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We explore in this paper the efficacy of the Rayleigbchrainger (RS) and the BrillouirnWigner (BW)
perturbative counterparts of our recently developed multireference state-specific coupled-cluster formalism
(SS-MRCC) with a complete active space (CAS). It is size-extensive and is designed to avoid intruders. The
parent SS-MRCC method uses a sum-of-exponentials type of Ansatz for the wave operator. The redundancy
inherent in such a choice is resolved by postulating suitable sufficiency conditions which at the same time
ensure size-extensivity and size-consistency. The combining coeffiggefas ¢,'s are completely relaxed

and are obtained by diagonalizing an effective operator in the model space, one root of which is the target
eigenvalue of our interest. By invokation of a suitable partitioning of the Hamiltonian, very convenient
perturbative versions of the formalism in both the RS and the BW forms are developed for the second-order
energy. The unperturbed Hamiltonian is akin to the Epstbiaesbet type when at least one of the orbitals is
inactive and is the entire active portion of the Hamiltonian when all the orbitals involved are active. lllustrative
numerical applications are presented for potential energy surfaces (PES) of a number of model and realistic
systems where intruders exist and for molecules in their ground states with pronounced multireference character.
Single reference MBPT and effective Hamiltonian-based multireference MBPT second-order results are also
presented for comparisons. The results indicate the smooth performance of our state-specific perturbative
formalisms in and around the region of intruders in the PES, indicating their suitability in bypassing intruders.
In contrast, the effective Hamiltonian-based MBPT methods behave poorly in the regions of intruders.

I. Introduction geometry, such as one needs in spectroscopy, there are still
s Problems for potential energy surface (PES) studies since there

Attempts to develop methods capable of reliable computation . 3 g ) . .
are usually different intruders in the different regions of potential

of potential energy surfaces (PES) continue to remain an
important area of activity in quantum chemistry. The method- €nergy surfaces.
ological challenges such as ensuring size-consistency over a It seems now that the most promising approach to bypass
wide range of molecular geometries in a manifest manner, intruders, yet at the same time retaining manifest size-exten-
keeping a uniform quality of the wave function around the sivity, would be to start out with a multideterminant reference
regions of real or avoided curve-crossings, and designing space but to target just the specific state of our interest. This
formulations which are tailored to bypass intruders seem not to has been the main thrust in some of the state-specific multi-
be resolved completely as yet. Although the multireference ClI reference perturbation theories in vogue toéfay’ There have
(MRCI) methods have been widely used over the past two also been recent developments of a coupled cluster analogue
decades, the results are usually adjusted in a rather ad-ho®f these method®¥1°9 All of them provide a contracted
manner by invoking empirical size-extensivity correctibfi$ie description of the reference function in the sense that the
multireference many-body perturbation theory (MR-MBPT) with  combining coefficients of the reference determinants in the CAS
a complete active space (CAS)in the effective Hamiltonian  function are fixed at some preassigned values (usually from a
framework ensures size-extensivity in an explicit fashion, but variational optimization of the CAS function). Thisrelaxed
their practical utility remains limited in scope due to the descriptionof the coefficients might in some cases lead to poorer
ubiquitous intruder problerh.However, using various shift  convergence of the above formalisms, particularly in the
techniques, which characterize clever partitioning of the Hamil- presence of intruders which tend to modify the coefficients
tonian, reasonable results have been obtained in many Tasesgrastically. An attractive alternative is to obtain the coefficients
Such stratagems will not, however, work for nonperturbative yia the diagonalization of an effective operator (now called the
approaches such as multireference coupled cluster methodsyiermediate Hamiltonig) in the reference space. We may call
where the full, rather than a partitioned, Hamiltonian figures. g ,ch formalisms as usimglaxedmodel-space coefficients. Such
Thus, for the _mul_tiref(iréence coupled cluster methods using ¢, jations have appeared recently in the literarét We
_effectlve _Ham|_lton|gné, the disadvantages stemming fro”_‘ have invoked the coupled cluster Ansatz to represent the exact
|n.trUQers Is serious indeed. It appeared at one time that Workmgfunction as a cluster expansion around the multideterminant
with |ncomplgte mpdgl spaces? woulld resolvg the intruder reference functioA?2528 We mention in particular our latest
problem. While this is true for studies at a fixed molecular formulation, hereafter called the state-specific multireference
* Author for correspondence. E-mail: pcdm@mahendra.iacs.res.in. COUPled cluster (SS-MRCC) theot§?® which treats all the
Fax: +(91) (33) 4732805. reference determinants on the same footing and is thus
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potentially capable of describing electron correlation over a wide
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as well as the energy and the coefficients, it is convenient to

region of PES, where the relative importance of the reference rewrite H exp(T#) for eachu in eq 3 in normal order taking

determinants might change significantly. Preliminary applica-
tions of the method gave very encouraging resiiltds a
practical tool of being applicable to bigger molecules, where a
full-fledged CC formulation would be computationally rather
demanding, it seems worthwhile to explore the efficacy of the
perturbative counterparts of the formalism. It turns out that the
SS-MRCC theory is quite rich in its structure in that it subsumes
in it size-consistent versions of both a Rayleigdchralinger
(RS) and a Brillouin-Wigner (BW) perturbation theory,

each¢, as the vacuum. Using Wick’s theorem, we then find

H exp(T) = {H exp(T) exp(T)} , = exp(M){H exp(™)},
4)

The connected entity, = {Hexp(l"‘)}/4 denotes all terms
obtained by joining the operators k with those of T« The
notation{ -}, signifies that the operator inside the brace has
been written in normal order with respectd#p as the vacuum.

depending on the expansion strategy. We develop and apply ingjnceTr has only hole-particle excitations of various ranks, the

this paper the first-order RS and BW perturbative expansion of
the wave function of our SS-MRCC formalism, which provides

the second-order energy. Henceforth, we shall refer to our state-

specific size-consistent multireference formalism as the SS-
MRPT method.

entire factor expl#) can be taken out of the second equality of
eq 4 from the left, leading to the right side of eq 4.

