J. Phys. Chem. A999,103,197—202 197

Monte Carlo Simulation of Error Propagation in the Determination of Binding Constants
from Rectangular Hyperbolae. 2. Effect of the Maximum-Response Range
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Many processes dictated by chemical equilibria can be described by rectangular hyperbolae. Fitting chemical
responses to rectangular hyperbolae also allows the binding constants for these equilibria to be estimated.
Unfortunately, the propagation of error through the different methods of estimating the binding constants is
not well understood. Monte Carlo simulations are used to assess the accuracy and precision of binding constants
estimated using a nonlinear regression method and three linear plotting methods. The effect of the difference
between the physical response of the uncomplexed substrate and the response of the-digastcht®mplex

(i.e., the maximum-response range) was demonstrated using errors typical for a capillary electrophoresis system.
It was shown that binding constant estimates obtained using nonlinear regression were more accurate and
more precise than estimates from when the other regression methods were used, especially when the maximum-
response range was small. The precision of the nonlinear regression method correlated well with the curvature
of the binding isotherm. To obtain a precise estimate for the binding constant, the maximum-response range
needed to be much larger (over 70 times larger for the conditions used in this experiment) than the error
present in individual data points.

Introduction The equilibrium constants and maximum-response ranges for

Rectangular hyperbolae have been used to describe man)}he equations listed in Table 1 are usually estimated by

physicochemical properties influenced by chemical equiltbria measuring the response over a range of ligand concentrations
including UV—vis absorptio?.7 NMR chemical shifts-13 followed by one of several regression procedures. Although a

Michaelis-Menten kinetic#-2! ion transport across mem- nonlinear regression can be used to solve the constants directly,
branes? pharmacokineti céH’G and even algal growth raté&2? eq 1 is often linearized, allowing the constants to be estimated

These studies are based on a certain physical response dictat f&om the slopes and intercepts of straight liddhe linearized

e . . ! .
by a 1:1 interaction between a substrate and a ligand. Equationsequat'ons have acquired different names in different research
all taking the form of rectangular hyperbolae, have been

fields but can be referred to most generally as double-reciprocal
) s .
developed independently in various research areas such agalso referred to as LineweaveBurk’ or Benes-Hildebrand

spectrophotometry, NMR, and MichaetiMenten kinetics to

plots),y-reciprocal, anc-reciprocal (also referred to as Eafie
describe the effect of the equilibrium (see Tablé i all cases, or Scat_charﬂ plots) methods. The linearizations of eq 1 are
the physical response is determined by two constants: theShown in Table 2. . .
equilibrium constant (either expressed as a binding or dissocia- . Although the nonlinear regression and gach of the thrge
tion constant) and the maximum-response range (representind".‘eanz"j‘t'on_S are based on t_he same equation, they often give
the difference between the response at zero and infinite Iigandd'ﬁerem estimates and confidence intervals for the constants
concentrations).

when applied to the same data $&t'> Linearizing the
Recently, it has been shown that in capillary electrophoresis rectangular hyperbola invalidates some of the assumptions made
(CE) analyte mobility in the presence of analygditive

in performing the least-squares regression analysis, including
interactions can be described accordingt#
(/"ep,AC - /"ep,A) KAC[C]

introducing error into the independent variable and transforming
the error in the data to a non-Gaussian distributidie data
spacing is also changed, which alters the weight on certain
1+ K [C] measurements. These pr_oblems can oﬁen bg overcome if the
AC data are weighted according to the functions listed in TaBle 2.
Because of the complexity of the regression calculations, it

(Vi — tep ) = ()

wherey’;pis the net electrophoretic mobility of the analytes

a correction factor which normalizeép to conditions where
[C] approaches zero, [C] is the concentration of the complex-
ation additive (analogous to [L]Kac is the formation constant

of the complex AC, anglep ac anduep,a are the electrophoretic
mobilities of the analyteadditive complex AC and the un-
complexed analyte A, respectively. Clearly, eq 1 is analogous
to the other equations listed in Table 1.

