time regiont < 1 ps, although the
experimental asymptote fort > 1 ps for coumarin is obtained. The dynamics of the two-cavity model are not
seen to differ from those of the one-cavity model. The nonlocal dynamic theory is shown to be able to suppress
these oscillations, but the long-time asymptote differs markedly from that of the local theories. The nature of
this asymptote is studied analytically.

1. Introduction

It was shown in recent theoretical papers1-3 that an advanced
continuum approach may be successfully used for studying time-
dependent solvation phenomena. The key step in all continuum
treatments is to use the complex-valued solvent dielectric
function ε(ω), a function of the angular frequencyω, as a
phenomenological characteristic of solvent dynamics.4,5 The
corresponding dynamical equations prove to be a generalization
of the static equilibrium equations of continuum solvation
theory, with the simple substitutionε0fε(ω), whereε0 is the
static dielectric constant. Therefore, advanced approaches can
be classified by the level of sophistication used in their static
counterparts. In comparison to the earlier Born-like static
solvation models with spherical solute cavities,5,6 one may
improve the theory by, first, considering cavities with a real
molecular shape and, second, by making allowance for spatial
dispersion effects, bringing elements of the solvent molecular
structure into continuum theory. The former (cavity shape) effect
was first studied with ellipsoid-shaped cavities1,7 and the
treatment was extended recently for cavities of arbitrary shape.2,3

The second (solvent molecular structure) effect was discussed
within the MSA8-10 and other11,12 models and also by a
phenomenological nonlocal approach.13 Each of these treatments
used simple spherical approximations. Earlier studies were
mainly focused on the asymptotic long-time behavior of time
correlation functions (TCFs) and average decay characteristics
extracted from measurements of time-dependent solvent Stokes
shifts.6,7,11,12,14The complete time domain of experimentally

available TCF kinetic curves also includes short and intermediate
time regions (10 fs<t<1 ps) for which, in theoretical calcula-
tions, an accurate description of the dielectric function in
intermediate- and high-frequency regions (1012 < ω < 1014 rad
s-1) is required. As shown recently,1,3,5,15the most effective way
of incorporating the dielectric function in this, the so-called
resonance or far-infrared region (FIR),16 is by performing
straightforward numerical calculations using experimentally
measured data forε(ω).

The objective of the present work is to study systematically
the relative importance of the different ingredients in the
advanced continuum theories as they attempt to describe the
time dependence of solvent Stokes shifts. We consider separately
the role of the solute cavity shape and solvent molecular
structure effects. The first effect of cavity shape is studied in
terms of two modern advanced local theories. The simpler of
these has been considered previously2,3 and places the solute in
a single cavity surrounding the solvent. The other local theory
attempts to model elements of solvent structure by placing the
solute within two surrounding cavities17 (more details below);
the layer between these cavities is said to correspond to the
first solvation shell.

The second effect due to solvent structure is developed from
a recent nonlocal electrostatic model, explicitly accounting for
the excluded volume of a solute.18,19 In the simplest version of
a spherical cavity, this second effect due to solvent molecular
structure is governed by the dimensionless parameterλ/a, a ratio
of the average size of the solvent (correlation lengthλ) and
solute (cavity radiusa) particles. The local models correspond
to the limiting caseλ/a f 0, and we obtain a hierarchy of
models: one-cavity local modelf two-cavity local modelf
nonlocal model.
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The whole range of TCF time evolution is covered by using
an accurate numerical representation of an experimental dielec-
tric function in the resonance frequency region. By combining
these techniques, a reliable conclusion concerning the general
validity of continuum solvation models becomes available. We
shall learn that the double-cavity local model, developed for
calculating static nonequilibrium solvent effects,17 does not
provide any dynamical effects differing from the simpler one-
cavity model. The nonlocal dynamical theory will, however,
be seen to be capable of reducing oscillations, which are found
in the short-time kinetics of local calculations3 but not observed
in experiments; however, the model seems to predict a longer
time scale than that suggested by local calculations.

2. Methodology of Calculations

2.1. The Born-Kirkwood -Onsager (BKO) Model. This
method of computing static solvation effects is commonly
applied.20 According to this model, the cavity for the solute is
constructed as a union of interlocking spheres, each centered
on an atom of the solute molecule. It is also known as the
polarizable continuum model (PCM).20

The linear response approach relates the solute charge
distributionF to the response fieldΦ via the expression

whereK̂ is a linear integral operator. In general, it is a nonlocal
operator. Typically, an explicit representation ofK̂ is in practice
unavailable; an approximation to it is provided by calculating
a matrix representation defined on some limited basis of charge
distributions Fab (use of the double index is seen to be
appropriate when a CI treatment of the solute electronic structure
is invoked). The definition for this matrix, known as the
reorganization matrix,

is taken from ref 2, with the sign given opposite to that of earlier
publications.21,22Within the BKO (or PCM) model the response
field is given by

(the integral being taken over the cavity surfaceS), whereσ is
the surface charge density induced by the solute chargeF. It is
determined by solving the following linear integral equation
involving F:

where r ∈S. OperatorsV̂ and Ŝ are defined explicitly in the
Appendix (hereŜ ≡ Ŝ11 in eq A.2).

