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Experimental Studies and Quantitative Modeling of Turing Patterns in the (Chlorine
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Experimental studies of the formation of Turing patterns in the (chlorine dioxide, iodine, malonic acid) reaction
are performed in a spatial open gel disk reactor where all the input species are fed onto one side by a continuous
stirred tank reactor. This setup is shown to fit the pool-chemical approximation used in most theoretical
approaches. Nonequilibrium phase diagrams are established as a function of concentrations in the input flows.
In agreement with theoretical predictions, the location of the transition from uniform steady states to Turing
patterns is found to be almost independent of the concentrations of the complexing agent which controls the
effective diffusion of activatory species. Extensive analytical and numerical calculations in two and three
dimensions are performed on the basis of the LengRébai—Epstein kinetic model and its two-variable
reduction. This particular experimental configuration is shown to minimize the problems encountered with
more commonly used versions of spatial open reactors. In standard conditions, the quantitative agreement
with the experiments is excellent in regard to the sketchiness of the model. Finally, we discuss the role of
boundary conditions and comment on problems they raise in the use of one-side-fed open spatial reactors.

1. Introduction Furthermore, to explain the observed Turing structures, Lengyel
] o ) ~and Epstein suggested that the necessary slower diffusivity of
Far from thermodynamic equilibrium, organized concentration the activator is obtained through a fast reversible immobilization
patterns can spontaneously develop in unstirred solutions of oy selective sites in the gel. The effective reduced diffusivity
reacting and diffusing chemical species, as predicted by Turing of jodide could be obtained by complexation of iodide by the
in 1952} Theoretical developmentoften in a biological  macromolecules of starch initially used as color indicator or by
context-show that these stationary concentration patterns he gel matrix itselt122 This skeletonized mechanism is

heavily rely both on competing activatory and inhibitory hereafter referred as the Lengy&pstein (or LE) model. Some
chemical mechanisms and on differences between the diffusiongf the predictions linked to the Lengyel and Epstein hypothesis
coefficients of specie:® In particular, in two-variable systems,  were qualitatively confirmed by Agladze et &.who used the
the activatory species must diffuse more slowly than the original CIMA reaction, and by Noszticzius et & .who used
inhibitory species. The clear-cut experimental observation of a the CDIMA version of the reaction.
chemical Turing pattern was only achieved in late 198®, However, the experiments were performed in open spatial
operating the chloriteiodide—malonic acid (CIMAY-8 reaction reactors made of a piece of gel where input species are fed by
in an open spatial reactor. This long awaited success triggeredgittysion of two complementary subsets of chemicals from two
a renewal of experimental* and theoretical work on Turing  5pnosite sides. In the most popular geometry presently in use,
structures (for an overview, see chaptersl® in ref 12). the reactor is made of a thin disk of gel fed onto the opposite
Most of the theoretical and numerical works are based on faces!® This introduces parameter gradients in the direction
formal chemical schemé$.2° However, some efforts to  orthogonal to the faces, leading to a continuous change of control
understand, at the chemical level, the mechanism of patternparameters. In these conditions, a pattern, breaking the planar
formation observed with the CIMA reaction have been initiated symmetry, eventually forms in regions where the values of these
by the Brandeis grouf: 2’ The CIMA reaction is one among  local parameters meet the conditions for a Turing instability,
the very few reactions which can exhibit transient oscillatory i.e., in a more or less thick stratum parallel to the disk f&8&%.
dynamics when performed in batch conditidnengyel, R&ai, There are several serious difficulties in modeling the formation
and Epsteiff2° have shown that when the reaction oscillates, of patterns in such devices. First of all, theory is much less
most of the initial chlorite and iodide ions have been consumed developed for systems with gradients than it is for homoge-
and that the major species are then chlorine dioxide, iodine, neously fed systems. Second, the input species concentrations
and malonic acid. Appropriate mixtures of the three latter speciesare only fixed on the boundaries and their gradients inside the
exhibit oscillations immediately upon mixing and later also gel are actually unknown. Finally, the structures are intrinsically
produced Turing patterns in an open spatial regdhese three-dimensional. In this respect, in the gel disk reactor, the
authors proposed a five-variable kinetic mechanidrareafter patterns are observed in a direction orthogonal to the faces, so
referred as the LengyeR&bai—Epstein (or LRE) modetwhich that the light absorption is averaged over the film thickness. If
accounts for the oscillatory behavior of batch mixtures of this the structured stratum is thicker than one wavelength, the
CDIMA reaction?® They also derived a two-variable version determination of the 3-D pattern geometry is not straightforward
of this mechanism. In this skeleton version, iodide and chlorite and specific arrangements must be u¥e8When the structure
play respectively the role of the activator and of the inhibitor. is confined within a monolayer by the gradient, it was shown
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that the patterns are similar to those of a genuine 2-D system

but that their stability and their selection can be significantly Ele de

modified3® This makes difficult a quantitative comparison Membrane 2 b CSTR

between the model predictions and the experimental observa- Outlet

tions. Note that Lengyel and Epstein observed transient Turing Gel .,

patterns and waves in a gradient-free unstirred batch solution R _ k)

of the CDIMA reaction in the presence of stafétowever, ; ‘\\ /\ -—

because of unavoidable parameter drifts, and critical slowing § ) -—

down phenomena, a clear determination of the bifurcation values \ « Light

are generally not possible in closed systems. § ;‘: < ouree
In this paper, we present a systematic study of Turing patterns Camera \ ] -—

and dynamical instabilities in a gradient-free reactidiffusion & , ) E-Dremixed

system which could be easily modeled. The main objective was Window > [~ L;— Inlet

to check quantitatively the assumptions and predictions of the Cu] \“‘\\\

LE model, especially concerning the effects of the complexing Turbine

agents on the Hopf and Turing bifurcations. In order to get Figure 1. One-side-fed gel disk reactor. Schematic representation of
experiments and theory in closer connection, we used an opena transversal section. Chemical patterns develop in the disk of gel. The
reactor that overcomes most of the above mentioned difficulties. CSTR controls the feed composition imposed on one side of the disk.
According to the work of Lengyel and Epstein, in the CDIMA

reaction, if no external gradients are imposed, the variations of chemical patterns. In such devices, soft hydrogels are used as
the input species concentrations are small on the distance of aeaction media to prevent the reacting solutions from convection.
wavelength or over a period of oscillation. If all the input In these hydrogels, small solvated molecules and ions diffuse
reactants are fed onto one side of a thin enough film of-gel  practically as in plain water.

