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We explore in this paper the efficacy of the Rayleigh-Schrödinger (RS) and the Brillouin-Wigner (BW)
perturbative counterparts of our recently developed multireference state-specific coupled-cluster formalism
(SS-MRCC) with a complete active space (CAS). It is size-extensive and is designed to avoid intruders. The
parent SS-MRCC method uses a sum-of-exponentials type of Ansatz for the wave operator. The redundancy
inherent in such a choice is resolved by postulating suitable sufficiency conditions which at the same time
ensure size-extensivity and size-consistency. The combining coefficientscµ for φµ’s are completely relaxed
and are obtained by diagonalizing an effective operator in the model space, one root of which is the target
eigenvalue of our interest. By invokation of a suitable partitioning of the Hamiltonian, very convenient
perturbative versions of the formalism in both the RS and the BW forms are developed for the second-order
energy. The unperturbed Hamiltonian is akin to the Epstein-Nesbet type when at least one of the orbitals is
inactive and is the entire active portion of the Hamiltonian when all the orbitals involved are active. Illustrative
numerical applications are presented for potential energy surfaces (PES) of a number of model and realistic
systems where intruders exist and for molecules in their ground states with pronounced multireference character.
Single reference MBPT and effective Hamiltonian-based multireference MBPT second-order results are also
presented for comparisons. The results indicate the smooth performance of our state-specific perturbative
formalisms in and around the region of intruders in the PES, indicating their suitability in bypassing intruders.
In contrast, the effective Hamiltonian-based MBPT methods behave poorly in the regions of intruders.

I. Introduction

Attempts to develop methods capable of reliable computations
of potential energy surfaces (PES) continue to remain an
important area of activity in quantum chemistry. The method-
ological challenges such as ensuring size-consistency over a
wide range of molecular geometries in a manifest manner,
keeping a uniform quality of the wave function around the
regions of real or avoided curve-crossings, and designing
formulations which are tailored to bypass intruders seem not to
be resolved completely as yet. Although the multireference CI
(MRCI) methods have been widely used over the past two
decades, the results are usually adjusted in a rather ad-hoc
manner by invoking empirical size-extensivity corrections.1 The
multireference many-body perturbation theory (MR-MBPT) with
a complete active space (CAS)2,3 in the effective Hamiltonian
framework ensures size-extensivity in an explicit fashion, but
their practical utility remains limited in scope due to the
ubiquitous intruder problem.4 However, using various shift
techniques, which characterize clever partitioning of the Hamil-
tonian, reasonable results have been obtained in many cases.5

Such stratagems will not, however, work for nonperturbative
approaches such as multireference coupled cluster methods
where the full, rather than a partitioned, Hamiltonian figures.
Thus, for the multireference coupled cluster methods using
effective Hamiltonians,6-8 the disadvantages stemming from
intruders is serious indeed. It appeared at one time that working
with incomplete model spaces9-12 would resolve the intruder
problem. While this is true for studies at a fixed molecular

geometry, such as one needs in spectroscopy, there are still
problems for potential energy surface (PES) studies since there
are usually different intruders in the different regions of potential
energy surfaces.

It seems now that the most promising approach to bypass
intruders, yet at the same time retaining manifest size-exten-
sivity, would be to start out with a multideterminant reference
space but to target just the specific state of our interest. This
has been the main thrust in some of the state-specific multi-
reference perturbation theories in vogue today.13-17 There have
also been recent developments of a coupled cluster analogue
of these methods.18-19 All of them provide a contracted
description of the reference function in the sense that the
combining coefficients of the reference determinants in the CAS
function are fixed at some preassigned values (usually from a
variational optimization of the CAS function). Thisunrelaxed
descriptionof the coefficients might in some cases lead to poorer
convergence of the above formalisms, particularly in the
presence of intruders which tend to modify the coefficients
drastically. An attractive alternative is to obtain the coefficients
via the diagonalization of an effective operator (now called the
intermediate Hamiltonian20) in the reference space. We may call
such formalisms as usingrelaxedmodel-space coefficients. Such
formulations have appeared recently in the literature.20-24 We
have invoked the coupled cluster Ansatz to represent the exact
function as a cluster expansion around the multideterminant
reference function.19,25-28 We mention in particular our latest
formulation, hereafter called the state-specific multireference
coupled cluster (SS-MRCC) theory,19,28 which treats all the
reference determinants on the same footing and is thus
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potentially capable of describing electron correlation over a wide
region of PES, where the relative importance of the reference
determinants might change significantly. Preliminary applica-
tions of the method gave very encouraging results.28 As a
practical tool of being applicable to bigger molecules, where a
full-fledged CC formulation would be computationally rather
demanding, it seems worthwhile to explore the efficacy of the
perturbative counterparts of the formalism. It turns out that the
SS-MRCC theory is quite rich in its structure in that it subsumes
in it size-consistent versions of both a Rayleigh-Schrödinger
(RS) and a Brillouin-Wigner (BW) perturbation theory,
depending on the expansion strategy. We develop and apply in
this paper the first-order RS and BW perturbative expansion of
the wave function of our SS-MRCC formalism, which provides
the second-order energy. Henceforth, we shall refer to our state-
specific size-consistent multireference formalism as the SS-
MRPT method.