As shown in ref 2, to calculate theω-spectrum of the solvation
energy, we need to determine the elements of the reorganization
matrix T(ω), which can be derived in the same way as the
elements of the static matrixT(0) in eq 2.2, replacing the
response fieldΦ with the complex quantityΦ(ω), calculated
from eq 2.3 usingσ(ω) instead ofσ. The complex quantity
σ(ω) is calculated by replacing the dielectric constantε0 with
the dielectric functionε(ω) in the BKO integral equation
defining σ. When the resulting complex equation is separated

into two parts, two equations are obtained in two unknown
functions, the real and imaginary parts of the total complex
surface charge density. It should be noted that the method
developed in ref 3 is completely equivalent to the time-
dependent BKO calculation, although its technical implementa-
tion looks quite different.

2.2. Frequency-Resolved Cavity Model (FRCM).The
FRCM model17 is similar to the BKO model but differs by
separating the inertialless (high-frequency) response of the
medium from the inertial (low-frequency) one. The solute is
surrounded by two surfacesS1 and S2, each of which is
constructed as a collection of spheres similar to the BKO model.
For the first cavity, contained within the internal surfaceS1,
the radii of the spheres are defined asr1 ) κrvdW, whereκ )
0.9 is a universal empirical factor, common for all solvents.
Here rvdW is the van der Waals radius of the particular atom.
The radii r2 defining the external surfaceS2 are given by

whereδ is another empirical constant, pertaining to the given
solvent (it correlates with the characteristic size of a solvent
molecule). Between the two surfaces the medium is modeled
by the inertialless high-frequency dielectric constantε∞, outside
of the outer cavity the medium is modeled by the static dielectric
constantε0. This layer between the surfaces corresponds to the
first solvation shell. The FRCM scheme allows consistent
calculations of both equilibrium and nonequilibrium effects,23

which is impossible with the less flexible BKO scheme.24

Calculation of the electric field in this scheme amounts to
simultaneously solving two equations describing the surface
charge densities on the two cavities, namelyσ∞ (on the inner
surface) andσ (on the outer).

In this paper, for the sake of simplicity in calculating solvation
dynamics, we apply to the FRCM model the assumption that
the charge density on the outer surface is sufficiently small for
its influence on the inner charge density to be neglected.17 This
simplication would appear to be justified since the static
(ω ) 0) solvation energies calculated in this way agree
sufficiently well (to within about 15%) with the exact static
FRCM values. Using this approximation, the first equation,
describingσ∞, may be separated from the second. It is then
identical to the ordinary BKO equation with dielectric constant
ε∞ and so is solved using the BKO method mentioned above.
σ∞ then enters as a parameter into the second equation describing
σ, which effectively becomes a BKO equation with scaled
parameters. Similarly to the BKO case described above,
calculations of dynamics are performed by replacingε0 with
the complex numberε(ω), thereby the equation inσ splits into
two equations describing the real and imaginary parts ofσ (see
Appendix). Solving these equations proceeds in a similar way
as for the BKO case.

2.3. Algorithm for Calculating the Response FunctionE-
(ω) for Local Theories. The quantity we calculate is the inertial
partTin(ω) of the reorganization matrixT(ω) described in section
2.1 above. That is,Tin(ω) ) T(ω) - T(ω ) ∞). For the purposes
of this paper we considerTin to be a 2× 2 matrix based on the
two charge distributions corresponding to the ground and first
excited electronic states,F11 ≡ F1 and F22 ≡ F2. More
complicated approaches will include other charge distributions
in the basis set using a configuration interaction ideology, the
simplest case being a 3× 3 matrix where the third charge
distribution is given by the transition charge densityF12, but
this will not be required here. For each charge distributionFi

we compute the corresponding polarization surface densityσi

Φ ) K̂F (2.1)

Tab,cd(0) ) ∫d3r FabΦcd

) ∫d3r FabK̂Fcd (2.2)

Φ(r) ) ∫S
d2r′

σ(r′)
|r - r′| (2.3)

σ(r) ) 1
4π(1 - 1

ε0
) {[V̂F](r) + [(Ŝ+ 2π)σ](r)} (2.4)

r2 ) r1 + δ ) 0.9rvdW + δ (2.5)
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) σ[Fi], for which the polarization potential is (see eq 2.3)

Note that since we are calculating the inertial reorganization
matrix here, we do not include the inertialless polarizationσ∞
of the inner surface of the FRCM theory and it is to be
understood that in eq 2.6 we are referring toS) S2. This is the
FRCM counterpart of the BKO expression (2.3). We are thus
able to define the matrixT(ω) with elements (cf. eq 2.2)

from which we deduce the inertial matrix by subtracting the
inertialless limit:

For coumarin-153 we then define the complex energyE(ω)
) E1(ω) + iE2(ω) to be the reorganization energyUr(ω)

This quantity can be considered as a solvation energy for the
charge distribution differenceF2 - F1.