i.e. the thickness is about one wavelength ortess expect A schematic representation of the reactor is given in Figure
the concentrations of these reactants to be almost constant int. It consists of a continuous stirred tank reactor (CSTR) and a
space and time all through the gel. Accordingly, the film should Very thin transparent disk of agarose gel (0.2 mm thick, 20 mm
be a good approximation of a 2-D system with homogeneous diameter), one face of which is in contact with the contents of

constraints. The price to pay is that reaction already proceedsthe CSTR. The opposite face is pressed against a planar,
in the reservoir. In order to exert a control on the boundary impermeable, solid back. Between the disk of gel and the CSTR,

conditions, this reservoir must be a continuous stirred tank an inorganic membrane (Anotec from Whatman with unidirec-
reactor (CSTR) with well-defined input flows. Then, the actual tional pore size 0.02m) rigidly maintains the gel. To reinforce

concentrations onto the feed-face are not those of the input flowsthe membrane and improve its adhesion with the disk of gel it
but result from the system dynamics. We shall see that this canis impregnated with a 8% agarose gel. Its main role is to cut
be easily taken into account. down the hydrodynamic turbulence which could distort the

In the spirit of an approach which has proved its efficiency patterns_ developing inside the disk. Moreover, it introduces a
in the study of oscillating reactions, we have used this setup to decoupling factor between the dynamics of the CSTR and that
establish the topology of nonequilibrium phase diagrains. of thrs gel dl_sk. This point WI.|| be discussed in section 4. The
These experimental diagrams and various properties of thedisk is obtained by cooling in a shape a hot solution of 2%
system will be analyzed together with those obtained by agarose (Fluka 05070) containing well-defined concentrations
numerical simulations of the LE model of the reaction. of poly(vinyl alcohol) (Sigma MW 9000). Poly(vinyl alcohol)

In section 2, we first describe the reactor and provide a brief (PVA) acts both as a color indicator of polyiodide ions and as
review of the reaction used in this work. We subsequently @ complexing agent governing the effective diffusivity of
present the LRE and the LE models of the reaction, our COMPplexed ions in particular the diffusivity of | a species
modeling strategy, and the analytical and numerical techniques.controlling the activatory process in the CDIMA reaction.

In section 3, we report in parallel the experimental observa- | "€ unusual toroidal shape of the CSTR was designed to
tions and the numerical predictions. In section 3.1, we establish Minimize the thickness of the colored fluid layer through which
the phase diagram for the homogeneous reaction in a csTR the observations of the gel are made and to produce a rapid

These and other results are used to assign appropriate values tH7iform renewal of the reacting solution immediately in contact
kinetic constants that were previously fixed more or less With the inorganic membrane. This renewal is obtained by a
arbitrarily in the literature. turbine which produces fast mixing and recirculation with a

In section 3.2-the core of the papetwe present an extensive ch%actgrsrs_}r:g time Iees thar; 2 S'f hed b f f
study of the phase diagrams in the 2-D limit and discuss the hi e i .és cergrnuousyé re r:as € )&C?F?]Stam hOWS. ol
role of the various parameters, in particular the role of the chiorine dioxide, lodine, and malonic acid. These chemica

concentration of the complexing agent solutions are set in three separated vessels, all containing 1.0
In section 4. we summarize and discrjss the results and draw’™ 102 M sulfuric acid. The malonic acid solution also contains
conclusions More precisely, we point out the limits of the a controlled concentration of PVA in order to avoid long term

different approximations and discuss the effects of the genuineloSses (.)f PVA 'from the disk and tq keep the CS.TR In an
boundary conditions when the two-dimensional hypothesis is appropriate stationary state_._AII _chemrcals, of a_nalytrcal purity,
dropped. The specific role of the interfacial region that links are used without further purification. Stock solutions of chlorine

the CSTR and the gel film is underlined. dio>ride are prepared frqm the reactierr of sodjum chlorite with
sodium peroxodisulfate in strongly acidic solutions. The gaseous
ClO; thus formed is carried away, with a stream of air, and
redisolved in a flask containing ice-cold distilled wat&iThe
2.1. Experimental Setup. Different geometries of open  concentrations of the stock solutions of G)Gtored in the dark
spatial gel reactors have been developed to study sustainedat 4°C, are checked every 2 days by iodometric titration. Equal

2. Experimental and Modeling Techniques
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flows coming from the three vessels are injected premixed by d[MA]
precision piston pumps into the CSTR through a three-way inlet Ta —T1+ DuaA[MA]
port. The residence time of the CSTR is= 480 s. All
experiments were performed at a temperature of€.5 0.5 ﬂ = 4+ Yr+or.—r. +D, A [,
°C with a fixed iodine feed concentrationJg = 3.0 x 10* dt 1oz T e T
M. d[ClO,]
A bright platinum electrode measures the redox potential in @ - et Deio,A[C10]
the CSTR and provides a qualitative characterization of states. d[s]
The evolution of the patterns in the gel is monitored by a black o —r,
and white CCD camera linked to a contrast-enhancing device
(Hamamatsu C2400). The images, stored on a VCR, are further dii _
analyzed by image processing. g T4t DAL
In the experimental section, the concentrations of the input d[ClO, ]
species, bracketed in the text by, ]correspond to the g 27 Ts + Deio,-Ar[CIO; ]
concentrations that these reactants would have after mixing in
the total inlet flow and prior to any reaction. The concentrations d[Sl;]
of the volatile species, chlorine dioxide and iodine, in the input T4 (4)
flows are corrected for the losses by diffusion through the Teflon
injection tubings. where the molecular diffusion terms have been introduced. Since

the complexing agent and the complex are large macromol-
of separated subsets of reactidhé243 Lengyel, Rbai, and e_cule_s, their diffusion in the gel is negligible and the respective
Eptein have shown that the main,dynamicallfeatur’es of the diffusion terms have been d_roppeo_l out. The foIIOW|_ng constants
; X are set to the values found in the literature and adjusted¢@t 4
CD_IMA reac_tlon cou_ld bezgaccounted by the following set of by Lengyel and EpteiRt2227 2944, = 6.2 x 10451, kyp =
stoichiometric equation®* 5x 1075 M, ko = 900 M1 571, kg, = 100 M2 572, kg, = 9.2
x 1055, Dya =0.4x 105cn?s %, D;,= 0.6 x 10 5¢cn?
_ - + s 1, Dcio, = 0.75x 105cn? s, D;- = 0.7 x 10 °cn? s 4,
MA +1,—~IMA +1 +H Dcio, = 0.75x 1075 cn? s~%. The values we used fdg, k-4,
- -1 anda will be discussed later.
Clo, +1 ClO, + 71 When the reaction is performed in a CSTR, the diffusion
ClO,” + 41" + 4H" — 21, + CI” + 2H,0 (1) terms must be replaced by flow terms of the fokaf[X]o —
[X]), where [X] is the concentration of species X in the reactor
andkg is the inverse of the residence time. In the followikg,
Here MA, I, ClO,, CIO;™, and I are the independent variables, Wil be fixed at the valuee = 2 x 10°s™%.
[H*] is considered as constant, and-Gind IMA are inert In agreement with experimental observations,] [and
products. To account for the fast reversible complexationrof | [C1O2"] undergo much larger changes in time and space than

and b, the following mass balance equation is introduced: the concentrations of the input SPecies. Lengyel and Epstein
have shown that, under these conditions, system (4) can be

reduced to a system of two normalized kinetic equafibfis*

ou_1f_ W
8T—O(a u 41 u2+Ar,u)