In section II, we present a brief resume of our SS-MRCC
method. This serves both as an introduction of the essential
ingredients of the approach and as a prelude to the perturbative
formulations to follow. The RS and the BW versions of the
perturbation theories are covered in section III. In section IV,
we present the illustrative numerical applications, along with
discussions. Section V contains the summarizing remarks.

II. A State-Specific Coupled-Cluster Theory with a
Relaxed Reference Function: Brief Resume

We describe briefly here the essential aspects of the SS-
MRCC formalism. We start with a set of reference determinants
which ensure a proper dissociation of a molecular state into
appropriate fragments. For detailed discussions leading to the
formulation and the proof of its size-extensivity and size-
consistency, we refer to our recent publications.19,28

Following the traditional convention of quasidegenerate
many-body nomenclature, we term the doubly filled orbitals as
inactive “core” orbitals, the partially filled occupied ones as
active “valence” orbitals, and the virtual orbitals not contained
in the reference function as inactive “particle” orbitals. We write
the reference functionψ0 as a combination of the reference
determinantsφµ spanning the CAS-space:

The exact functionψ is written as a cluster expansion
involving cluster operatorsTµ exciting from correspondingφµ’s:

EachTµ excites to all the virtual functions fromφµ. Such a
cluster expansion Ansatz was first used in the effective
Hamiltonian context8 and has recently been exploited in the
state-specific formulations as well.19,24,28 Since eachφµ has
different sets of active orbitals, any specific core-to-particle
excitation would lead to a different virtual determinant from
eachφµ. This is however not so for excitations involving active
orbitals. Thus, we would encounter redundancy of the cluster
operators involving active orbitals. To determine all of them,
we have to invoke suitable sufficiency conditions.

ψ satisfies the Schro¨dinger equation with the eigenvalueE:

To generate the equations determining the cluster amplitudes

as well as the energy and the coefficients, it is convenient to
rewrite H exp(Tµ) for eachµ in eq 3 in normal order taking
eachφµ as the vacuum. Using Wick’s theorem, we then find

The connected entityHh µ ≡ {Hexp(Tµ)}µ denotes all terms
obtained by joining the operators inH with those ofTµ. The
notation{‚‚‚}µ signifies that the operator inside the brace has
been written in normal order with respect toφµ as the vacuum.
SinceTµ has only hole-particle excitations of various ranks, the
entire factor exp(Tµ) can be taken out of the second equality of
eq 4 from the left, leading to the right side of eq 4.

The coefficientscµ for a CAS-CI or a CAS-SCF basedψ
can be determined by rewriting each term in the sum on the
right side of eq 3 in normal order with respect to the
correspondingφµ, using eq 4 and projecting onto the reference
determinants:

Since our model space is a CAS, the uncontracted operators in
Tν in the second equality of eq 5 always lead to excitations out
of the model space, and this is why we have the simplification
leading to the third equality of eq 5.