The coefficientsc, for a CAS-CI or a CAS-SCF baseyl
can be determined by rewriting each term in the sum on the
right side of eq 3 in normal order with respect to the

In section I, we present a brief resume of our SS-MRCC  orresponding,, using eq 4 and projecting onto the reference
method. This serves both as an introduction of the essential yeterminants:

ingredients of the approach and as a prelude to the perturbative

formulations to follow. The RS and the BW versions of the
perturbation theories are covered in section lll. In section IV,
we present the illustrative numerical applications, along with
discussions. Section V contains the summarizing remarks.

Il. A State-Specific Coupled-Cluster Theory with a
Relaxed Reference Function: Brief Resume

We describe briefly here the essential aspects of the SS-

MRCC formalism. We start with a set of reference determinants
which ensure a proper dissociation of a molecular state into

[,[H exp(M)I¢, 8, = [, I{H exp(T") exp
(Mhle, 2, = B, {Hexp} e, =
> @,H,l¢,[¢, = E, (5)

Since our model space is a CAS, the uncontracted operators in
T” in the second equality of eq 5 always lead to excitations out
of the model space, and this is why we have the simplification

appropriate fragments. For detailed discussions leading to theleading to the third equality of eq 5.

formulation and the proof of its size-extensivity and size-
consistency, we refer to our recent publicatiéh

Following the traditional convention of quasidegenerate
many-body nomenclature, we term the doubly filled orbitals as
inactive “core” orbitals, the partially filled occupied ones as
active “valence” orbitals, and the virtual orbitals not contained
in the reference function as inactive “particle” orbitals. We write
the reference functioryy as a combination of the reference
determinantsp, spanning the CAS-space:

1/}0 = zC‘ud),u (1)

The exact functiony is written as a cluster expansion
involving cluster operator§* exciting from corresponding,’s:

=Y exp™a,c, @
u

Each T# excites to all the virtual functions froms,. Such a
cluster expansion Ansatz was first used in the effective
Hamiltonian conteXtand has recently been exploited in the
state-specific formulations as wé#?428 Since eachy, has
different sets of active orbitals, any specific core-to-particle
excitation would lead to a different virtual determinant from
eachg,. This is however not so for excitations involving active
orbitals. Thus, we would encounter redundancy of the cluster
operators involving active orbitals. To determine all of them,
we have to invoke suitable sufficiency conditions.

1 satisfies the Sclidinger equation with the eigenvalle

Hy = HY exp(™),c, = Ey 3)
u

From now on, we shall denote the matrix-elem@ntﬁvwvﬂ
by the symbolH,,. H,, is clearly a connected term if the
operatorT” is connected. Using eq 5, the equation determining
the eigenvalué is given by

2 Hﬂvcv

For determining the cluster amplitudes, we again start from
eq 3 and obtain

z exp(r#)QF'lul(b‘ulﬁlu + z exp(lrﬂ)ld)v[ﬂ:lv‘uc‘u =
u w
EY exp(™),2, (7)

(6)

= Equ

whereQ is the projector onto the virtual space spanned by the
set{y} and the sun},|¢,[0,| is the projectoP onto the space

of reference determinants. Due to the presence of linearly
dependent cluster amplitudes, eq 7 would generate an insuf-
ficient number of equations for determining all the cluster
amplitudes. We have proposed recetthfa set of sufficiency
conditions which lead in a natural manner to a manifestly size-
extensive formalism.

In order to arrive at these equations, we firgerchange the
dummy indiceg andv in the second term on the left side of eq
7. We next note that, instead of using the traditional form of
the resolution of identity, we can invoke a completely equivalent
expression of the form

| = exp(M)[Q+ Plexp(-T")=Q, + P, (8)

Using this new resolution of identity, we can write the

To generate the equations determining the cluster amplitudesrearranged eq 7 as



1824 J. Phys. Chem. A, Vol. 103, No. 12, 1999 Mahapatra et al.

Q + P ]ex QH,¢,, + S [Q,+ P, ex x Starting from the above equation, we now generate appropriate
Z[ P expMQH, 16,12, ﬂzy[ Pl exp(m) RS and BW perturbative expansions in a systematic manner.
7 — ~ B “ To achieve this, we first partition the Hamiltonian into an
18 C, E;[Q/‘—i_ P“] exp( )|¢/‘m:” ©) unperturbed componerily and a perturbatiorlV. We then
expand each cluster operatdt appearing explicitly in the
We now posit thesufficiency conditionghat the terms ineq 9  equation above as a power seried/irin the RS development,

containingQ, for eachu are equal: we also expandE as a power series. However, for the BW

~ ~ ~ ~ formulation, we leavé& unexpanded. The treatment of the terms

Q, exp(T'“)H#|¢”E:ﬂ + ZQ# exp(l'”)|¢ﬂ[H-|‘WcV = p.|Hulp.[n eq 13 need; some special care. For the RS theory,
v we expandg,|H,|¢.[again as a power series. For the BW case,