For benzophenone we defineE(ω) to be the inertial part of
the conventional ground-state solvation energyUs(ω):

E(ω) measures the linear response of the solvent to the charge
densityF and henceforth will be called the “response function”.

The TCFC(t) is expressed in terms ofE(t), the inverse Fourier
transform ofE(ω); this expression can be reduced to a formula
depending on the real partE1(ω)2:

where∆ is the energy changeE(ω ) 0) - E(ω ) ∞). A similar
expression depending on the imaginary partE2(ω) also exists
(see Appendix A in ref 2), but eq 2.11 is more convenient in
practical numerical calculations since the real partE1(ω) attains
its limits at high and low frequencies more quickly and so is
more reliable.

2.4. Nonlocal Theory.A nonlocal continuum theory has been
developed for practical calculations under the assumption of a
simple spherical ion, based on a simple analytical formula
for the solvation energy.19 A dynamical nonlocal calculation
is performed in this paper by making the substitution
ε(k) f ε(k,ω) in this formula (see below). Let us write the
simple dynamical functionε(ω) (without spatial dispersion) and
the static nonlocal dielectric functionε(k) in the form

Then a simple approximation to the full dielectric function
ε(k, ω) with both spatial and frequency dispersion may be given
by multiplying together the inertial parts of the functionsε(ω)
andε(k):

Note that eq 2.14 may be written as

and so we see once again that the dynamical calculation may
be considered as a simple substitution ofε(ω) for the dielectric
constantε0 in the static calculation. In writingε(k, ω) in this
way, we neglect anyk dependence that could be assigned within
∆ω(ω); incorporating them at the present time would make the
nonlocal problem intractable. We are, however, able to incor-
porate additionalω dependence into∆k(k), as will be described
later, and so we have∆k(k) f ∆k(k, ω), which makes the
approach suggested by eq 2.14 quite universal.

We accept a one-mode Lorentzian model for spatial disper-
sion, for which an analytical expression for the solvation energy
is available.19 Although modern molecular dynamics simulations
have demonstrated the existence of poles inε(k), corresponding
to oscillations in real space, it has been shown that their role is
suppressed by fluctuations in the cavity size.25 A nonlocal
continuum theory has been developed that includes this effect,
ultimately obtaining a monotonic solvation energy as a function
of cavity radius. However, since this same result is obtained
more simply with the Lorentzian model, we will assume here
that the latter effectively incorporates the combined effect of
cavity fluctuations and poles in the dielectric function and may
be employed for an empirical study of solvation effects. Spatial
dispersion is therefore given by

We obtain the response functionE(ω) by substitutingε(ω) for
ε0, as already mentioned; also we may permit the correlation
length λ to change, falling to zero at the high frequencies
characteristic ofε∞, writing λ(ω). We calibrate the cavity radius
a0 so as to reproduce the solvation (or reorganization) energy
given by local calculations with a molecular-shaped cavity at
the static (ω ) 0) limit. The high-frequency nonlocal solvation
energy calculated using this radius is given by a Born-like
formula when we assumeλ(ω ) ∞) ) 0

and will in general differ from that given by the local theories
(with a molecular-shaped cavity).E(ω) is given as the inertial
part of the nonlocal solvation energy,19 after removing the
inertialless partU∞:

We make special note of the ratioλ/a in this expression
(for ω ) 0). This ratio, comparing the average size of the solvent
particles to the solute, may be considered a measure of the
degree of nonlocality of the system. The local limit is obtained
whenλ/a f 0. More attention will be paid to this ratio in the
Discussion.