From now on, we shall denote the matrix-element〈φµ|Hh ν|φν〉
by the symbolH̃µν. H̃µν is clearly a connected term if the
operatorTν is connected. Using eq 5, the equation determining
the eigenvalueE is given by

For determining the cluster amplitudes, we again start from
eq 3 and obtain

whereQ is the projector onto the virtual space spanned by the
set{øl} and the sum∑ν|φν〉〈φν| is the projectorP onto the space
of reference determinants. Due to the presence of linearly
dependent cluster amplitudes, eq 7 would generate an insuf-
ficient number of equations for determining all the cluster
amplitudes. We have proposed recently19,28a set of sufficiency
conditions which lead in a natural manner to a manifestly size-
extensive formalism.

In order to arrive at these equations, we firstinterchange the
dummy indicesµ andν in the second term on the left side of eq
7. We next note that, instead of using the traditional form of
the resolution of identity, we can invoke a completely equivalent
expression of the form

Using this new resolution of identity, we can write the
rearranged eq 7 as

ψ0 ) ∑
µ

cµφµ (1)

ψ ) ∑
µ

exp(Tµ)φµcµ (2)

Hψ ) H∑
µ

exp(Tµ)φµcµ ) Eψ (3)

H exp(Tµ) ) {H exp(Tµ) exp(Tµ)}µ ) exp(Tµ){H exp(Tµ)}µ

(4)

∑
ν

〈φµ|H exp(Tν)|φν〉cν ) ∑
ν

〈φµ|{H exp(Tν) exp

(Tν)}ν|φν〉cν ) ∑
ν

〈φµ|{H exp(Tν)}ν|φν〉cν ≡

∑
ν

〈φµ|Hh ν|φν〉cν ) Ecµ (5)

∑
ν

H̃µνcν ) Ecµ (6)

∑
µ

exp(Tµ)QHh µ|φµ〉cµ + ∑
µν

exp(Tµ)|φν〉H̃νµcµ )

E∑
µ

exp(Tµ)|φµ〉cµ (7)

I ) exp(Tµ)[Q + P] exp(-Tµ) ≡ Qh µ + Phµ (8)
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We now posit thesufficiency conditionsthat the terms in eq 9
containingQh µ for eachµ are equal:

The right side of eq 10, however, vanishes, sinceQ annihilates
fuctions of the model space:

Using the expression ofQh µ, and the linear independence of each
function øl constitutingQ, we deduce that

The above set leading to eq 12 are our stipulated working
equations for determining the cluster amplitudes ofTµ. It is
straightforward to verify that the remaining part of eq 9,
containingP, would also be equal and would generate eq 6,
which indicates the consistency of our sufficiency conditions
vis-a-vis eq 7. Let us note that in solving the equations for the
cluster amplitudes, eq 12, the knowledge of the coefficientscµ’s
is required. The two sets are thus coupled. At the end, we obtain
both the cluster amplitudes and the relaxed coefficients from
the diagonalization, eq 6.

We should emphasize here that the interchange of the dummy
indicesµ and ν in the second term of the left side of eq 7 is
essential to arrive at a size-extensive formulation. Invoking a
similar sufficiency condition for eachµ in the parent expression,
eq 7, leads to a size-inextensive theory, which is related
structurally to some other recent attempts.24,29 The proof for
connectedness of the cluster amplitudes from eq 12 hinges
essentially on completeness of the active space and the
connectedness of the composite∑ν〈øl|exp(-Tµ) exp(Tν)|φµ〉-
H̃µνcν/cµ. For details the reader is referred to our recent
papers,19,28,30where these aspects are discussed at length.

Since the reference determinants span a CAS, it also follows
that the energy obtained as the eigenvalue of eq 6 is also size-
extensive. The extensivity of the energy also implies correct
separation into fragments generated from the active orbitals and,
hence, size-consistency.

III. Emergence of RS and BW State-Specific
Perturbation Theories with Relaxed Coefficients

For the perturbative formulations up to the first order in
cluster operators, it is convenient to rewrite our SS-MRCC
equation, eq 12, in the following quasilinearized form:

Starting from the above equation, we now generate appropriate
RS and BW perturbative expansions in a systematic manner.
To achieve this, we first partition the Hamiltonian into an
unperturbed componentH0 and a perturbationV. We then
expand each cluster operatorTµ appearing explicitly in the
equation above as a power series inV. In the RS development,
we also expandE as a power series. However, for the BW
formulation, we leaveE unexpanded. The treatment of the terms
〈φµ|Hh µ|φµ〉 in eq 13 needs some special care. For the RS theory,
we expand〈φµ|Hh µ|φµ〉 again as a power series. For the BW case,
however, we leave it unexpanded just as forE.