Q, exp(™)|¢,1(10) however, we leave it unexpanded just as Eor
: " Denoting by FM the cluster operator “Tat ordern and
The right side of eq 10, however, vanishes, si@cannihilates ~ collecting all terms of ordemn, we then obtain the formal

fuctions of the model space: expressions of the state-specific RS or BW multireference
perturbation theory (SS-MRPT) of order In particular, the
Qu exp(™)|¢, = exp(l'”)Q|¢#D= 0 (11) cluster amplitudes at the first order for the RS expansion are

obtained from
Using the expression @u, and the linear independence of each
function x| constitutingQ, we deduce that [CuIHIg,H Z(@||H0|Xm|]— @,I[Hol |6,[d) x
m

10,8, + 3 GileXpT) eXHT)Ig, B0, = Tl 710,00, + 3 BT l6, TH, 0, —
001w (12) EoG TV, 8, = 001, 1 (14)

The above set leading to eq 12 are our stipulated working

equations for determining the cluster amplitudesTof It is All the quantities in eq 14 are expressed usk@s the vacuum.

straightforward to verify that the remaining part of eq 9, The corresponding BW version takes the following form:

containingP, would also be equal and would generate eq 6,

which indicates the consistency of our sufficiency conditions [[|H|¢,[H- Z(@||H0|Xmm_ [®,H,1¢,0,,) x

vis-a-vis eq 7. Let us note that in solving the equations for the ™

cluster amplitudes, eq 12, the knowledge of the coefficigriss (1) @) 4 _ (1) —

is required. The two sets are thus coupled. At the end, we obtain Bl 10, + ZENTV ¢, ¢, — ELLIT V8,8,

both the cluster amplitudes and the relaxed coefficients from 001 u (15)

the diagonalization, eq 6.

We should emphasize here that the interchange of the dummy We note at this point that there is a coupling of the different
indicesu andv in the second term of the left side of eq 7 is T« operators for various’s via the termy, | T"® — M), 3
essential to arrive at a size-extensive formulation. Invoking a [Hg] ,.c,, where the coupling essentially stems from the off-
similar sufficiency condition for eachin the parent expression,  diagonal terms Hol.wCr with v = . Since a significant
eq 7, leads to a size-inextensive theory, which is related contribution of the nondynamical correlation effects comes from
structurally to some other recent attemffts® The proof for off-diagonal terms coupling determinants which are doubly
connectedness of the cluster amplitudes from eq 12 hingesexcited with respect to one another, it is imperative that we
essentially on completeness of the active space and thejnclude at least the portion of the two-body termsHnwhich
connectedness of the composfglyilexp(—T+) exp(T)|¢.[3 can couple thep's which are doubly excited with respect to

Huco/c,. For details the reader is referred to our recent one another. Such two-body termsHig have previously been
papers?283%where these aspects are discussed at length.  considered by others as wéfi?

Since the reference determinants span a CAS, it also follows |t thus warrants that we include in ot all two-body terms
that the energy obtained as the eigenvalue of eq 6 is also sizewhich scatters electrons from all pairs of active orbitals to all
extensive. The extensivity of the energy also implies correct pairs, same or different. In order to precisely define Hyyit
separation into fragments generated from the active orbitals and,would be convenient to rewrite in normal order with respect

hence, size-consistency. to the core as the vacuum:
lll. Emergence of RS and BW State-Specific —E + igatal + 1 Tt
Perturbation Theories with Relaxed Coefficients H=E me“[ﬂa‘ a]}c /2“ jIkiga g aag. (16)

For the perturbative formulations up to the first order in o ] _
cluster operators, it is convenient to rewrite our SS-MRCC Here the symbols, j, etc., run over the one particle basis for

equation, eq 12, in the following quasilinearized form: description andt. is the expectation valu@|H|0Dwith respect
to the core functionOOandf. is the core Fock-like one-body

[IHIe, 0+ S (@ IHIx 0 @u“q 1,,0) el T, CH- operator. We now define ottty as a sum ok, the core Fock

X : ; Al Pl O] i ‘ operatorf,, all the diagonal ladder operators of the two-body

vl + T — T4 + |6 [ ¢ = [ |Hlo [H term of eq 16 which has at least one inactive orbital, and the
Ie. ZBM[ ] 19, B,,¢, = [CulHI, (; entire active portion of the two-body term. This choice ffay

. — : is like the EpsteirrNesbet (EN) partitioning for all determinants
DalHLm (5,10, B1m) Ot 716, L ==+, + Z%W * having at least one inactive orbital, but it differs from EN in
- “ " thatHo,, coincides with just the matrix-elemeH,,. This choice
|¢,H,.c, — EDyT¢,6, =00 I, u (13) of Hg is the same as the one introduced by Dyall.



Molecular Applications of a Perturbation Theory

With this Ho, our working equation forT“() in the RS
expansion may be written as

0 I(1) 0 1
mI=Zm

> TV, MH,,c0=0 (17)

v

where[| T“®)|¢,Cis abbreviated ai . The prime in the sum
above restricts the sum tay's differing from y only in the
active orbitals. This is a consequence of our choicél@fEg
and cfj’s are obtained by diagonalizing the matrix idf,.