2.2. Kinetic Models.On the basis of various kinetic studies

S+1l,+ 1" =Sl @)

Here S represents the complexing sites forin our experi- 9 U
ments these sites are provided by the poly(vinyl alcohahd pel b(u - 2) + dAv (5)
Sl3~ is a symbolic species that holds for a series of different t 1+u

polyiodide complexes in fast equilibrium. As in ref 30, the rate

equations for egs 1 and 2 are ith
[] Kapll 2] _
. ki IMA][I ,] u= E v= (ak;[bTOZ])[Cloz ] d= DC,OZ,/Dl,
T T 1) .

_ a— 1{MA] I, _ kafld

r, = K[CIO, ][I 7] «/(_1k2[C|02] Ky + [1,] \/akz[CIOZ]
- ko[CIO, I[N ] k k,[CIO,]\V2
s =lCI0; 1 JH ] + =2 S 0=1+ISkll] T=kCIOJt ' = (—2 o ) r

(6)

wheretr andr' respectively rescale the time and space units.

Systems (4) and (5) are what we refer as the LRE and LE
In the absence of external feed and convection, the concentratiormodels. Before we proceed further, a few points that are often
changes are ruled by the system of equations overlooked deserve special comments.

Iy = KySIILII T =k 4[Sl5 ] (3)
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Parametent is a somewhat ad hoc constant. Experimental
studie4®42predict that the second term in rate lay(see eq 3)
is of the form ksp[CIO27][I2)/[I 7] over a large range of
concentrations. However, the validity of this simple rate law
cannot hold for very low [t] since it givesrz — o when [I]
— 0 whereas one obviously expecis— 0. Several authof4°
have introduced the constamtand replaced the original term
1/[17] given by Kern and Kim® by [I7]/(c. + [I7]9) in order to
restore coherence at this level. One can consideras a
cutoff concentration for [I]. Above this cutoff, the modified
rate law fits well the experimental data within the considered
range, but below this value, the inhibitory character of tesm
drops out as expected. This cutoff was generally fixed at low
reasonable but arbitrary values ¢ 10712—10"14). Although
these small changes could appear as a minor point, it occurs
that all essential quantities related to Turing patterns, such as ] 1 L
the critical values, the pattern amplitudes, etc., depend explicitly 10 15 20
ono. Actually, the switch between inhibitory and noninhibitory
regimes is one of t.he sources for the T.urllng p{;\ttern formation. Turing bifurcation;—, Hopf bifurcation at various values of At Ty,
These propgrﬂes impose severe restrictions in the use (?f theH0 hexagon patterns change to.Hat T stripe patterns become
LE model. First, the constant should not be chosen arbitrarily  sypcritical.
but in direct connection with experimental results. Second, the T T T
rate lawrs should not be used for f] < v/a. Beyond this
limit, the kinetic law should no longer be parametrized by
introducing a simple constant term. As a result, it is not possible
to describe quantitatively the formation of the patterns in systems
where concentration gradients of input species lead to vanishing
[17]in some regions of the system, as it is the case in the original
experiments with the CIMA reaction. Attempts to account for
this category of experiments should require a more involved
description of the kinetics that could possibly be derived from
the very detailed mechanism recently proposed by Lengyel et
al* The alternative is to perform the experiments in the absence
of strong gradients, keeping the input species concentrations in
a domain where the model is valid. We shall see that the use of
a one-side-fed reactor precisely meets these requirements and
allows for an appropriate use of the simple LE model.

In the absence of precise data on the actual concentration of . . )
complexing sites per mass unit of polymer, we have arbitrarily 0 9 10 11 12
setk_4 to unity, a value already chosen by Lengyel and Epstein a
and we have estimated that a concentration of complexing agentrigure 3. Pattern selection in the LengyeEpstein model. Key>—,
[S] = 1073 corresponds to 1 g/L of PVA; the constarts= Turing bifurcation;—, limits of stability of the different patterns. S:
ky/k_4 and a. were simultaneously adjusted to the values: uniform stationa_lry pattern. $1Ho hexagon patterns. HH, hexagon
1015 andK = 108 (i.e. ks = 10%) in order to fit at best a few ~ Patterns. B: stripe patterns.

selected experimental transition points (e.g. onset of oscillations ) ) N
or of Turing patterns) and oscillation periods. the next steps. They can be obtained from the linear stability

2.3. LE Model: Theoretical Predictions.Although the LE analysis and from the complicated expressions of the coefficients

model has become very popular, only a few analytical properties Of the nonlinear amplitude equations. The ratie: Dcio, /Di-

of this model are presently available in the literature. We have is a fixed quantity. When parametdiwas involved, we used

derived some important analytical results that were completed the experimental valuel = 1.07 reported in ref 27. The

by 2-D numerical simulations to understand the basic dynamical complexing agent is involved only through parameter

properties of this model. Acceptable experimental values are within the range & <
Close to onset, Hopf bifurcations, Turing bifurcations, and 1000. We usedb as the bifurcation parameter. The results are

pattern selection are generally studied in terms of amplitude gathered in diagrams drawn in the plaweb) and represented

equation&®“6that can be derived by multiple time and length in Figures 2 and 3.

scales analysi® Starting from these equations, commonly used |, Figure 2, we show the lines where the homogeneous

in nonlinear dynamics, one %Zggdetermine the selection of giationary state loses stability. The full line represents the locus
standard patterns close to o as it was done for the ¢ q pifurcation to a Turing structure given by

Brussellatol® or other models leading to Turing structufés.