Denoting by Tµ(n) the cluster operator Tµ at order n and
collecting all terms of ordern, we then obtain the formal
expressions of the state-specific RS or BW multireference
perturbation theory (SS-MRPT) of ordern. In particular, the
cluster amplitudes at the first order for the RS expansion are
obtained from

All the quantities in eq 14 are expressed usingφµ as the vacuum.
The corresponding BW version takes the following form:

We note at this point that there is a coupling of the different
Tµ operators for variousµ’s via the term∑ν〈øl|Tν(1) - Tµ(1)|φµ〉-
[H0]µνcν, where the coupling essentially stems from the off-
diagonal terms [H0]µνcν with ν * µ. Since a significant
contribution of the nondynamical correlation effects comes from
off-diagonal terms coupling determinants which are doubly
excited with respect to one another, it is imperative that we
include at least the portion of the two-body terms inH0 which
can couple theφ’s which are doubly excited with respect to
one another. Such two-body terms inH0 have previously been
considered by others as well.16,17

It thus warrants that we include in ourH0 all two-body terms
which scatters electrons from all pairs of active orbitals to all
pairs, same or different. In order to precisely define ourH0, it
would be convenient to rewriteH in normal order with respect
to the core as the vacuum:

Here the symbolsi, j, etc., run over the one particle basis for
description andEc is the expectation value〈0|H|0〉 with respect
to the core function|0〉 and fc is the core Fock-like one-body
operator. We now define ourH0 as a sum ofEc, the core Fock
operatorfc, all the diagonal ladder operators of the two-body
term of eq 16 which has at least one inactive orbital, and the
entire active portion of the two-body term. This choice forH0

is like the Epstein-Nesbet (EN) partitioning for all determinants
having at least one inactive orbital, but it differs from EN in
thatH0µν coincides with just the matrix-elementHµν. This choice
of H0 is the same as the one introduced by Dyall.17

∑
µ

[Qh µ + Phµ] exp(Tµ)QHh µ|φµ〉cµ + ∑
µν

[Qh µ + Phµ] exp(Tν) ×

|φµ〉H̃µνcν ) E∑
µ

[Qh µ + Phµ] exp(Tµ)|φµ〉cµ (9)

Qh µ exp(Tµ)Hh µ|φµ〉cµ + ∑
ν

Qh µ exp(Tν)|φµ〉H̃µνcν )

Qh µ exp(Tµ)|φµ〉 (10)

Qh µ exp(Tµ)|φµ〉 ) exp(Tµ)Q|φµ〉 ) 0 (11)

〈øl|Hh µ|φµ〉cµ + ∑
ν

〈øl|exp(-Tµ) exp(Tν)|φµ〉H̃µνcν )

0 ∀ l, µ (12)

[〈øl|H|φµ〉 + ∑
m

(〈øl|H|øm〉 - 〈φµ|Hh µ|φµ〉δlm)〈øm|Tµ|φµ〉 +

‚‚‚]cµ + ∑
ν

〈øl|[Tν - Tµ] + ‚‚‚|φµ〉H̃µνcν ≡ [〈øl|H|φµ〉 + (∑
m

〈øl|H|øm〉 - 〈φµ|Hh µ|φµ〉δlm)〈øm|Tµ|φµ〉 + ‚‚‚]cµ + ∑
ν

〈øl|Tν +

‚‚‚|φµ〉H̃µνcν - E〈øl|Tµ|φµ〉cµ ) 0 ∀ l, µ (13)

[〈øl|H|φµ〉 + ∑
m

(〈øl|H0|øm〉 - 〈φµ|[H0]µ|φµ〉δlm) ×

〈øm|Tµ(1)|φµ〉]cµ + ∑
ν

〈øl|Tν(1)|φµ〉[H0]µνcν -

E0〈øl|Tµ(1)|φµ〉cµ ) 0 ∀ l, µ (14)

[〈øl|H|φµ〉 + ∑
m

(〈øl|H0|øm〉 - 〈φµ|Hh µ|φµ〉δlm) ×

〈øm|Tµ(1)|φµ〉]cµ + ∑
ν

〈øl|Tν(1)|φµ〉H̃µνcν - E〈øl|Tµ(1)|φµ〉cµ )