The corresponding BW expression is given by

1)
- Cu +

|
Hy,C, + (Hy — E)tﬂ(l)cﬂ + Z H, i
m, Zm
VEU

> GuiTWig,H,c,=0 (18)

The pseudoeffective operatb® up to second order in both
cases is given by

H}fv) = ZHMt'V(l) +H,, (19)
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for the RS version and

v=u C

> T,

lu U

I(1) —
t,o=

E—H, @4

for the BW version. This does not affect the extensivity of our
formalisms. The results, described in the next section, indicate
that this neglect does not significantly affect the quality of the
calculations either.

IV. Molecular Applications

Algorithmic Considerations. We note that there are cou-
plings between the variou$-amplitudes in the perturbation
equations, as are evident from eqs 23 and 24. But these are not
too many: only those components®fs with v = u can couple
which can cause excitations j¢ by their action onp,. Their
effects can be included in an iterative manner. We start a loop
for a u. Equations 21 and 22 are then solved by using the
previously computed values d’s for otherv’s. For the RS
case, the values of the energy and the zeroth-order coef-

H® on diagonalization provides us the respective second-orderficients are obtained by diagonalizing the matrixHf,, and

energyE®:

3 HE o = EO ¢ (20)

Equations 1720 are our final working expressions for the
evaluation of cluster operators and energy.

To get a better insight regarding the avoidance of intruders,
we rewrite eqs 17 and 18 #s

vEu

C, '
S AT S g
v Cﬂ m,JZm

I(1) —
tﬂ Eo — Hy Eo — Hy &
for the RS version and
v=u C, '
z DJ“"|-I_V(l)w’ﬂ[ﬂ:{ﬂ”(;_+ Z H'mt;( )
N o 22)

Y E-H,

E—H,
for the BW version. For a more detailed discussion, we refer to
one of our forthcoming pape?8.

So long as the state ener@y or E remains well-separated
from the virtual functions, the denominators in both cases remain
reasonable and this avoids intruders. This holds true even if
some of theH,,’s are close tdHj.

In the preliminary applications of our perturbative formalisms,
the term Y H, t™ is zero by symmetry (see Section IV).
Thus, the equations used by us in this paper are

VEU
S 5
n v

) “
|TV |¢/,¢|:H-|/,4V_
Cﬂ

(23)
Eo—H,

they are fixed in the iterative updating of the cluster amplitudes.
Only after the convergence of the cluster amplitudes is reached,

do we diagonalize the matrix di?) to get both the second-
order energy and the relaxed coefficients at the second order.
A typical feature of the formalism up to second order of energy
in the RS formulation is then the use of the zeroth-order
coefficientsc® to compute the cluster operators aHd but
allow the coefficients to relawhile computinge®, since this

is obtained by diagonalization. For the BW case, however, we
update the cluster amplitudes, the endfggnd the coefficients.

We have found that a fast convergence is reached by converging
the cluster amplitudes first in an inner loop while keeping the
coefficients ancE fixed, and updaté and the coefficients in

an outer loop after the convergence of the cluster amplitudes
in the current inner loop is reached. In the updatindeand

the coefficients, eq 20 is used.

Results and DiscussionsWe have applied both the RS and
the BW versions of our SS-MRPT method to test their relative
efficacies. Most of the systems chosen by us display the essential
features of quasidegeneracy and/or avoided crossings. The model
problemsH, and Hg serve as good testing grounds for the
present formalism. The reaction path of the Bekbdel system,
widely studied by various workers, also serves as another very
good test case for our theory. We have carried out a very detailed
calculation for the ground-state PES of the kxiolecule with a
rather small basis, for which we could do the full Cl results for
comparison. A larger basis set calculation for this molecule has
also been carried out, for which we could perform only the
CISDTQ calculations for a similar comparison. The other PES
studied by us that of the,Fmolecule. As a spin-off from our
SS-MRPT, we can also study molecules of pronounced multi-
reference character, and we have applied it to molecules CH
and G in their ground state. For most of the systems studied,
we also provide results from the single reference MBPT and
the effective Hamiltonian-based multireference MBPT (MR-
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TABLE 1: Comparison of the Second-Order Ground-State
Energies of the P4 Model with the FCI Result3

Mahapatra et al.

TABLE 2: Comparison of the Second-Order Ground-State
Energies of the H4 Model with the FCI Result§

SS-MRPT SS-MRPT

(au) SCF(au) SR-MBPT MR-MBPT RS BW FCI (au) a SCF(au) SR-MBPT MR-MBPT RS BW  FCI (au)
2.0 —1.944 133 —116.078 —0.902 1.467 6.419-2.074 481 0.00 —1.931750 —295.652 —2.784 —0.369 4.044—2.063 112
2.2 —1.998014 —1.458 —0.744 0.755 5.363-2.102 335 0.01 —1.951444 —-25.026 —2.878 —0.572 3.849—-2.069 401
2.4 —2.039775 0.283 0.133 1.025 5.3632.136 637 0.02 —1.969599 —10.280 —2.924 —0.890 3.508 —2.079 470
2.6 —2.072 157 1.186 1.036 1.576 5.3742.164 970 0.10 —2.069109 -2.390 —2.979 -1.103 2.387—2.160 115
2.8 —2.097 241 1.937 1.917 2.167 5.6782.187 172 0.25 —2.133651 —1.599 —91.649 -0.962 1.579-2.217 381
3.0 —2.116 620 2.59 2.779 2.726 6.0412.204 309 0.40 —2.148427 —1.490 5.604 —0.923 1.390—2.230 887
3.2 —2.131526 3.159 3.646 3.228 6.3982.217 427 0.50 —2.150367 —1.428 5.051 —0.854 1.427—2.232 700
gg :gig% gég i?gg gg?g ig;; ;8533%471 ggé #H—H bond length= 2.0 au. Basis: dta p function. All energy
38 —2158 119 4521 6.887 4.455 75752240 506 $1nt1r(l)$§ excenp])|t_|for SCF are differences with respect to the FCI values,
4.0 —2.163026 4.878 8.525 4.775 7.8012.244 633 ! au (mH).