3. Parametrization of the Dielectric Function

3.1. Definition of E(ω). We make use of an experimentally
determined5 complex dielectric functionε(ω) for acetonitrile.

Φi(r) ) ∫S
d2r′

σi(r′)
|r - r′| (2.6)

Tij ) ∫ΦiFj d3r i , j ) 1, 2 (2.7)

Tin,ij(ω) ) Tij(ω) - Tij(ω ) ∞) (2.8)

E(ω) ) Ur(ω) ) - 1
2
(Tin,11(ω) + Tin,22(ω) - Tin,12(ω) -

Tin,21(ω)) (2.9)

E(ω) ) Us,in(ω) ) 1
2
Tin,11(ω) (2.10)

C(t) ) 1 - 2
π∫0

∞
dω

E1(ω)

∆
sin ωt

ω
(2.11)

ε(ω) ) ε + (ε0 - ε)∆ω(ω) (2.12)

ε(k) ) ε∞ + (ε0 - ε∞)∆k(k) (2.13)

ε(k, ω) ) ε∞ + (ε0 - ε)∆ω(ω)∆k(k) (2.14)

ε(k, ω) ) ε∞ + (ε(ω) - ε∞)∆k(k) (2.15)

∆k(k) ) 1

1 + k2λ2
(2.16)

U∞ ) -(1 - 1
ε∞) Q2

2a0
(2.17)

E(ω) ) - Q2

2a ( 1
ε∞

- 1
ε(ω)) ×

1 + xε(ω)/ε∞(coth(a/λ(ω)) - λ(ω)/a)

1 + xε(ω)/ε∞(coth(a/λ(ω)) - λ(ω)/a) + λ(ω)/axε∞/ε(ω)
(2.18)
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Lower frequency microwave data were modeled by a single
Debye function5 with parametersε0 ) 35.8,ε∞

(MW) ) 3.51, and
τD ) 3.37 ps. The corresponding Debye peak in the absorption
spectrum (imaginary part) lies at 1.5 cm-1. A resonance peak
in the absorption spectrum of acetonitrile at higher (FIR)
frequencies and located approximately at 69 cm-1 had been used
by Maroncelli by subtracting extrapolated microwave data26

from experimental FIR data.27 The corresponding real part of
the resonance peak was calculated numerically using the
Kramers-Kronig relations. Thus the full dielectric function
ε(ω) was obtained by adding the microwave Debye function to
the FIR resonance data, yielding a static dielectric value of
ε(ω ) 0) ) 35.9 and a high-frequency constant ofε∞ ) 1.80,
in agreement with the usual estimate ofnD

2 (for acetonitrile,5

nD ) 1.34).
As was mentioned above, there is no generally accepted

formula for fitting the experimental data for dielectric dispersion
in the resonance region. In most of the calculations presented
here we use the original numerical data for the resonance peak
of ε(ω), as was similarly done in refs 1, 3, and 28. We also
attempted approximating theε(ω) in this region using several
analytical functions, the ideas of which were described in ref
29 (see discussion in section 5).

3.2. Definition of λ(ω). We accept a value ofλ ) 6.68 Å
for the correlation length for acetonitrile, calibrated using
experimental solvation energies as in ref 19. In the local BKO
and FRCM theories the parameters relating to the size of the
solute, i.e., the cavity size and, in the FRCM theory, the distance
δ between the two surfaces, do not change with frequency. The
corresponding situation in the nonlocal theory is when the
solvent correlation lengthλ(ω) remains constant:λ(ω) ) λ.
However, it is more realistic to expect that there is no spatial
dispersion at high frequencies. A simple model13 allows λ(ω)
to fall monotonically from the static value ofλ to zero:

where 1/τλ characterizes the center of the frequency region in
which λ(ω) undergoes the transition fromλ to 0. Following the
methodology of ref 13, we gauge the value ofτλ relative to the
longitudinal time constantτL ) τDε∞/ε0. For acetonitrile,τL )
0.169 ps. The corresponding frequency 1/τL is 5.91 cm-1, lying
between the Debye and resonance peaks ofε(ω). The values of
τλ which we will consider areτλ ) τL, τL/2, andτL/4 as well as
the limiting case of constantλ, τλ ) 0.

4. Results

The response functionE(ω) was calculated as outlined above,
and the desired TCF function numerically computed using eq
2.11. In contrast to our previous paper2 we consider here only
the time-domain representation of the computed kinetics, since,
as mentioned above, there are no general formulas available
for comparison that may fit the calculated values ofE(ω) in
the resonance region. Cole-Cole or Davidson-Cole models
of dielectric dispersion are usually presented as functions in
the frequency domain but seem to be available only for the
orientational region (ω < 1012 rad s-1, t > 1 ps).

4.1. TCF of Coumarin-153 in Acetonitrile. (BKO and
FRCM Treatments.) The gas-phase geometry of coumarin-
153 in the ground electronic state was found by standard
optimization procedures using the PM3 method. The geometry
of C-153 in the first excited singlet state was taken to be the
same as that of the unexcited molecule. The value of the dipole

moment was equal to 5.8 D, compatible with the experimental30

value 6.55 D. TheS0 f S1 transition causes a charge displace-
ment from the amino group to the coumarin ring system,
resulting in anS1 dipole moment 13 D (PM3/CI calculations),
in accord with experimental31 and AM1/CI5,32data. The distance
between inner and outer spheres in the FRCM model was set
at δ ) 2.2 Å so as to reproduce the reorganization energyUr )
0.17 eV given by an exact static FRCM calculation (whereδ
) 1.8 Å23).