0 ∀ l, µ (15)

H ) Ec + ∑
ij

〈i|fc|j〉{ai
†aj}c + 1/2∑

ijkl

〈ij |kl〉{ai
† aj

†alak}c (16)
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With this H0, our working equation forTµ(1) in the RS
expansion may be written as

where〈øl|Tµ(1)|φµ〉 is abbreviated astµ
l(1). The prime in the sum

above restricts the sum toøm’s differing from øl only in the
active orbitals. This is a consequence of our choice ofH0. E0

andcµ
0’s are obtained by diagonalizing the matrix ofHµν.

The corresponding BW expression is given by

The pseudoeffective operatorH̃(2) up to second order in both
cases is given by

H̃(2) on diagonalization provides us the respective second-order
energyE(2):

Equations 17-20 are our final working expressions for the
evaluation of cluster operators and energy.

To get a better insight regarding the avoidance of intruders,
we rewrite eqs 17 and 18 as30

for the RS version and

for the BW version. For a more detailed discussion, we refer to
one of our forthcoming papers.30

So long as the state energyE0 or E remains well-separated
from the virtual functions, the denominators in both cases remain
reasonable and this avoids intruders. This holds true even if
some of theHµµ’s are close toHll.

In the preliminary applications of our perturbative formalisms,
the term ∑′mHlmtµ

m(1) is zero by symmetry (see Section IV).
Thus, the equations used by us in this paper are

for the RS version and

for the BW version. This does not affect the extensivity of our
formalisms. The results, described in the next section, indicate
that this neglect does not significantly affect the quality of the
calculations either.

IV. Molecular Applications

Algorithmic Considerations. We note that there are cou-
plings between the variousT-amplitudes in the perturbation
equations, as are evident from eqs 23 and 24. But these are not
too many: only those components ofTν’s with ν * µ can couple
which can cause excitations toøl by their action onφµ. Their
effects can be included in an iterative manner. We start a loop
for a µ. Equations 21 and 22 are then solved by using the
previously computed values ofTν’s for other ν’s. For the RS
case, the values of the energyE0 and the zeroth-order coef-
ficients are obtained by diagonalizing the matrix ofHµν, and
they are fixed in the iterative updating of the cluster amplitudes.
Only after the convergence of the cluster amplitudes is reached,
do we diagonalize the matrix ofH̃µν

(2) to get both the second-
order energy and the relaxed coefficients at the second order.
A typical feature of the formalism up to second order of energy
in the RS formulation is then the use of the zeroth-order
coefficientscµ

(0) to compute the cluster operators andH̃, but
allow the coefficients to relaxwhile computingE(2), since this
is obtained by diagonalization. For the BW case, however, we
update the cluster amplitudes, the energyE, and the coefficients.
We have found that a fast convergence is reached by converging
the cluster amplitudes first in an inner loop while keeping the
coefficients andE fixed, and updateE and the coefficients in
an outer loop after the convergence of the cluster amplitudes
in the current inner loop is reached. In the updating ofE and
the coefficients, eq 20 is used.

Results and Discussions.We have applied both the RS and
the BW versions of our SS-MRPT method to test their relative
efficacies. Most of the systems chosen by us display the essential
features of quasidegeneracy and/or avoided crossings. The model
problemsH4 and H8 serve as good testing grounds for the
present formalism. The reaction path of the BeH2 model system,
widely studied by various workers, also serves as another very
good test case for our theory. We have carried out a very detailed
calculation for the ground-state PES of the Li2 molecule with a
rather small basis, for which we could do the full CI results for
comparison. A larger basis set calculation for this molecule has
also been carried out, for which we could perform only the
CISDTQ calculations for a similar comparison. The other PES
studied by us that of the F2 molecule. As a spin-off from our
SS-MRPT, we can also study molecules of pronounced multi-
reference character, and we have applied it to molecules CH2

and C2 in their ground state. For most of the systems studied,
we also provide results from the single reference MBPT and
the effective Hamiltonian-based multireference MBPT (MR-

tµ
l(1) )

Hlµ

E - Hll

+

∑
ν

ν*µ

〈øl|Tν(1)|φµ〉Hµν

cν

cµ

E - Hll

(24)