by Palduset al.33 In this geometry again the bond length for
each H is taken to be 2.0 au, and they are kept in an isoceles
trapezoidal position with the shorter end-to-end distance between
them fixed at 2.0 au. We start out with the geometry wherein
MBPT) derived from the state-universal MRCC thebiyr the the two hydrogen molecules are placed parallel to each other,
sake of comparison. The latter in particular is chosen for making a square configuration. This is then deformed continu-
comparison because (1) it uses the same Ansatz for the waveously in a symmetric manner by widening the angle so that the
operator and (2) we want to assess how it performs vis-a-vis two H, molecules make progressively obtuse angles with the
our state-specific formulation in the regions of intruders. To line joining those two end points which are 2.0 au apart. The
indicate the relative performance of the various methods, we various configurations are specified uniquely by an angle
have shown in the tables tlemergy differencewith respect to which is the difference of the actual obtuse angle a2l
the best CI results (FCI in most cases). Thus the entries for Following ref 34, we specify the configurations by a parameter
each method in the tables correspon®&fQinod — Eci. ¢ = azt. Thus by varyingx from 0 to 0.5, we go from a square
(a) Hs Model Systems.The H; models have been widely  configuration to a linear one. The basis used in our calculation
studied by many worke#sin various geometrical arrangements.  is of DZ quality?® with a Cartesian p function with an exponent
Presently, we have carried out the calculations for the trapezoidal0.9.
(H4) and rectangular (P4) geometeries. These models are The lowest energy determinant corresponds to the configu-
examined extensively, mainly due to two reasons: (1) The ration ¢; = 1& 1k in the C,, symmetry, and this becomes
degree of degeneracy can be varied continuously from aquasidegenerate with the determingat= 1a§ Zaf ata = 0.
nondegenerate situation to a highly degenerate one by theror intermediate values af (in the range of 0.25), there are
variation of a single parameter defining their geometry. (2) The intruders affectingg,. In Table 2 we present the SCF, the
simplicity of the system makes a full Cl calculation very easy. (difference energies for the single-reference based MBPT (SR-
(i) P4 Model.In the rectangular geometry, the distance of MBPT), and the effective Hamiltonian-based MR-MBPT to-
approach of the two fmoleculesR s varied from the square  gether with our SS-MRPT(BW) and SS-MRPT(RS) with respect
geometry, for which a complete configurational degeneracy to the FCI values. For the SR-MBP; is taken as the reference
occurs, and then gradually elongated to the rectangular geom-determinant. As is evident from the table the SR-MBPT results
etry. The H-H distance in each Himolecule is kept fixed at  are quite poor for low values af. This is due to the near
the stretched bond length of 2.0 au to enhance the effect of degeneracy aof, with ¢, at low values ofx at this configuration.
quasidegeneracy which occursRit= 2.0 au. The basis used Both SS-MRPT (RS) and MR-MBPT work well around these
for the study is a dzyp(expnt=1.0) from the GAMESS library.  geometries, though the former works much better. The MR-
The lowest energy determinant corresponds to the configu- MBPT results are poorer midway at abaut= 0.25, clearly
ration ¢; = 1& 1b5 in the C,, symmetry, and this becomes reflecting the presence of intruders. The present state-specific
quasidegenerate with the determingpt= 1a§ Zaﬁ atR=2.0 calculations are uniformly good, the RS version being generally
au. AsRis increased, the quasidegeneracy fades away. We havebetter than the BW version. Also, as can be seen from Tables
taken these two configurationg; and¢,, in our model space 1 and 2, the P4 model does not suffer as much from intruders
and since 2aand 1k are of different symmetery, the model as for the H4 model. In both these models, the SS-MRPT works
space is complete. The configuratignhas been chosen as the very well.
Hartree-Fock function. (b) Hg Model System.This model system studied is a sort
In Table 1 we give the results for the ground-state difference of extension of the simple Hnodel. It too bears the essential
energy for the molecule with respect to the FCI values. We features of the kisystem but is bigger. As shown in Figure 1
have also listed for comparison the SCF and the differences ofthe model comprises of eight hydrogen atoms arranged in a
the single-reference based MBPT (SR-MBPT), the effective distorted octagonal arrangement. The four pairs of hydrogen
Hamiltonian-based MR-MBPT with respect to the FCI values. atoms are kept at a fixed internuclear separation of 2.0 au. The
As is expected, around the degenerate region, the singlepairs (5,6) and (7,8) are in fixed positions while the other two
reference results from SR-MBPT are quite inferior compared pairs are moved parallely as shown in the figure. The geometry
to the FCI values which warrants a truly multireference of the model is determined simply by the distanc®etween
calculation. As can be seen from the table, the RS results arethe side of the regular octagon and the line indicating the
somewhat better than the BW values throughout. internuclear separation of the moved Hnit. Here too the
(i) H4 Model. This model has been first introduced by degeneracy can be varied continuously by the variation of a
Jankowski and Paldé&and later studied in detail using the state- single parametex as shown in Figure 1; also a FCI calculation
universal and valence-universal coupled cluster methodology is feasible for this system, making useful comparisons possible.

aH—H bond length—= 2.0 au. Basis: dzira p function (exponent
= 1.0). All energy entries except for SCF are differences with respect
to the FCI values, in 1¢ au (mH).