In a two-dimensional space, these are hexagon and stripe
patterns. The amplitude equations for the LE model have been b, = 2(13512 — 4J/10aV25 + a2 + 125) (7
derived for 2-D systems with constant and uniform parameters Sa

by several author¥:%3 Here, we only report the results (as

explicitly expressed in ref 53) that are essential to understandwith the wavelength

Figure 2. Bifurcations of the LengyetEpstein model. Key:—
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[ T Tt
=21 25t a (8) R
2J/10a — 5v/25+ & ot .:.::::‘-: I
s_F_0_ =
The bifurcation poinbr and the wavelength. are independent a -:l:l:l:::‘:
of o. Initially shown by Lengyel and EpstefA this property is :-l :«l-:l:l:l-:l
in agreement with the extended theory of Pearson and Bfuno. .:.:.:.:- :‘.‘
These authors predict that, when the diffusion is controlled by -t-' .:.-.: "".II
formation of a non reactive immobilized complex, the Turing 5 T
bifurcation point does not depend on the concentration [S] of -
the complexing agent because, in this cassjmultaneously ?
renormalizes the reactive term and the diffusion term. Thin /
curves show the Hopf bifurcation for different valuesoofThe b
instability occurs at
3a° — 125
by, Ean (9)

with the period

2
5(38% — 125) c

Note that Turing and Hopf bifurcations both occur whien
decreases. Thus, at low values of [S], preciselydfor (26 +
8\/1_0)/&1 = 7.99, the Hopf bifurcation always precedes the
Turing bifurcation so that the system becomes oscillatory first. Figure 4. Typical Turing patterns in the LengyeEpstein model
Above this value, the Turing bifurcation occurs first within an (o =50): (a) H pattern,a = 8.8,b = 0.09; (b) stripe patterra = 10,
interval of parametea which rapidly increases with (accord- P = 0.16; (c) H: pattern,a = 12,b = 0.39.
ingly with [S]) and a stationary spatial pattern can form. should be considered. Moreover, for a point far from the
Additional information on pattern selection can be obtained bifurcation, the valué. to be used in the numerical tests differs
from the signs of the coefficients of the amplitude equations. with the choice of the bifurcation parameter (eagat constant
In the standard selection schefh¥1.515% stable hexagonal b orb at constana), so that the stability of the different patterns
pattern bifurcates first subcritically. A stripe pattern bifurcates cannot be determined unambiguously. To indicate that a stability
supercritically but is unstable. When the distance to the limit is no longer significant in this respect, it is terminated by
bifurcation point increases, the stripe pattern gains stability, an arrow in the diagram. Note the existence of reentrant
before the hexagonal pattern becomes unstable in turn. Thushexagon&¥-3¢when|b — by| increases.
the natural sequence is homogeneobistable (uniform/ 2.4. Computational Methods.In a preliminary stage, we
hexagons)hexagons-bistable (hexagons/stripesgtripes. The  have checked the basic hypothesis on which our experimental
extent of the subcritical region overwhich the hexagonal pattern and numerical approaches rely. To do so, we have first studied
and the homogeneous steady state are simultaneously stable ithe CSTR coupled with a linear one-dimensional reactor of
related to a second-order term and is usually very small. Therelength|, wherel = 0.2 mm corresponds the thickness of the
are two types of hexagons, referred to asHd H,, respectively  gel with the seven-variable LRE model (egs 4). The ratio of
when the maxima (Figure 4a) or the minima (Figure 4c) of the CSTR volumeV to the gel volumev is involved in the
amplitude form the hexagonal network. The nature of the exchange rate between the CSTR and the gel. It was fixed to
hexagons at the transition is determined by the sign of the the typical experimental valug/v = 200. The equations were
quadratic term in the amplitude equations. For the LE model, a integrated numerically by finite differences (coupled cells) with
change of sign occurs at poing @n Figure 2, at = a, = 5[(6 a fourth-order Rosenbrock time integratérThe first cell
+ \/2_1)/3]1’2 =~ 9.3908. Hexagons ¢are obtained whea < corresponds to the CSTR, taking into account the possible
an, and hexagons Hwhena > ay. At point Ty, the domain of feedback on the CSTR dynamics. The first cell inside the 1-D
hexagons vanishes and the stripes are stable right away. Anothereactor is diffusively coupled to the CSTR cell. No-flux
remarkable point is pointsgl{wherea = as =~ 13.8254). When boundary conditions are used on the opposite side. In this
a > a all patterns (hexagons and stripes) become subcritical configuration, we investigated the effect of the gel depth, in
so that the subcritical domain can become quite large. In this particular on the profile of the input species concentrations, to
region where localization phenomena are posstee con- check the homogeneity of these input species, and we computed
centration changes become very stiff. They form steep fronts their concentrations within the CSTR, as a function of the
that are almost frozen in time so that the patterns would not concentrations in the input flow. These computed values are
reorganize on realistic experimental times. Computed examplesprecisely those which have to be maintained at the CSJé&t
of the different patterns are presented in Figure 4. We have interface. Note that, due to the large value\df, one finds
established, by numerical simulation, the effective stability of that the reactions in the gel have practically no influence on
the different types of patterns with wavelendthin the vicinity the CSTR dynamics. On the contrary, if the CSTR contents
of point Tp. The results are gathered in Figure 3. Note that, far enters into an oscillatory state, it normally forces oscillations
from the transition, the sideband of unstable wavelength in the gel. Two typical examples of the concentration profiles
increases rapidly so that the selection of patterns with 1. of all species, in a regime for which computed Turing patterns
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R T T T T T ] To establish the phase diagrams that constitute the core of
) i ; . this paper, we assumed that the gel is thin enough to be
‘?o : ] considered as a two-dimensional system. Since the feedback
= 1Ff - 1 effects on the CSTR of the reactions taking place in the gel are
5 """"""""""" negligible, we used the concentrations that the input species
= : 1 would have inside an uncoupled CSTR to assign the actual
(1) SN I TR parameter values, d, ando inside the gel. Remember that these
N ML ILAMAE B I concentrations are different from those in the flow: their
:ﬁ ! ] asymptotic values were computed in the (uncoupled) CSTR
Y L R S M S almost instantaneously using the LRE model. Thereafter, the
% E bifurcation lines can be determined by checking the parameter
= L . set against eqs 7 and 9. This procedure drastically reduces the
= A p amount of necessary computations. The general features of the
1)) SIS NP SPEAFITE WP 2-D patterns were determined by solving numerically eqs 5 on
~ ST a square domain with periodic boundary conditions for a large
".’z ' set of input flows covering the experimental range. The
S e integration was achieved with an implicit oeldven hopscotch
z . method with step contrdf, adapted to the case of nonlinear
S 1 reactions.’ To compute the pool chemical parameters, one could
B S ] have used the whole coupled system CSTRl rather than the
0 values in the CSTR alone and taken the input species values at
6 r 1 another point in the gel. Such computations, using the medium
’:i 4 point of the 1-D reactor, provided identical resiftsThis
s - 1 supports the validity of the simple and efficient approach
X ! presented here.
) 21 . The problems related to the possible tridimensional organiza-
= [ ] tion of the structure in the depth of the gel and the role of the
(1} PP S SN T " : )
3 boundary conditions onto the feeding face when the assumption
—~ ‘ 1 of a bidimensional system is relaxed will be discussed in section
7’ P3| SRR S . ] 4.
s ]
= 4 f ) 3. Results
- N > . . .
= L ] The CSTR dynamics and the patterns in the disk of gel were
e s — simultaneously monitored. However, to make easier the pre-
o BT : : L
= [ ; ] sentation of the results, we shall at first separate the description
‘1’0 1.0 /_\\_//_- of the homogeneous dynamics of the CSTR from that of the
S T X ] spatial structures observed in the disk. Whereas the CSTR
= L~ N ] dynamics does not depend much on the gel dynamics, the
9‘:’ 05 - s reverse is not true and intricated spatial phenomena can occur
S, 0 o] in the disk of gel when the contents of the CSTR oscillate.
2 _.' — ___ —— ] 3.1. CSTR Dynamics.Beside temperature, flow rate, and
s o N ] sufuric acid concentration, the iodine feed concentration was
"I’o i > 3 kept constant during all the experiments.
21 . \\ ] Depending on the composition of the feed-stream, we can
— : N k qualitatively distinguish three states, identified by their dynamics
5 2 / ] and the Pt-electrode potential value: a high-potenti2q0
I 1} SO TP nrorerwel S mV) steady state, an oscillatory state, and a low-potentiaDQ
0 0.1 0.2 mV) steady state. Different sections of the phase diagram of
x (mm) the CSTR were explored. Figure 6 exhibits the limits of the
Figure 5. Numerical simulations of 1-D concentration profiles in the ~ 0SCillatory state domain in the ([M#4] [CIO]o) plane, in the
depth of the gel (LRE model). The CSTR is locateckat 0. Fixed absence of complexing agent. To emphasize the quenching effect
parameters: [3]= 4.5 x 103 M, [I2]o =3 x 10* M; —, [MA]o = of [PVA], on the oscillatory dynamics, a planar section ([MA]
2 x 103 M, [ClOJo = 2.3 x 103 M; ---, [MA]o =1 x 103 M,