* To whom correspondence should be addressed. Tel: (604)822-0878.
Fax: (604)822-2847. E-mail: chen@chem.ubc.ca.

is difficult to show how error is propagated through the different
methods analytically. Dowd and Rig§dirst used Monte Carlo
analyses to compare the different calculation methods and their
estimates of the constants. Since then, a number of researchers
have used Monte Carlo analyses to simulate binding experi-
ments?*~53 |t has been shown that the nonlinear regression
method minimizes both the error and the bias in the estimates
of the constants. Unfortunately, the effect of experimental
parameters on the reliability of the estimated binding constants
has not been studied thoroughly. We have recently demonstrated
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TABLE 1: Equations and Maximum-Response Ranges for Absorbance, NMR, MichaelisMenten Kinetics and Capillary

Electrophoresis

technique equation maximum-response range
A— Sol(eg. — eg)K[L
absorbance ( bAS) = [ 0](1S_LF K[I_S]) 1 b[So](esL — €s)
(Os — OKIL]
NMR 0— 0y =—"""—— 0g — 0
(0709 = i (0= 09
L - VilS]
Michaelis-Menten kinetics v= m Vim
. . (u ACT H ,A)KAC[C]
capillary electrophoresis (uuéq - uep,A) =-7F 11 K:pc[c] (ttep.ac — Uepn)
TABLE 2: Equations Used in Capillary Electrophoresis and Variances in the Transformedy for the Different Calculation
Methods
calculation method equation oy?2
(Uep.ac ™ Hep,NKaclC]
. . A _ Hep, ep,
nonlinear regression (Videp = Hepp) = 11 K,C] 0,2
double-reciprocal 1 = 1 L + 1 O—yz
(VﬂeAp - ﬂep,A) (‘uep,AC - /uep,A)KAC [C] (/uep,AC - ‘uep.A) (V,uép - Meva)4
2 2
: [C] [C] 1 [Cl o,
y-reciprocal = + _—
(Vﬂép - /"ep,A) (Iuep,AC - /‘ep,A) (ﬂep,AC - Auep,A) KAC (Vﬂép — ‘“ep,A)A
. (Vitap — Hep.a) 1\
x-reciprocal % = _KAC(V/"eAp ~ Uepa) T Kacltepac ~ Hep) (KAC + ﬁ) UVZ

2 gy? is the variance of the transformer 0,2 is the variance im{uép — uep,n); the weight for each point is equal too}?.

26 -

studied. Nonlinear regression is compared with the three

2 ] linearizations of the binding isotherm. Terminology developed
for CE (eq 2) will be used because this is the primary research
interest of our group (i.e., analyte and additive are analogous
20 to substrate and ligand, respectively). Therefore, the constants
o and errors in the data are typical for CE. It should be emphasized
that although CE is used as an example in this paper the
equations are analogous to those used in many other research
1o areas (see Table 1), allowing the conclusions presented here to
be applied to complexation chemistry in general.
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Figure 1. Binding isotherms with different maximum-response ranges.

Methods

The constants used to draw the curves ldree 250 M™%; pepa =
0.000 25 cr*V*s%; and uepac = 0.000 25 @), 0.000 22 ©),
0.000 19 W), 0.000 16 ), 0.000 13 @), and 0.000 10 cfhV st

Monte Carlo simulations of a dynamic-complexation CE
experiment were performed using a Visual Basic macro in
Microsoft Excel 5.0 on a Pentium PC. The simulations were

(0). made assuming the followingiepa= —2.5 x 104 cn?-V-1-s%;
K = 250 M1; separation potentiak —30 kV; total capillary

the effect of the ligand concentration range on the accuracy andlength= 57 cm; length to the detecter 50 cm. The additive
precision of binding-constant estimates using Monte Carlo concentrations used to perform the simulations were 5, 23.75,
analyses$* 42.5, 61.25, and 80 mM which were shown in an earlier paper

Another concern is the effect of the maximum-response rangeto approximately cover the optimum concentration rangefor
on the reliability of the binding-constant estimate. As shown in = 250 M1.54 Simulations were made farep ac ranging from
Figure 1, if the maximum-response range is zero, the binding —1 x 104to —2.5 x 104 cm?V~1-s™1. Equation 1 was used
isotherm takes the shape of a straight line, making it impossible to calculate the true net analyte mobility at each additive
to estimate the binding constant. The specific constants thatconcentration. The random number generator in Excel 5.0 was
determine the maximum-response range in-is absorption, used to produce an experimental mobility according to a normal
NMR, Michaelis—-Menten kinetics, and CE are listed in Table distribution which had a mean equal to the true mobility and a
1. standard deviation of 8.7% 107 cm?V~1-s71 Two experi-