The calculated TCF functions are compared with available
experimental data in Figure 1. It is noteworthy that the BKO
(one-cavity) and FRCM (two-cavity) time correlation functions
are essentially identical, even though the absolute values of the
static reorganization energies differ greatly (BKO, 0.49 eV;
FRCM, 0.17 eV). The TCF for a point dipole in a spherical
cavity of radiusa is also shown in Figure 1 for comparison
and is seen to be close to the other calculated curves. The
formula is

where∆µ ) 7.2 D, the difference between the dipole moments
in the ground and first excited states of coumarin-153, anda )
4.2 Å, the spherical radius giving the same cavity volume for
coumarin-153 as that from the BKO calculations. These two
parameters are not in fact essential since they are canceled out
in C(t). We note that the short-time decay may be approximately
described with a Gaussian function.5,33Contrary to experiment,
both approaches show damped oscillation in the region varying
from 0.1 to 1 ps. Comparison of the obtained TCFs with the
curves computed in previous papers for C-153 in acetonitrile,
see Figure 21 in Ref 5 and Figure 4 in ref 3 enables us to come
to the following conclusions (as mentioned above, the calcula-
tions of ref 3 are at a theoretical level almost identical to our
BKO calculations, the only difference being in the parametri-
zations):

1. Different methods of theoretical simulations3,5 of the short-
time and long-time (asymptotic) decay provide a similar
behavior in the TCFs.

2. Oscillations in the region from 0.1 to 1 ps appeared in all
calculations that explicitly took into account the resonance
absorption region inε(ω).

The fact that the second effect is observed in all theoretical
treatments incorporating resonance may suggest that the local

λ(ω) ) λ
1 + ω2τλ

2
(3.1)

Figure 1. Time correlation functionsC(t) for coumarin-153 in
acetonitrile. The calculated curves from both one-cavity (BKO) and
two-cavity (FRCM) local theories are compared with the experimental
curve.C(t) for a point dipole in a spherical cavity is also given for
comparison.

E(ω) ) -
ε(ω) - 1

2ε(ω) + 1

(∆µ)2

a3
(4.1)
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theories used in these studies are not altogether adequate for
working in the resonance (and therefore short- and intermediate-
time) region.

4.2. TCF of a Benzophenone Anion in Acetonitrile.The
geometry of an benzophenone anion was taken to be the same
as that of the neutral molecule found by standard optimization
procedures using the PM3 method. The value of the dihedral
angle between the planes of benzene rings was taken to be 30°.
Its charge distribution was calculated within a standard quantum-
chemical BKO procedure based on a semiempirical PM3
scheme.2 The total solvation energy calculated by the BKO
theory was -241 kJ mol-1. The radius for the nonlocal
calculation was calibrated to produce the same value, the result
being a0 ) 2.35 Å. The corresponding inertialless solvation
energy for this radius is-131 kJ mol-1, differing from the BKO
value of-102 kJ mol-1.

The results from the local BKO and FRCM theories and from
nonlocal theory with various values of the quantityτλ (2.18)
are presented in Figure 2. There is again no significant difference
between the local curves. The curve corresponding to the Born
solvation energy is also given and is shown to be relatively
close to the local curves. However, we see a clear difference in
the TCF curves of the local and nonlocal theories. Accounting
for solvent structure enables the nonlocal theory to significantly
smoothe the oscillations seen in the local BKO theory. This
indicates its importance in theoretically describing the shape
of the TCF function in the intermediate-time region, since no
oscillations are usually observed experimentally.5,34 Note also
that when we consider the various nonlocal curves corresponding
to different values ofτλ (see eq 3.1), we find a natural
progression leading from the local BKO results with strong
oscillations to the pure (λ(ω) ) λ) nonlocal results with almost
no oscillations. This observation is not difficult to explain: for
small values ofτλ the transition inλ(ω) from λ to 0 takes place
at very high frequencies, away from region whereε(ω) has a
significant value, and so the solvent dynamics essentially
behaves as in the pure nonlocal case. Asτλ increases, the
transition inλ(ω) starts to touch the region of the peaks inε(ω)
and so part of response functionE(ω) starts to take on a local
character. Whenτλ is large enough, the nonlocal character of
the system is lost in the intermediate-time region and the TCF
behaves as a local-theory function, with corresponding strong
oscillations.