[PVA]q)) for a relatively low value of [ CIQ]o is also provided
(Figure 7). The region of oscillations is located between the
form, are reported in Figure 5. We can see that the concentra-two steady-state regions (high or low potential). However, at
tions of the input species [MA], [CI@, [I2], and [S] can be low [ClO4]o (Figure 6) and at high [PVA](Figure 7) the domain
considered as practically constant inside the gel. The sameof oscillation closes up and a smooth transition between the
conclusions hold for temporal changes during the oscillating two qualitatively different steady states is obtained.

regime. Thus, we confirm both the validity of the approxima- Phase diagrams computed with the seven-variable model
tions in the LE model and the absence of relevant concentrationincluding flow terms and our choise of adjustable kinetic
gradients of input species in the gel. Therefore we can use aparameters are also reported in Figures 6 and 7. The general
“pool chemical” approximation and the simple and analytically features are in very good agreement with the experimental
tractable LE model (egs 5) in place of the seven-variable LRE observations. The model predicts a subcritical Hopf bifurcation
model to perform computations in higher dimensionalities. at low [MA], and, at high [MA}, a saddle-loop bifurcation

[C|02]o = 0.68 x 103 M.
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Figure 6. Planar section ([MA], [CIOz]o) of the phase diagram of the gy herimentally from 5< 104 M up to the Hopf bifurcation (from left
CSTR at [PVAp = 0. All other parameters are given in the text. 4 right). Key: —, Turing bifurcation line (For pointd, and Ts, see
Symbols correspond to experimental statesgtationary;®, oscilla- Figure 2);—, paths for [CIQ]o = 2.3 x 10-3 M (path 1), [CIQ]o =

tory). Lines are the computed limits-( limit of oscillations - - -, limit 1.2 % 103 M (path 2). [CIOl, = 0.7 x 10-3 M (path 3
of bistability between stationary state and oscillations). e (path 2). [CIQo X (path 3).

Note that this upper oscillatory state limit shifts to lower [PYA]

when [CIQ)]o is lowered.
To evaluate experimentally the contribution of flow terms to
10§ 3 the oscillatory dynamics, the effect of interrupting the feed was
i i RN ‘i 2“ ] examined. In general, the critical values of [Mydfter which

RN ;r‘f. . oscillations immediately start are advanced by less than 10%

= 1 3 when the flow is stopped. The oscillations then persist for at
g 88 boctms a ] least 5 min. However, very often, the period increases by about

= RNV <54 ] 50% while the electropotential amplitude of oscillation de-
) 27 creases. This infers that in the region of constraint we explored,

the “instantaneous” dynamics inside the CSTR does not
dramatically depend on flow terms and that there is a fair chance
that the homogeneous dynamics of the disk of gel should follow
closely that of the CSTR. This agrees with the test numerical

1 calculations previously presented in section 2.4 (Figure 5) that
[MA)o(107°N) simulate the behavior in the thickness of the disk.
Figure 7. Planar section ([MAJ, [CIO;]o) of the phase diagram of the 3.2. Phase Diagrams of Patterns in the Disk of Gellhe
CSTR at [CIQ]o = 1 x 10~ M. All other parameters are given in the  different regions of stationary and nonstationary spatial patterns
tbQX:- bE_XDebfiTental ob_:,etr_vationsz_:,tunifodrm S_tlflsltitQ(n’ary SPﬁlt?A, breaking the boundary feed symmetry of the disk of gel were
ISstaplil etween a stationary state anda oscillatl scllator P
state;—,t)e/xperimental limit of os)(/:illatory domain (estimztgd from t%ese observed over a wide range of values of [MAICIOz]o, and