Molecular Applications of a Perturbation Theory J. Phys. Chem. A, Vol. 103, No. 12, 1998827

«——a——

— 0

Q Q ‘I Be (0, 0) ’ y

Figure 1. Geometrical arrangement of the foup kholecules in the H (-y, R) H(y,R)
Hs model problem.

z

TABLE 3: Comparison of the Second-Order Ground-State Figure 2. Geometrical arrangement @b, insertion of Be in H.

Energies of H; with the FCI Results?

SS-MRPT different reference determinants on both sides of the avoided
o  SCF(au) SR-MBPT MR-MBPT RS BW FClI(au) crossing, depending on which is the dominant configuration.
0.0001 —4.065562 18.068 8017 11.372 21.7381.204 803 However, we have started with the Hartrdeock function
0.001 —4065828 18.225 8.041 11402 21.7464.204 886 corresponding to the configurationZ2ef 1b5 and have used it
0.003 —4.066418 18.543 8.095 11.467 21.76#4.205 075 over the entire range of geometries studied here. Again since
8-8; *2-86732 ‘2‘%‘ %8%? g-;g% E-g?g gi-ggﬁ-ggg (7)22 the two active orbitals are of different symmetries, they form a
0.06 -4082780 19.867 9495 12.747 21022212169  complete model space. Even thoughis not the dominant
008 -4.088316 19.286 9.895 12.962 21.8381.215 336 function beyond sample point D, nevertheless, we have still used
0.10 —4.093745 18.685 10.242  13.101 21.734.218 763 this configuration as our Hartred-ock function to generate the
2 H—H bond length= 2.0 au. Basis and geometry: ref 36. All energy orbitals at a.II distapces. The success over the entire range of
entries except for SCF are differences with respect to the FCI values, 9e0metries is a stringent test of our formulation.
in 1072 au (mH). At the point A, the MR-MBPT diverges since there is an
intruder in this region perturbingp. Its performance gets vastly
For the present study we have used the basis as suggestefinproved in the regions of quasidegeneracy involving avoided
by Jankowskiet al.3® The parameter. is varied over a wide  crossing. The situation worsens again around the point |, where
range of values going from 0.0001 to 0.10. We have given in there is again an intrudeibut this time perturbingp;. The
Table 3 the SCF energy and the differences of our present SS+esults for the SR-MBPT requires some explanation. Sifice
MRPT results both in the RS and BW schemes together with beyond point D is higher in energy than that ¢f the SR-
the differences of the SR-MBPT, MR-MBPT with respect to MBPT generates the excited function beyond D, and these,
the FCl values. Here again, the RS values are closer to the FClrather than the lowest energy results, are shown in the table.

results. The SR-MBPT works well before the point F is reached, since
(c) BeH, Model System.In this model system we study the  up to this point the functiow; is energetically well-separated
Cy, insertion reaction of Be in fito form the BeH molecule. from other functions. Around the point F, we have the avoided

This system is interesting in that, at some distance of approachcrossing of the two lowest states, apg acts as the intruder

R of the H, molecule to Be, there is a crossing of two for ¢;. Beyond this point, the performance remains consistently
configurations. We take these two configurations as our model poor, since at geometries G, H, aneil approaches a virtual
space functions. The relative importance of the model spacefunction acting as an intruder. In contrast, the SS-MRPT results
functions vary greatly withR, so that only a state-specific are consistently good, showing smooth behavior for all the
function treating all the model space functions on the same sample points, indicating the efficacy of the methods to obviate
footing is expected to work well. This system has the additional intruders. Again, it is seen that the RS values are closer to the
interesting feature that one or the other model function FCI results.

encounters intruders at small and large value®oélthough (d) Li, Potential Energy Surface.The study of the Li PES
the ground state itself remains rather well separated from theis another natural choice for testing the efficacy of any theory
virtual states. which is designed to bypass intruders. This system, though rather

The system has usually been studied at specific points of thesmall, has an entire range of low-lying excited states acting as
sample path as given by Puns al*” We too have followed intruders at various distances. The functigns= 103 107 207
the same sampling points on the reaction path. The arrangementging g, = 105 10? 202 comprise the two reference determinants
of Be and the two H-atoms for the variousH distances and  that make up our active space and are the functions needed to
R for all the sample points are shown in Figure 2. In Table 4 gescribe the bond-breaking.
we list the SCF, the differences of the single reference-based At the equilibrium geometr§® there are intruders which mix
SR-MBPT, the traditional effective Hamiltonian-based MRPT,  strongly with the function,, since the active orbitald orbital
our present SS-MRPT(RS), and SS-MRPT(BW) with respect jies much higher than the other activer,2orbital in this
to the full CI values for nine sample points denoted bylA  geometry. At the distanceR around 5 and 9 au, there are
At geometries A-D the dominant configuration is {@& 1 avoided crossings of the higher excited functions withOnly
b5, which in our study has been takengas However, at other  a rather accurate theory would thus be able to give a very smooth
geometries, e.g. El, the determinant ﬁaZaE 3% is seen to behavior at around this point. Beyoritl= 11.0 au the two
have a lower energy as compared to the previpiisesulting model functions become prominently quasidegenerate.
in an avoided crossing (between E and F). This latter config- As mentioned earlier, we have carried out detailed calcula-
uration is treated ag,. At geometry E both these functions are tions using a small basis of BZquality and further with a
seen to be equally important. Pures al®” have used two somewhat larger basis (6-311G**) from the GAMESS library.
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TABLE 4: Comparison of the Second-Order Ground-State Energies of Belwith the FCI Results?