Hlµcµ
0 + (Hll - E0)tµ

l(1) cµ
0 + ∑

m,l*m

′

Hlmtµ
m(1)cµ +

∑
ν

ν*µ 〈øl|Tν(1)|φµ〉Hµνcν
0 ) 0 (17)

Hlµcµ + (Hll - E)tµ
l(1)cµ + ∑

m,l*m

′

Hlmtµ
m(1)cµ +

∑
ν

ν*µ

〈øl|Tν(1)|φµ〉H̃µνcν ) 0 (18)

H̃µν
(2) ) ∑

l

Hµltν
l(1) + Hµν (19)

∑
ν

H̃µν
(2) cν

(2) ) E(2) cµ
(2) (20)

tµ
l(1) )

Hlµ

E0 - Hll

+

∑
ν

ν*µ

〈øl|Tν(1)|φµ〉Hµν

cν

cµ

+ ∑
m,l*m

′

Hlmtµ
m(1)

E0 - Hll

(21)

tµ
l(1) )

Hlµ

E - Hll

+

∑
ν

ν*µ

〈øl|Tν(1)|φµ〉H̃µν

cν

cµ

+ ∑
m,l*m

′

Hlmtµ
m(1)

E - Hll

(22)

tµ
l(1) )

Hlµ

E0 - Hll

+

∑
ν

ν*µ

〈øl|Tν(1)|φµ〉Hµν

cν

cµ

E0 - Hll

(23)
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MBPT) derived from the state-universal MRCC theory8 for the
sake of comparison. The latter in particular is chosen for
comparison because (1) it uses the same Ansatz for the wave
operator and (2) we want to assess how it performs vis-a-vis
our state-specific formulation in the regions of intruders. To
indicate the relative performance of the various methods, we
have shown in the tables theenergy differenceswith respect to
the best CI results (FCI in most cases). Thus the entries for
each method in the tables correspond toEmethod- ECI.

(a) H4 Model Systems.The H4 models have been widely
studied by many workers31 in various geometrical arrangements.
Presently, we have carried out the calculations for the trapezoidal
(H4) and rectangular (P4) geometeries. These models are
examined extensively, mainly due to two reasons: (1) The
degree of degeneracy can be varied continuously from a
nondegenerate situation to a highly degenerate one by the
variation of a single parameter defining their geometry. (2) The
simplicity of the system makes a full CI calculation very easy.

(i) P4 Model. In the rectangular geometry, the distance of
approach of the two H2 molecules,R is varied from the square
geometry, for which a complete configurational degeneracy
occurs, and then gradually elongated to the rectangular geom-
etry. The H-H distance in each H2 molecule is kept fixed at
the stretched bond length of 2.0 au to enhance the effect of
quasidegeneracy which occurs atR ) 2.0 au. The basis used
for the study is a dzv+p(expnt)1.0) from the GAMESS library.

The lowest energy determinant corresponds to the configu-
ration φ1 ) 1a1

2 1b2
2 in the C2V symmetry, and this becomes

quasidegenerate with the determinantφ2 ) 1a1
2 2a1

2 at R ) 2.0
au. AsR is increased, the quasidegeneracy fades away. We have
taken these two configurations,φ1 andφ2, in our model space
and since 2a1 and 1b2 are of different symmetery, the model
space is complete. The configurationφ1 has been chosen as the
Hartree-Fock function.

In Table 1 we give the results for the ground-state difference
energy for the molecule with respect to the FCI values. We
have also listed for comparison the SCF and the differences of
the single-reference based MBPT (SR-MBPT), the effective
Hamiltonian-based MR-MBPT with respect to the FCI values.
As is expected, around the degenerate region, the single
reference results from SR-MBPT are quite inferior compared
to the FCI values which warrants a truly multireference
calculation. As can be seen from the table, the RS results are
somewhat better than the BW values throughout.