Another distinction between the local and nonlocal theories
is represented by the long-time asymptotic tails of the TCFs.
In this region, corresponding to the low-frequency limitω f 0
in the frequency domain, the correlation length (3.1) attains its
constant asymptotic valueλ(ω) ) λ and the TCF behavior is
completely determined by the ratioλ/a, characterizing the size
difference between the solvent and solute particles. The differ-
ence is well illustrated in Figure 2, where, for the same value
for λ/a, the TCF asymptote becomes independent ofτλ, the
quantity switchingλ(ω) from λ to 0. On the other hand, in the
Born approximation, the TCF is independent of the cavity radius.
We can see from a comparison of the local BKO and Born
curves in Figure 2 that the spherical cavity model works
sufficiently well for the present case of a multimodeε(ω)
(contrary to the single-mode Debye case, where the effect of
the cavity shape is important). This leads us to believe that the
same spherical approximation invoked in our nonlocal calcula-
tions is more or less reliable.

We study the effect of changing the ratioλ/a by applying
different definitions of the ion radius. If we calibratea using
the inertial solvation energy, calibrating eq 2.18 forω ) 0 to
Us - U∞ from the BKO calculations, then we obtain the smaller
value ain ) 1.52 Å. If on the other hand we define radiusa
such that the spherical volume in the nonlocal model equals
the molecular volume of the complex cavity used in the BKO
calculations (V ) 223 Å3), then we arrive at a larger value,aV

) 3.76 Å. The corresponding TCF curves are compared in
Figure 3 for purely nonlocal calculations (τλ ) 0). We see a
clear gradation from a curve with minor oscillations to the local
Born curve with noticeable oscillations. The gradual approach
to the local curve is seen in both the asymptote for largert and
in the increasing amplitude in the oscillations. A curve fora )
10 Å is also given in Figure 3 to confirm this tendency, which
shows that the contribution of the small-time resonance mode
is maximal in the limiting local case and falls as the degree of
nonlocality is increased. This tendency may be expressed
quantitatively by fitting the TCF curve to a sum of two
exponential functions:

(Three exponential functions may possibly be even more
accurate, but two are sufficient for the present argument.) This
type of model will, of course, average out the oscillations.

Figure 2. Time correlation functionsC(t) for a benzophenone anion
in acetonitrile. The calculated curves from both one-cavity (BKO) and
two-cavity (FRCM) local theories are compared with calculations from
nonlocal theory (λ ) 6.68 Å, a ) 2.35 Å) for various values of the
nonlocal transition timeτλ (see section 3.2). The curve resulting from
the Born solvation energy for a point charge in a spherical cavity is
also given for comparison.

Figure 3. Time correlation functions for a benzophenone anion in
acetonitrile, calculated using nonlocal theory. Calculations are made
using various estimates of the cavity radiusa (see text) with fixed
correlation lengthλ; i.e., the nonlocality ratioλ/a is systematically
varied. The curve forλ/a f ∞ is calculated from eq 4.6. The limiting
Born curve (λ/a ) 0 is also shown for comparison.

C(t) ) w1e
-t/τ1 + w2e

-t/τ2 (4.2)
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Results are presented in Table 1. Here we distinctly see that as
the nonlocal ratioλ/a increases, the weight of the long-time
mode increases. The time constant of the short-time mode
remains mostly unchanged over all values ofλ/a; it is completely
dominant whenλ/a ) 0 but drops in significance asλ/a
increases. The time constant of the long-time mode, on the
contrary, increases with increasingλ/a, reaching a limiting value
whenλ/a f ∞ (see section 4.3 below).

4.3. Analysis of the Low-Frequency (Long-Time) Limit
of the Nonlocal Theory. The extreme nonlocal limit may be
analyzed more carefully by studying eq 2.18 analytically.
Although ultimately asλ/a f ∞, the solvation energy will
remain unchanged kinetically at the value of the inertialless
solvation energy,19 given by eq 2.17, we are nevertheless able
to describe separately the dynamics as this limit is being reached.
Here we are mainly interested in the long-time tail, i.e., low
frequencies; therefore we write in eq 2.18λ(ω) ) λ. Using the
limit coth x ≈ 1/x for smallx, we find that the solvation energy
reduces in the extreme nonlocal limit to

It is expedient to write this expression in the form

whereE0 ) E(ω ) 0) and∆(ω ) 0) ) 1. Although in the
nonlocal limitλ/a f ∞, E0 falls to zero, the dynamical function
∆(ω), which is given by the formula

does not disappear. In the extreme nonlocal limit the ratioλ/a
cancels out and∆(ω) may be written as

The corresponding TCF is shown in Figure 3 and its two-
exponent fit given in Table 1. The long-time tail may be studied
further by inserting a Debye function with relaxation timeτD

for ε(ω) (valid for smallω) into eq 4.5 and finding the Taylor
expansion:

whereτL is the longitudinal time constantτL ) τDε0/ε∞. Formula
4.7 suggests that, within a first-order analysis, the nonlocal
dynamical function∆(ω) can be described approximately by
two Debye functions of equal weighting:

and consequently the TCF will beC(t) ≈ 0.5 exp(-t/τL) + 0.5
exp(-t/τnl). Hereτnl is the larger “nonlocal” time constant