Mahapatra et al.

coordinates SS-MRPT
geometry (v, R) in (au) SCF (au) SR-MBPT MR-MBPT RS BW FCI (au)
A (2.54, 0.00) —15.741 664 2.27 divergent 2.568 3.388 —15.779 172
B (2.08, 1.00) —15.699 566 1.794 3.072 1.994 2.772 —15.737 224
C (1.62, 2.00) —15.628 440 4.119 4.343 4.152 5.445 —15.674 818
D (1.39, 2.50) —15.562 676 7.016 5.675 6.547 9.053 —15.622 883
E (1.275, 2.75) —15.521 188 17.105 6.011 11.97 17.147 —15.602 919
F (1.16, 3.00) —15.477 278 114.927 0.189 5.662 23.743 —15.624 481
G (0.93, 3.50) —15.401 953 228.265 0.208 7.231 19.881 —15.693 194
H (0.70, 4.00) —15.360 226 329.646 6.608 0.576 10.666 —15.736 688
| (0.70, 6.00) —15.325 420 125.164 59.573 2.432 7.311 —15.760878

aBasis and geometry: ref 37. All energy entries except for SCF are differences with respect to the FCI valuesain(iH).
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Figure 3. PES of L using DZ basis.

For the DZ basis we have compared our results obtained by gcp

SS-MRPT(RS) and SS-MRPT(BW) methods with those from

the single reference based SR-MBPT, the MR-MBPT, and the gISS-II\Dﬂsng(Bwﬁ

FCI calculations.

As can be seen clearly from the plots given in Figure 3, the
single reference theory starting with diverges at large values
of R since its reference functiog; encounters an intruder in
¢2. More interesting is the MR-MBPT plot, which shows a
discontinuity in the range dR ~ 5—6 au and also & ~ 8—10
au, clearly indicating its breakdown in the presence of intruders.
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Figure 4. PES of L using 6-311G** basis.

TABLE 5: Spectroscopic Constants of Lj in the Ground
State using SS-MRPT

method Re(A) De(eV) we(em™)  Pwe(cm™?)
SS-MRPT(RS) 2.723 0.874 362.3479 4.657
SS-MRPT(BW} 2.727 0.840 375.123 5.195
2.716 0.872 376 5.01
SS-MRPT(RS) 2.635 1.100 353.166 3.513
2.635 1.064 357.763 3.729
2.599 1.051 364.226 3.912
exptl results 2.670 1.056 351 2.59

aReference 33° Basis: 6-311G** and a Cartesian d functicaQ.2).
¢ Reference 39.

with the FCI and CISDTQ values as applicable. The experi-
mental values are listed alongwith for comparigdn.
(e) F, Potential Energy Surface.Another interesting and

However, the state-specific plots are considerably better at all 5ien studied system is the Folecule. Though the-FF bond

ranges ofR. As expected, the results from the MR-MBPT at

is rather weak, giving a very low dissociation energy, neverthe-

large values oR are also good, although they are not quite as |ess this single bond is highly correlated making its study rather
accurate as our SS-MRPT results. For the larger basis we havgnteresting. We have scanned the PES of the system over a wide
only carried out the SS-MRPT(RS) and SS-MRPT(BW) cal- range of internuclear separations using a B2 basis® We

culations and compared with a CISDTQ calculation since we
could not perform a FCI with this basis. In Figure 4 we have

given a plot of the PES of the molecule in these three cases.

The figure shows the close comparison with the CISDTQ curve.

have also carried out calculations for this system with the single
reference based SR-MBPT and the MR-MBPT. In Figure 5 we
give the plots of the PES for the SR-MBPT, MR-MBPT, and

our SS-MRPT calculations. The performance of the single

For this system we have also evaluated the spectroscopicreference theory is quite poor at largeas can be seen from

constants by fitting a Morse potential to our computed ground
state PES. We have thus obtained the dissociation ergsgy
the equilibrium bond-distanc®., the harmonic vibrational
frequencywe, and the anharmonicity constgbe. In Table 5

the figure. The MR-MBPT plot is seen to have an erratic
behavior aroundR = 5 au because of intruders. In contrast, our
SS-MRPT plots are seen to behave quite smoothly.