(ii) H4 Model. This model has been first introduced by
Jankowski and Paldus32 and later studied in detail using the state-
universal and valence-universal coupled cluster methodology

by Palduset al.33 In this geometry again the bond length for
each H2 is taken to be 2.0 au, and they are kept in an isoceles
trapezoidal position with the shorter end-to-end distance between
them fixed at 2.0 au. We start out with the geometry wherein
the two hydrogen molecules are placed parallel to each other,
making a square configuration. This is then deformed continu-
ously in a symmetric manner by widening the angle so that the
two H2 molecules make progressively obtuse angles with the
line joining those two end points which are 2.0 au apart. The
various configurations are specified uniquely by an angleφ,
which is the difference of the actual obtuse angle andπ/2.
Following ref 34, we specify the configurations by a parameter
φ ) Rπ. Thus by varyingR from 0 to 0.5, we go from a square
configuration to a linear one. The basis used in our calculation
is of DZ quality35 with a Cartesian p function with an exponent
0.9.

The lowest energy determinant corresponds to the configu-
ration φ1 ) 1a1

2 1b2
2 in the C2V symmetry, and this becomes

quasidegenerate with the determinantφ2 ) 1a1
2 2a1

2 at R ) 0.
For intermediate values ofR (in the range of 0.25), there are
intruders affectingφ2. In Table 2 we present the SCF, the
difference energies for the single-reference based MBPT (SR-
MBPT), and the effective Hamiltonian-based MR-MBPT to-
gether with our SS-MRPT(BW) and SS-MRPT(RS) with respect
to the FCI values. For the SR-MBPT,φ1 is taken as the reference
determinant. As is evident from the table the SR-MBPT results
are quite poor for low values ofR. This is due to the near
degeneracy ofφ2 with φ1 at low values ofR at this configuration.
Both SS-MRPT (RS) and MR-MBPT work well around these
geometries, though the former works much better. The MR-
MBPT results are poorer midway at aboutR ) 0.25, clearly
reflecting the presence of intruders. The present state-specific
calculations are uniformly good, the RS version being generally
better than the BW version. Also, as can be seen from Tables
1 and 2, the P4 model does not suffer as much from intruders
as for the H4 model. In both these models, the SS-MRPT works
very well.

(b) H8 Model System.This model system studied is a sort
of extension of the simple H4 model. It too bears the essential
features of the H4 system but is bigger. As shown in Figure 1
the model comprises of eight hydrogen atoms arranged in a
distorted octagonal arrangement. The four pairs of hydrogen
atoms are kept at a fixed internuclear separation of 2.0 au. The
pairs (5,6) and (7,8) are in fixed positions while the other two
pairs are moved parallely as shown in the figure. The geometry
of the model is determined simply by the distanceR between
the side of the regular octagon and the line indicating the
internuclear separation of the moved H2 unit. Here too the
degeneracy can be varied continuously by the variation of a
single parameterR as shown in Figure 1; also a FCI calculation
is feasible for this system, making useful comparisons possible.

TABLE 1: Comparison of the Second-Order Ground-State
Energies of the P4 Model with the FCI Resultsa

SS-MRPTR
(au) SCF (au) SR-MBPT MR-MBPT RS BW FCI (au)

2.0 -1.944 133 -116.078 -0.902 1.467 6.419-2.074 481
2.2 -1.998 014 -1.458 -0.744 0.755 5.363-2.102 335
2.4 -2.039 775 0.283 0.133 1.025 5.363-2.136 637
2.6 -2.072 157 1.186 1.036 1.576 5.374-2.164 970
2.8 -2.097 241 1.937 1.917 2.167 5.678-2.187 172
3.0 -2.116 620 2.59 2.779 2.726 6.041-2.204 309
3.2 -2.131 526 3.159 3.646 3.228 6.398-2.217 427
3.4 -2.142 924 3.659 4.566 3.677 7.029-2.227 391
3.6 -2.151 583 4.109 5.612 4.082 7.029-2.234 898
3.8 -2.158 119 4.521 6.887 4.455 7.575-2.240 506
4.0 -2.163 026 4.878 8.525 4.775 7.801-2.244 633

a H-H bond length) 2.0 au. Basis: dzv+a p function (exponent
) 1.0). All energy entries except for SCF are differences with respect
to the FCI values, in 10-3 au (mH).