It follows that the slow time constant seen for the extreme
nonlocal limit in Figure 3 and Table 1 is, again to a first-order
approximation, none other than the Debye constant:

The difference between the values of the weights and time
constants of the two modes shown here from those given in
Table 1 is presumably due to the higher order terms and the
fact that the figures in the table include the resonance region,
unlike the asymptotic values given here. To follow the transition
to the local limit in a similar way, the Taylor expansion must
be drawn from the full expression eq 2.18. This will clearly
yield the resultτnl ) τL for the long-time decay kinetics when
λ/a f 0; incidently, formula eq 4.9 also reproduces this result.
That is, the dynamics for our nonlocal spherical model reduces
to the single-exponential dynamics of the simplest dynamical
continuum theory. The nature of the nonlocal time constantτnl

would appear to suggest that the Lorentzian nonlocal dielectric
function used here (eqs 2.14 and 2.16), is consistent with the
Onsager “inverted snowball” picture,35 describing orientational
relaxation only, in which solvation relaxation far from the ion
(“a” large) is characterized byτL and close to ion (“a” small)
by τD. It seems reasonable to expect that the more complex
kinetics found by considering the relaxation of solvation shells
independently12 could be obtained in continuum theory by using
more realistic models of the nonlocal dielectric function.25

5. Discussion

Simple spherical continuum models predict monoexponential
TCF kinetics when the solvent model contains a single relaxation
mode (a Debye solvent).5,14This deficiency is removed by taking
into account nonspherical solute shapes; with such a modifica-
tion polyexponential kinetics may be seen even for a Debye
solvent.1,2,3,7On the other hand, this obvious drawback of Born-
like solvation theories disappears when real multimode solvent
models are considered; in this case, which is intrinsically
polyexponential, local continuum calculations with both spheri-
cal and molecular-shaped solute models predict very similar
results. They all reproduce satisfactorily experimental poly-
exponential TCF kinetic curves provided accurate dielectric
function based on experimental measurements are introduced
as input data1,3,5 (see also the present work).

We mention here that although for this paper we calculated
the time correlation function numerically, we did in fact also

TABLE 1: Coefficients for a Two-Exponential Fit to the
Time Correlation Functions (Including the Solvent
Resonance Region) from Nonlocal Theory for Various
Values of λ/aa

λ/a w1 τ1 (ps) w2 τ2 (ps)

0 (Born) 0.9 0.07 0.1 0.8
0.7 0.75 0.09 0.25 0.9
1.8 0.55 0.10 0.45 1.12
2.8 0.48 0.11 0.52 1.32
4.4 0.42 0.11 0.58 1.52
∞ 0.31 0.16 0.67 2.34

a C(t) ) w1 exp(-t/τ1) + w2 exp(-t/τ2). The calculations for the
limit λ/a f ∞ are made using eq 4.6. The limiting local born result is
also shown for comparison. The time constants may be compared with
the longitudinal and Debye time constants for acetonitrile:τL ) 0.169
ps andτD ) 3.37 ps, respectively.

lim
λ/af∞

E(ω) ) - Q2

2a ( 1
ε∞

- 1
ε(ω)) 1

1 + λ/axε∞/ε(ω)
(4.3)

E(ω) ) E0∆(ω) (4.4)

∆(ω) ) (1/ε∞ - 1/ε(ω)

1/ε∞ - 1/ε0 )( 1 + λ/axε∞/ε0

1 + λ/axε∞/ε(ω)) (4.5)

∆(ω) )
ε(ω) - ε∞

ε0 - ε∞ x ε0

ε(ω)
(4.6)

∆(ω) ) 1 +
iωτL

2 (1 +
1 + λ/axε0/ε∞

1 + λ/axε∞ε0
) + O[ω2] (4.7)

∆(ω) ) 0.5
1 - iωτL

+ 0.5
1 - iωτnl

+ O[ω2] (4.8)