[PVA]o. The results are gathered in different planar sections of
the phase diagram. Before we discuss the contents of these
sections, a few preleminary remarks are necessary.
associated with a narrow region of bistability between a steady  'he diagrams were established step by step using (\a4]
state and an oscillatory state (Figure 6). At low [MAho the bifurcation parameter. From each set of experimental input
hysteresis is experimentally observed between the oscillatory lOW concentrations, one can compute the concentrations in the
state and the steady state. This was expected since, in the modefFSTR, from which are deduced, according to eq 6, the

the width of the subcritical domain is of the order of the percent Parametersg b) of the LE model used in the numerical
and thus would fall out of our experimental accuracy. simulations. To enlighten the comparison between the experi-

. . L mental and numerical results, we have represented (Figure 8
At the other limit of the oscillatory domain, in the absence P (Fig )

. . ) . the paths in theg, b) parameter space corresponding to the
of PVA (Figure 6), no hysteresis associated with a saddle-loop changes of [MA} performed in experiments for three typical
bifurcation is readily observed in experiments. However, the

d . | his limit of the oh di . ; values of [CIQ]o (high, medium, and low). The Turing
ynamics close to this limit of the phase diagram Is consistent i, cation line is represented while the Hopf bifurcation lines

with what one would expect in the vicinity of such a bifurca- 56 1ot since they depend @nwhich continuously changes
tion: oscillations exhibit large diverging periods and suddenly ;. the malonic acid concentration.
stop Witr_l fi_nite amplitude. Nevertheless, a small region of |, the experiments, the light goes both across the gel and
hysteresis is experimentally observed at [PYA} 0.5 g/L across a thin layer of reacting solution in the CSTR. Thus, when
(Figure 7). the contents of the CSTR oscillates, a nonstationary dynamics
Note that there is a significant difference between the is always observed but the actual dynamics in the gel cannot
predictions of the pool-chemical version of the LE model and be unambiguously determined. No comprehensive description
the CSTR version: in the initial pool-chemical version, the of the intricated dynamics observed in these regions is attempted
domain of oscillations is unbounded on increasing [lyWhile, in this paper; more information can be found in ref 54. In Figure
in the flow version, a steady state is recovered as in experiments9, we present the experimental and calculated sections of the
At a given value of [CIQ]o, there is a critical [PVA] above phase diagram in the ([MA] [CIO2]o) plane for two different
which no homogeneous oscillatory state is observed. The modelfixed values of [PVA}. Three types of states are reported in
also nearly quantitatively fits this experimental fact (Figure 7). these diagrams: the uniform steady states, the stationary Turing

data); =, computed limit of oscillations; ==, computed limit of
bistability between a stationary state and oscillations.
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Y 10-* 3 -2 [MA] o= 1.9 x 10°® M. Numerical data: (a) [MA]=1.1x 103 M;
10 (Ma], *° (b) [MA]o = 1.2 x 1072 M: (c) [MA] o = 1.45 x 10°% M.
Figure 9. Plane section ([MA], [CIO]o) of the pattern phase diagram  observed experimentally, but at such high values of [0
for two different values of [PVA]. Experimental observations:sta- the pattern amplitude becomes so small that any pattern would
tionary uniform statesa, Turing patternso, oscillatory states;-, limit be difficult to detect experimentally. This problem is actually
of Turing (Texp) and oscillatory Qexp) domains (estimated from these tered wh CID > 1.4 x 10-3 M- for th |
data). Numerical simulations:= =, Turing bifurcation To); — =, limit encountered when [Cl{y X » for tnese values,
of bistability between uniform and patterned stat€g;(—, limit of no patterned states were detected, even for large PVA concen-
oscillatory domain Qs). trations.

There seems to be some discrepancy between the model
patterns which we strictly associate with non oscillatory states calculations and the experiments at high [Pyahd low [CIG]o
of the CSTR, and the nonstationary states including traveling below the oscillatory domain. In the experiments, when [YA]
waves and various oscillatory states which may or may not be increases, the Turing state is followed by a new uniform steady
associated with oscillations in the CSTR. state, characterized by a lower value of complex{B(clear

Considering the extreme simplicity of the LE model compared color). No similar computed bound appears in Figure 9. As a
to the actual chemical kinetics, there is a striking agreement matter of fact, when [MA] increases, the computed stationary
between computational and experimental results, at least whenpattern becomes unstable and is replaced by an oscillatory state.
[CIOy)o is not too low and [PVA] not too high. In both cases, Since the volume of the gel is small and in contact with the
the Turing domain bracketed between a highsBuniform large volume of the CSTR which remains stationary, we suspect
steady state and an oscillatory state respectively at low and highthat, in the experiment, the gel does not oscillate because it is
[MA] o shifts to higher [MA} as [CIQ)]o is increased. The  forced into a uniform steady state. This interpretation goes
computed Turing bifurcation line agrees almost quantitatively beyond our present 2-D approximation so that the computed
with the experimental line. The general features of the experi- limits are not really significant and have not been reported on
mental and numerical Hopf lines also agree well, though the the diagrams. More general considerations on the role of the
numerical limits are nearly systematically shifted forward with coupling between the gel and the CSTR will be found in section
respect to the corresponding experimental lines. 4,

There is also a very good agreement between computed and At low [ClO;]o values, the simulations predict that the domain
experimentally observed pattern planform distributions. In where the uniform steady state and the stationary patterns are
particular, the classical sequence of patterns when the distancesimultaneously stable (subcritical regime) tremendously in-
to onset increases is well reproduced in both cases (Figure 10)creases since the experimental path crosses the Turing line above
If one starts from low [MA} and increases this parameter, a point Ts (see Figure 8). The limit of this domain is reported in
transition occurs from the uniform dark state (highs[3) to a Figure 9 (line ). At the same time, the patterns become very
stationary triangular array of clear spots, thelt¢xagon pattern  stiff and the dynamics slows down so that, at typical experi-
of the model. When [MA{ s further increased, the spot patterns mental times, they remain in a quasi-frozen state, retaining
turns into a stationary stripe patterns. Although in experiments irregular planforms. Although no systematic bistability between
the domain of stripe patterns is less widespread than in thea patterned state and a uniform state was found in the
model, the general trends are followed. In both cases, the extentexperiments, these tendencies were also observed. Coexistence
of the domain of stripes increases with [G]@ The model even of a pattern and a uniform state was actually found in a narrow
predicts that, at pointylin Figure 3, reached for [Clgyp = 2.5 region around point ((MA]= 7.8 x 104 M, [CIO]o = 2.5 x
x 1073 M, the H, domain vanishes at onset and that, for larger 10~ M) where localized patterns, a phenomenom linked to
values of [CIQ]o, a Hy state should develop. The latter is not subcritical regime&° were observe® Moreover, when [CIGo
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A T | e TABLE 1: Pattern Wavelength at [PVA], = 4.5 g/L
imit | of ~ “-‘ o . 10°ClOz]o  exptlA  numerical 10*CIO2]o exptl numerical

10" | patieins < Exper (M) (mm) A (mm) (M) A(mm) A (mm)
< v 1 0.41£0.02  0.38 35 028002 024
= A Compute 175  0.33:0.02 0.33
g V| Lrng
=3 = be accounted for by the presence of flow terms. One could evoke

1 | the participation of PVA in reactions other than complexation
; = ¥ : or the fact that the strong increase in the viscosity of the solution

might affect some fast steps in the reaction.