In this paper, the effect of the maximum-response range on mental mobilities were generated for each additive concentration.
the accuracy and precision estimated binding constants isFour experimental mobilities were generated for an additive
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Figure 2. Distributions of the binding constants estimated using the (A) double-reciprocay;r@&jprocal, (C)x-reciprocal, and (D) nonlinear
regression methods fofdp ac — tep.a) = 010 15x 1075 c?V~1-s71 The markers> andO represent the medians of the unweighted and weighted
methods, respectively. The dashed lines define the 95% ranges for the unweight@da(id weighted (- - -) methods.
concentration of 0 mM, again with a standard deviation of 8.75 of conditions. A narrow range of binding constants indicates
x 1077 cm?V~1s7L, to calculateuepa The experimental  that an experiment performed under those conditions is more
mobilities were then used to estimate the equilibrium constant likely to give an estimate that is close to the actual value of the
according to one of the four calculation methods. All regressions binding constant. As expected, the range of binding-constant
were made according to the least-squares varianoeariance estimates generally increased as the maximum-response range
method. This procedure was repeated 1000 times for each(i.e., uepac — wepn) decreased. However, there were some
calculation method at eaghyp ac A total of 23 values fopep ac differences in the results obtained from the different calculation
were tested, giving rise to over 2.25 million simulated measure- methods. The 95% ranges for tieeciprocal plots did not
ments, emphasizing the necessity of the computational approachncrease as drastically as with the other methods, but the results
used. were significantly biased when the maximum-response range
was small. Weighting narrowed the 95% range when the
Results and Discussion y-reciprocal plot was used but had little effect when the double
reciprocal orx-reciprocal plots were used. Because the error in
Distribution of Binding-Constant Estimates. Figure 2 each plata point was equal, the.re was no difference betweep the
shows the distributions of the binding constants estimated usingunwe'(‘ljhted and we|gh_ted nonlinear reogressmn methOdSi Figure
the nonlinear regression and the three linear '[ransformations.3 compares the magnitudes of the 95% ranges f_or the different
The markers represent the medians of the distributions. Medianscak.:ulatIon metho.ds. The ranges for the ”OT‘".”eaT’ dpuble-
were chosen to represent the central tendency of the distributions eciprocal, anpl w_e|ghte¢reC|procaI plots were similar, |_nd|cat-
because of their robustness and insensitivity to the grossly N9 that the binding constant should be estimated using one of
inaccurate estimates that sometimes occur when experimentdN€S€ methods. The unweightgeteciprocal plots gave the
are performed under nonideal conditions. The dashed linesidest 95% ranges. Narrow 95% ranges were achieved using
bound the range of the distribution that includes 95% of the XTeciprocal plots, but bias makes it an unsuitable method for
binding-constant estimates (i.e., the 95% range). Therefore, 2.50Stimating the binding constant when the maximum-response
of the binding-constant estimates were above the upper dashed@nge is small.
line, and 2.5% of the estimates were below the lower dashed Comparing the medians of the distributions to the true value
line. of the binding constant(= 250 M1 in this case) demonstrates
The 95% range of the estimated binding constants gives anthe accuracy of the different calculation methods. As shown in
indication as to the precision of the method under a certain setFigure 4, bias did become significant as the maximum-response
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concentration range on the precision of the binding-constant
estimates (i.e., the 95% range) could be explained by the amount
of curvature in the binding isotherPA.The difference in the
slope of the curve at the lowest and highest additive concentra-
tions gives a measure of the amount of curvature present in the
isotherm. The slope at any point on the isotherm is equal to the
derivative of eq 1 with respect to [C]:

400 —

300 —

2oo—J T\!
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J[C] (1+ Kac[C)?
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Clearly, the slope is influenced by the maximum-response range
as well as the binding constant and the additive concentration.
As shown in Figure 1, the amount of curvature in the binding
isotherm decreases as the maximum-response range decreases.
When the fraction of analyte complexed is high, the slope of
the isotherm approaches zero. When the fraction of analyte

complexed is low, the slope of the isotherm approaches

vug)
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Figure 3. 95% ranges of binding constants estimated using the double-
reciprocal §), weighted double-reciprocaldj, y-reciprocal Q),
weightedy-reciprocal §), x-reciprocal ), weightedx-reciprocal ¢<),

and nonlinear regression methods for (#ep.ac — #ep,n) = 0 to 15 x

105 cn?-VlsL

0o —

®3)

ep,AC ﬂep,A) Kac

Therefore, when data are collected over a large portion of the
isotherm, the difference in slope between the lowest and highest
additive concentrations is approximately

-100—1 K

-200 —

(4)

The difference in slope is almost linearly related to the
maximum-response range if data are collected over a substantial
portion of the binding isotherm.

Figure 5A shows the correlation between the reciprocal of
the difference in the slope and the relative 95% range of the
binding-constant estimates. The correlation is excellent up to a
relative 95% range of 1 (i.e., the 95% range is equal to 250
(><0), and nonlinear regression methods for (uepac — tep,n) = O tO M~1in this case). Above 1, the relative 95% ranges begin to
5 x 1075 cn-V—ts7L, increase faster than the reciprocal of the difference in the slope.
range decreased, especially when data were plotted usingFigure 5B compares the curve predicted from the correlation
x-reciprocal plots. Bias is troublesome because it cannot bein Figure 5A to the 95% ranges generated by the simulations.
eliminated through replicate measurements. Although the preci- The curve corresponds well to the data, indicating that the

Aslope~ (auep,AC - /“‘ep,A) Kac

Bias in K Estimates (M)

-300 —l
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Figure 4. Bias in the distribution of binding constants estimated using

the double-reciprocaly), weighted double-reciprocdl, y-reciprocal
(O), weightedy-reciprocal §), x-reciprocal £), weightedx-reciprocal

sion of the constants estimated usixgeciprocal plots was
good, the accuracy was not. In this simulatiemeciprocal plots
consistently gave the wrong value fiirwhen the maximum-

difference between the slopes at the lowest and highest additive
concentrations accurately describes the effect of the maximum-
response range on the precision of the binding-constant estimate.

response range was small. Bias was also present in the double- The magnitude of the maximum-response range necessary
reciprocal ang/-reciprocal plots whepep ac approachegep a. to make a precise estimate of the binding constant was much
When the maximum-response range was small, weighting in higher than expected. As can be seen in Figure 5B, for 95% of
the double-reciprocal angtreciprocal plots overcompensated the binding-constant estimates to be within 10% of the true value
the error, giving rise to a slightly positive bias. Overall, bias of the binding constant (i.e., 95% range50 M1 in this case),
was least significant when the nonlinear regression method was(uepac — tep,a) Must be 6.3x 1075 cn?-V~1s71 or higher.
used. The combination of higher accuracy and higher precision This is 72 times the standard deviation of the individual data
makes the nonlinear regression the most reliable method forpoints. Although the size of the maximum-response range
estimating the binding constant, especially when the maximum- required to achieve a certain level of precision will depend on
response range is low. This corresponds well with a previous other factors as well (e.g., number of data points, range of
paper, which demonstrated that the nonlinear regression methodadditive concentrations, data spacing, etc.), it is clear that the
makes more reliable binding-constant estimates when the maximum-response range must be significantly larger than the
additive concentrations are above or below the optimum réthge. error in the data points.
Because of the general availability of personal computers, there In binding experiments, the errors in the individual data points
does not seem to be any compelling reason to continue usingand the maximum-response range are linked, similar to the way
the linear transformations to estimate binding constants. Al- that the equilibrium constant is linked to the ligand concentration
though the linear transformations should not be used to estimaterange?* To make a reliable estimate of the binding constant,
the binding constant, they are still useful in determining if a the maximum-response range must be maximized, but this
1:1 equilibrium model accurately describes the dafa. cannot be done at the expense of the error in the data. Therefore,
Semiempirical Prediction of the 95% Rangeln an earlier experiments must be designed to both maximize the response
paper, we were able to show that the effect of the additive range and minimize the error in the data. An examination of
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