Here again we evaluate the spectroscopic constants and give

we present these values for the DZ and 6-311G** bases togetherthe results in Table 6, along with the experimental resilts.
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au. We have done two calculations with the first basis. In one,

v we have kept the two core orbitals and the top nine virtual
/'/ orbitals as frozerrthis scheme being the same as used by
/ ’>< . Nakatsuji*2 In the other, we have kept the two core and the
A
A% ./
/

-199.15 M top two orbitals as frozen. The FCI results shown in the table

corresponds to the respective values using the same orbital-
freezing schemes. For the calculations using the second basis,
we have kept the two core and the top two virtual orbitals as
frozen. Since we could not compute the FCI energies in this
scheme, we cite the CCSD(T) results with the same basis as
— m— SRMBPT given by Watts and Bartlett. In Table 7 we have presented the
\ —eo— MRMBPT results of our calculations where we have once again listed the
s —a— SSMRPT(RS) SCF and the differences of the SR-MBPT and MR-MBPT with

% —v— SSMRPT(BW) respect to the CI values. FCI values with the first basis are
"\_ qguoted, while only the CCSD(T) values with the larger basis
L

3

A
vl

(a.u.)

-199.20

Energy

-199.25

were available.

-199.30 H—

' 4 ' 5 ' 6 7 ' 8 ' 9 10 All the results presented indicate excellent performance of
R (a.u) these size-consistent second-order perturbation methods. In

' neral, the RS version seems to work r.

Figure 5. PES of b general, the RS version seems to work bette

TABLE 6: Spectroscopic Constants of  in the Ground

State using SS-MRPT V. Concluding Remarks

method Re(A) De(eV) we(cm™)  Bwe(cm™) We have presented in this paper the perturbative counterparts
SS-MRPT(RS®) 1.385  2.336 985.476 12.888 of our recently developed state-specific multireference CC (SS-
SS-MRPT(BWY  1.391 2.043 941.452 13.447 MRCC) theory based on a CAS. In this formulation, all the
exptl results 1411 1659 917 11.2 model space determinants are treated on the same footing. The
2Basis: ref 40P Reference 39. model space coefficients in this formalism are flexible, not
constrained to some preassigned values. Both the components
() Molecules with Pronounced Multireference Charac- of the cluster operators and the coefficients are determined self-

ter: CH; and C,. We have also stut_jied one specific state of consistently by solving the SS-MRCC equations. We have
each of the molecules GHand G which have a pronounced  shown the emergence of the first-order equation for the wave
multireference character. The effect of correlation is rather high fnction and the generation of the second-order energy in both
for these two states. We have done the calculations only atpg and BW form depending on our expansion scheme. In the

specific geometeries. These studi_es are car_riec_i out to c_iisperrhs version of the state-specific multireference perturbation
to what extent the SS-MRPT provides quantitative description theory (SS-MRPT), the zeroth-order enefyis obtained by

of the ground-state energy. diagonalizing the matrix of H in the model space. The zeroth-

For the excited singlet state of the ghholecule, we have S . . .
used the same basis and geometery as employed by Bauschli order co_eff|C|ents are also obta!ned at this stage. In the_ solution
Sfor the first-order cluster amplitude&, and the coefficients

cher and Tayld in their treatment. The calculations have also keot fixed. Only after th for the clust
been compared with the full Cl results. Here we have considereg@'® Ke€pt Tixed. Lnly after the convergence for the cluster

the two configurations £&2& 1b3 3& and 14 2& 13 16 in g_mphtuo:_es_ |strr<]aached, glo v(\;e reIa>t< _thef:gefﬂ;ler]:s by wax[ of
our active space. Again, the two active orbitals belong to lagonalizing the second-order matrix of the eflective operator,

different symmetries, and our model space is complete. Here Which provides both the second-order energy and the relaxed
too we have done the Hartre€ock, single reference based SR- coefficients at that order. For the BW version of the SS-MRPT,
MBPT, and the MR-MBPT calculations, to illustrate the relative the energy parametérand the coefficients as well as the first-
performances of the various methods. We list the SCF and theorder cluster amplitudes are self-consistently determined. We
difference energy values in Table 7, with respect to the FCI have presented illustrative aplications of the PES for a number
values. of model and real systems where the presence of intruders is
The singlet ground state of the @olecule was also studied — quite prominent. We have also applied our formalism to
by us using the DZ basis of Huzinaga and Dunning as reported molecules CHand G, which have pronounced multireference
by Nakatsujt? and also with a larger DZP basis, as used by character at the equilibrium geometry. For comparisons, we have
Watts and Bartletf? at the equilibrium bond distance of 2.348 also presented results from the single reference MBPT, the

TABLE 7: Comparison of Second-Order Ground-State Energies with FCI Values for Molecules CH and C; (All Entries in au)

SS-MRPT
system SCF (au) SR-MBPT MR-MBPT RS BW FCI (au)
CH»?? —39.031 552 —4.369 —6.393 —4.751 4.179 —39.027 183
CP —75.664 985 —138.692 —13.899 —13.081 3.294 —75.526 293
Cs —75.831 443 —189.695 2,914 —49.054 1.308 —75.641748
C! —75.605 558 123.68 —203.166 —58.201 6.721 —75.729 238

aBasis, geometry, and FCI: ref 41Basis: ref 42 (freezing as per ref 42Basis: ref 429 Basis: ref 43¢ CCSD(T) results reported in ref 43.
Two core and two highest orbitals are kept frozen in the bases in footoatedd. All energy entries except for SCF are differences with respect
to the FCI values, in 1 au (mH).



1830 J. Phys. Chem. A, Vol. 103, No. 12, 1999

multireference MBPT based on effective Hamiltonians, and the
FCI (or a CISDTQ). Our results clearly indicate that the SS-
MRPT performs smoothly across the regions of avoided

Mahapatra et al.
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crossings or in the presence of intruders, while the SR-MBPT go9.

or the MR-MBPT performs rather poorly in the various regions

of the PES.
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