A comparison of the wavelength dependence on [MA]
[CIO2)o, and [PVA] can be established between the experiments
and our model system. In both cases, the wavelength of the
Turing patterns depends little or not on malonic acid. This
is decreased at constant [MAAthe experimental wavelength  common property allows us to compare the wavelenigtt
strongly increases and the patterns eventually disappear. In thesxperimental and computed points which only differ in malonic
simulations, the wavelength increases until it becomes larger acid, to counterbalance the slight shift between the observed
patterns obviously vanish. Anyway, for the same reasons asexperimental and computed wavelengths as a function of
previously mentioned, the 2-D approximation should break [c|0,],. The wavelength of the pattern is very sensitive to

04 08
[MA]o(1073xM)

Figure 11. Dependence of the low [MA]Turing limit on [PVA], at
[CIO;]o=1 x 104 M.

0.2 0.8 1

excessively large.
According to ref 47, in the pool-chemical approximation, the
addition of anonreactive immobile complexing agent involved

relative changes as a function of [Cl@ is excellent. The
experimental wavelength slightly depends on [Pyhen this
concentration is high, whereas it is independent in the calcula-

in a fast reversible process changes neither the steady-state tions. The calculated independencelain [PVA] is akin with

solution nor the position of the Turing bifurcation line and the
associated critical wavelength. Indeed, in the LE model, the
Turing bifurcation point does not depend enin flow reactors,
there are additional sink terms of the forkgSls~] for the
complex. They do not depend on an equilibrium with the

the predicted invariance in pool-chemical systéms he
experimental increase of wavelength with [PVA] suggests that
the relative decrease in the chemical time is greater than that
of the diffusion time of iodide. This could result from a
difference between the effective concentration of complexing

complexing agent so that the steady-state value of the systemites per unit weight of polymer in the free solution of the CSTR

should depend on the concentration of the complexing agent.

Thus, the strict invariance of the Turing bifurcation on the

and in the gel matrix.
Let us mention incidentally experimental observations relative

concentration of such a complexing agent should drop in our 15 5 narrow domain of parameter along the limit between

CSTR/gel system.

However, the dependence of the Turing bifurcation line with
[PVA]ois usually minor, both in calculations and in experiments,
as shown in Figure 9 by comparing the low [MAimit of the
Turing domain at different values of [PVA]To test the extent

stationary and nonstationary patterns (Figure 9). Inside the gel,
oscillatory behaviors can anticipate the Hopf bifurcation in the
CSTR. In this marginal domain, spatitemporal patterns
reminiscent of Turing-Hopf mixed modes? similar to those
already reported in two-side-fed reactéfs;an be observed.

of such an invariance, a systematic study of the onset of Turing Yet, here the spatietemporal behavior is not complicated by

patterns was performed as a function of [P¥A} [CIO)]o = 1
x 1074 M. This relatively low value was chosen in order not
to be hindered by losses of contrast of patterns when [BYéA]

the parameter ramps inseparable of two-side-fed gel red&étors.

4. Discussion and Conclusion

decreased. Figure 11 gathers the experimental and computed

results of this study. For this low [CK value the model
predicts a large subcritical domain of Turing patterns. The
computed Turing bifurcation line and the limit of this subcritical
domain are reported in Figure 11. The two lines evolve nearly
parallelly as a function of PVA and bracket the experimentally
observed transition line, at low [PVA]JAs already mentioned,

The main conclusion of this systematic study is that, despite
its formal simplicity, the two variable LengyeEpstein model
accounts quasi quantitatively for the main features of Turing
patterns observed in the (Gi6l,—MA) reaction provided that
the ad-hoc constanta of the model is properly chosen.
Computations are made easy and can be readily connected to

hysteresis is not observed within our experimental concentrationthe analytically calculable properties of the model since the one-

step changes, i.e., 10% around the drawn transition line.
Calculations show that the presence of flow terms slightly
shifts the Turing bifurcation to lower values of [MAhs the

side-fed thin gel reactor provides a good approximation of the
pool-chemical hypothesis. This relies on the slow concentration
variations of the input species and on the characteristic diffusion

PVA concentration is increased. However, this shift becomes time in the depth of the gel. The only noticeable discrepancies

significant only at low [CIQ]o values. This is consistent with
the fact that the lower is the [CIy value the larger is the
difference between the flow value and the concentration o CIO
in the reactor. In experiments, a similar deviation is first
observed at low [PVA] but when [PVAp > 4.5 g/L, an
additional stronger deviation develops in the opposite direction.
This shift depends on the thickness of the disk of gel: for a
thickness of 0.5 mm, the position of the Turing transition line
is basically unchanged at low [PVA] while the shift to high
[MA] o vanishes even for [PVA]= 10 g/L. This shift cannot

appear in marginal domains and when [giJs very low or
[PVA]o is high. They essentially point out the limits of the
approximations and reveal some previously overlooked problems
directly associated with the actual status of boundary conditions
and dimensionality.

As a matter of fact, a careful theoretical analysis reveals some
serious difficulties that need additional explanations. Up to now,
we have assumed that the patterns can be considered as two-
dimensional, i.e. the spontaneously selected structures are made
of short isoconcentration “walls” (stripes) or “columns” (spots)
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orthogonal to the faces. From this point of view, the thinner 17T

the gel, the better the two-dimensional approximation should ) s

be. A thickness equal to a wavelength or less would seem "I’O e ————

appropriate but a new problem then arises. The feed-face of R L it T

the disk in contact with the CSTR is permanently kept = - :; “““ 1
homogeneous, defining a uniform Dirichlet boundary condition, % i

and no pattern can form in the vicinity of this face. When the 156 .
system is thin, the influence of this boundary condition would 1.2 : N
extend over the whole gel and all transverse instabilities (i.e. ;i . ~<z