τnl ) τL

1 + λ/axε0/ε∞

1 + λ/axε∞/ε0

(4.9)

lim
λ/af∞

τnl ) τD (4.10)
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attempt approximating the calculated response functionE(ω)
with several analytical functions (cf. ref 29) for which inverse
Fourier transforms are known. The accuracy of this procedure
was found to be lower than the numerical inverse Fourier
transform of eqs 2.9 and 2.10, in the sense that the long-time
asymptote in the TCF fort > 1 ps significantly deviated from
the experimental curve. However, the analytical models could
be useful for establishing the limiting behavior fort f 0, which
is reported to have a Gaussian shape.33,36,37The E(ω) curves
were found to be best modeled by a combination of Gaussian
functions, whose imaginary parts produced either a broad peak
(ω exp[-τ2(ω2 - ωj 2)]) or a narrow peak (exp[-τ2(ω - ωj )2]
- exp[-τ2(ω + ωj )2]) (the latter in the resonance region) and
modified Debye functions of the type 1/((1- iωτ)(1 - iωτ∞)),
τ∞ , τ (in the orientational region). Each of these functions,
whose inverse Fourier transform and hence TCF can be
calculated analytically, has the correct asymptotic behavior of
1/ω2 as ω f ∞, which corresponds to short-time Gaussian
behavior in the TCF:C(t) ) 1 - bt2, t f 0 for some constant
b. Finally, we note also in this context that the narrow-peak
Gaussian function generates an oscillating TCF (the other two
are monotonic). Therefore the fact, described below, that the
local BKO and FRCM theories produce an oscillating TCF
suggests that this particular peak is exaggerated by these
theories. However, for the sake of an accurate description of
the TCF for the asymptote att > 1 ps, we have reported here
only the results from numerical transformations.

The situation looks more complicated when a nonlocal
solvation theory is invoked. For Debye solvents, a nonlocal
approach always yields polyexponential kinetics, even with
spherical solute models (which in fact are the only models
tractable in a nonlocal theory). This is seen from the results of
the present work as well as from earlier MSA treatments,8-10

which are in fact a special case of nonlocal theory. When
working with real multimode dielectric functions, a significant
discrepancy between local and nonlocal treatments still remains.
First, the nonlocal approach is found to smoothe oscillations in
the TCF curve in the intermediate time interval (0.1 ps< t <
1 ps). Such oscillations, not characteristic of experiments, appear
in all local calculations when a resonance mode is included in
the dielectric function, no matter how sophisticated the treatment
of the solute shape. Second, local and nonlocal theories differ
significantly in describing the long-time exponential tails of the
TCF curves. This observation, made in the present work, can
be understood in terms of the basic nonlocal parameterλ/a, the
ratio of the average sizes of solvent and solute particles (λ/a )
0 in the local theories). However, our observations are made
only for the limited case of an ionic solute, for which
experimental tests are mostly unavailable at the present time.
It is likely that solvent relaxation in the vicinity of dipolar solute
particles will not be so remarkably dependent on the solute size.
We are presently unable to judge the real importance of this
size effect, but the ambiguity could be resolved by further
theoretical studies of nonlocal dynamical effects for dipolar
solutes. Systematic experimental measurements of TCFs for
solutes of varying size in the same solvent would also be
relevant for this purpose.
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Appendix: Approximate FRCM Equations with
Complex-Valued E(ω)

We consider two cavities bounded by the surfacesS1 (inner
surface) andS2 (outer surface). The dielectric function is

We may define a series of surface integral operatorsŜij (i, j )
1, 2), acting on an arbitrary functionf(r), by

where

We also define the operatorV̂

Here F(r) is the solute charge density, contained in the first
cavity. If we then label the inner surface charge density asσ∞
and the outer asσ ) σ1 + iσ2, we find that under the
approximation described in section 2.2 (neglecting the influence
of the outer surface charge on the inner), the FRCM equations17

reduce to

and

By separating the real and imaginary parts of the latter equation,
we obtain two simultaneous equations for the real and imaginary
parts ofσ for each value ofω:

where

ε(ω) ) {1 (insideS1)
ε∞ (betweenS1 andS2)
ε1(ω) + iε2(ω) (outsideS2)

(A.1)

Ŝij f(r) ) ∫Ŝj
d2r′ a(r,r′) f(r′) r ∈ Si (A.2)

a(r, r′) ) ∂

∂n(r)
1

|r - r′| (A.3)

V̂ F(r) ) ∫ d3r′ a(r, r′)F(r′) (A.4)

σ∞ ) 1
4π(1 - 1

ε∞)[V̂F + Ŝ11σ∞ + 2πσ∞] r , S1 (A.5)

σ ) 1
4π(1 -

ε∞

ε(ω)) [V̂F + Ŝ21σ∞ + Ŝ22σ + 2πσ] r ∈ S2

(A.6)

σ1 ) κ1[(V̂F(r) + Ŝ21σ∞) + (Ŝ22 + 2π)σ1] - κ2(Ŝ22 + 2π)σ2

(A.7)

σ2 ) κ2[(V̂F(r) + Ŝ21σ∞) + (Ŝ22 + 2π)σ1] - κ1(Ŝ22 + 2π)σ2

(A.8)

κ1 ) 1
4π (1 -

ε∞ε1

(ε1)
2 + (ε2)

2) (A.9)

κ2 ) 1
4π ( ε∞ε2

(ε1)
2 + (ε2)

2)
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