parallel to the feed-surface) should be hindered. To explore the 's 2

consequences of the nature of boundary conditions on pattern X e S
selection, we have performed a few 3-D computations with the = F >~ S R i
LE model®38°In the following, we only report the conclusions. = B i
When the system is forced with a Dirichlet boundary condition 2_02'3 S — -
onto the feed-face and the thicknesd is 1/4, the transverse S ;\\ ]
instability is always inhibited so that a uniform light absorption "u’o Feslllilt =
would be obtained through the gel and no pattern would be Py ] :: ----------
detected. Moreover, for slightly thicker systems, nonregular = F T =
patterns form. On the contrary, in pool-chemical conditions with 8

no flux boundaries on both sides, the system behaves as two- 201t

dimensional for almost all thicknesses in the range D< 4, 46

developing the correct planforms, but such boundary conditions =

obviously exclude any realistic feed process. To understand the o b

successful 2-D interpretation of the experiments of section 3, S 45k

we have to reconsider the nature of the boundary conditions. = : 3
As a matter of fact, the contact between the gel and the CSTR 2 : ]
contents is achieved through a membrane (section 2.1). More- 44biii i
over a boundary layer in the turbulent fluid of the CSTR very R T T E
likely forms along the membrane, decreasing the efficiency of :ﬁ .
exchanges and mixing in the vicinity of the feed-surface. The 's £ N P
. “ ” p=r 1 N, =]
interface “membrang- boundary layer”, hereafter referred for X RS 7/, 3
simplicity as the “membrane”, introduces some partial decou- i A ]

pling between the bulk of the CSTR and the gel. As a first ‘
approach, we can describe the effect of this membrane in a 14 —

phenomenological way by using a mixed boundary condition ;5 s _.
at the feed-interface. With finite difference equations this is s RN R
conveniently obtained using the following formula for the X 1.2F K {/ﬁ
diffusion term in thez-direction, orthogonal to the faces: ?:', / ‘\\ , {‘/ 3
Q BN iy
3Cy_ 2D Az B o b e
E—E(Q— 0)+§(Ce_co) (11) I ——
o) : ]
HereC. is the concentration in the CSTRy the concentration 70 78 /
at the grid point of the gel at the interfacg, the concentration X 04f~X o3
at the first point inside the gel, aniz the spatial stepsize. The r D :‘\ i 7
effects of the membrane are contained in the phenomenological B, . RN
parameteen, which has the dimension of a length and can be [0 )} S IS S
considered as a kind of effective thickness (to be distinguished 0 0.1 6.2
from the physical thickness!) of the membrane that holds for x (mm)
all phenomena which take place within it. Whep — 0 (no Figure 12. Numerical simulations of 1-D concentration profiles in

membrane), Dirichlet boundary conditions are recovered, whereasthe thickness of the gel (LRE model) with and without membrane. The
when e, — « (complete decoupling), no flux boundary |nte:face is located at = (; Key: [Sp=4.5x 10‘33M, [1o=3x
conditions are recovered. We have found that values,dh 10 M, [L/'A] 0 :f 2” x 1(TI‘ M, [C|02]j§ 2.3 X_E(T_ M; :berzﬂ =0

the range 0.20.2 mm (the same order of magnitude that the (no membrane, full coupling); - - & = 0.1 mm; = =, & = 0.2 mm.
physical thickness) introduce an appropriate decoupling which at the interface, the signature of no flux boundary conditions
restores, in most cases, the 2-D beha¥foithis can be which are required to restore the validity of the 2-D approxima-
understood from the 1-D simulations reported in Figure 12, tion.

analogue to those of Figure 5, but where the effect of the Thus, there is almost perfect coupling for the species that
membrane for different values of parameggrare compared correspond to the input parameters and almost perfect decou-
to the case,, = 0. Despite the partial decoupling introduced at pling for those which are intimately involved in the pattern
the interface, the changes induced by the membrane for theformation dynamics. The minor changes in input species
concentrations at this interface are rather small (they are theconcentrations might only induce a small shift in the onset of
largest for §) and the pool-chemical approximation inside the Turing patterns, but the general trends discussed in section 3
gel is preserved. On the contrary, the profiles of the intermediate should be preserved. Note that this description is different from
species are strongly modified, gaining a quasi-horizontal tangentthe so-called CFUR approximatiéhsince, despite the phe-
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nomenological description of the membrane, the feed remains
locatedat the boundaryand the system is treated as tridimen-
sional but theselected structurés bididimensional. To check
the validity of this interpretation, the coupling between CSTR
and the gel was changed in a few test experiments. A stronger
coupling was obtained py withdrawing the Anotgc membrang (23) Lengyel, I.; Kalar, S.; Epstein, I. RPhys. Re. Lett. 1992 69,
from the interface. In this case, the onset of Turing patterns is 2729.
delayed and the extent of their domain is reduced by about aPh(Z‘}) EgstzeiAnigaRé%Lengyel' l.; Kdr, S.; Kagan, M.; Yokoyama, M.
; ; ; ysica .

factor of 3, whlle, on doubling the membrane at the mterf?cg, (25) Lengyel, |- Epstein, I. RAcc. Chem. Re4.993 26, 235.
only a very slight advancg of the onset of patterns by 5% is  (26) Epstein, I. R.; Lengyel, Physical995 D84, 1.
observed. Thus, we confirm the major role played by the (27) Epstein, I. R.; Lengyel, I. In ref 12, p 297.
coupling strength at the interface on the formation of Turing _(28) Lengyel, Raai, I.; Epstein, I. RJ. Am. Chem. Sod99q 112,
patterns. More generally, the genuine nature of the boundary " >g) | engyel, Rbai, I.; Epstein, I. RJ. Am. Chem. Sod99q 112,
conditions should be taken into account, especially in the case9104. _
of one-side-fed reactors where reactions start before chemicals 8(8 ,}ﬁl%’ S, '};e”,%yT" |-;§p%telf:<, . Rl ngsﬁﬁheﬂgﬁ% fgégosg'

: : gladze, K.; Dulos, E.; De Kepper, B. Phys. Chem ,
dlffusc_a into the_ g_el. 2400.

Until now, this important boundary problem has been nearly  (32) Noszticzius, Z.; Ouyang, Q.; McCormick, W. D.; Swinney, H.

systematically overlooked in the chemical patterns literature, Phys. Chem1992 96, 6302.
and we think that a number of experimental observations cannot,\lu(n:’;?r ?Aoéfﬁgggie'g;-%faﬁets' V.; Dulos, E.; De Keppern®.Ser.
be u_nderstood without a clear perception of the role played by ' (34) ouyang, Q.; Noszticzius, Z.; Swinney, H.L.Phys. Chen.992
the interface$? 96, 6773.
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