TABLE 2: Comparison of the Second-Order Ground-State
Energies of the H4 Model with the FCI Resultsa

SS-MRPT

R SCF (au) SR-MBPT MR-MBPT RS BW FCI (au)

0.00 -1.931 750 -295.652 -2.784 -0.369 4.044 -2.063 112
0.01 -1.951 444 -25.026 -2.878 -0.572 3.849 -2.069 401
0.02 -1.969 599 -10.280 -2.924 -0.890 3.508 -2.079 470
0.10 -2.069 109 -2.390 -2.979 -1.103 2.387 -2.160 115
0.25 -2.133 651 -1.599 -91.649 -0.962 1.579 -2.217 381
0.40 -2.148 427 -1.490 5.604 -0.923 1.390 -2.230 887
0.50 -2.150 367 -1.428 5.051 -0.854 1.427 -2.232 700

a H-H bond length) 2.0 au. Basis: dz+a p function. All energy
entries except for SCF are differences with respect to the FCI values,
in 10-3 au (mH).
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For the present study we have used the basis as suggested
by Jankowskiet al.36 The parameterR is varied over a wide
range of values going from 0.0001 to 0.10. We have given in
Table 3 the SCF energy and the differences of our present SS-
MRPT results both in the RS and BW schemes together with
the differences of the SR-MBPT, MR-MBPT with respect to
the FCI values. Here again, the RS values are closer to the FCI
results.

(c) BeH2 Model System.In this model system we study the
C2V insertion reaction of Be in H2 to form the BeH2 molecule.
This system is interesting in that, at some distance of approach
R of the H2 molecule to Be, there is a crossing of two
configurations. We take these two configurations as our model
space functions. The relative importance of the model space
functions vary greatly withR, so that only a state-specific
function treating all the model space functions on the same
footing is expected to work well. This system has the additional
interesting feature that one or the other model function
encounters intruders at small and large values ofR, although
the ground state itself remains rather well separated from the
virtual states.

The system has usually been studied at specific points of the
sample path as given by Purviset al.37 We too have followed
the same sampling points on the reaction path. The arrangements
of Be and the two H-atoms for the various H-H distances and
R for all the sample points are shown in Figure 2. In Table 4
we list the SCF, the differences of the single reference-based
SR-MBPT, the traditional effective Hamiltonian-based MRPT,
our present SS-MRPT(RS), and SS-MRPT(BW) with respect
to the full CI values for nine sample points denoted by A-I.

At geometries A-D the dominant configuration is 1a1
2 2a1

2 1
b2

2, which in our study has been taken asφ1. However, at other
geometries, e.g. E-I, the determinant 1a1

2 2a1
3 3a1

2 is seen to
have a lower energy as compared to the previousφ1, resulting
in an avoided crossing (between E and F). This latter config-
uration is treated asφ2. At geometry E both these functions are
seen to be equally important. Purviset al.37 have used two

different reference determinants on both sides of the avoided
crossing, depending on which is the dominant configuration.
However, we have started with the Hartree-Fock function
corresponding to the configuration 1a1

2 2a1
2 1b2

2 and have used it
over the entire range of geometries studied here. Again since
the two active orbitals are of different symmetries, they form a
complete model space. Even thoughφ1 is not the dominant
function beyond sample point D, nevertheless, we have still used
this configuration as our Hartree-Fock function to generate the
orbitals at all distances. The success over the entire range of
geometries is a stringent test of our formulation.

At the point A, the MR-MBPT diverges since there is an
intruder in this region perturbingφ2. Its performance gets vastly
improved in the regions of quasidegeneracy involving avoided
crossing. The situation worsens again around the point I, where
there is again an intrudersbut this time perturbingφ1. The
results for the SR-MBPT requires some explanation. Sinceφ1

beyond point D is higher in energy than that ofφ2, the SR-
MBPT generates the excited function beyond D, and these,
rather than the lowest energy results, are shown in the table.
The SR-MBPT works well before the point F is reached, since
up to this point the functionφ1 is energetically well-separated
from other functions. Around the point F, we have the avoided
crossing of the two lowest states, andφ2 acts as the intruder
for φ1. Beyond this point, the performance remains consistently
poor, since at geometries G, H, and Iφ1 approaches a virtual
function acting as an intruder. In contrast, the SS-MRPT results
are consistently good, showing smooth behavior for all the
sample points, indicating the efficacy of the methods to obviate
intruders. Again, it is seen that the RS values are closer to the
FCI results.

(d) Li 2 Potential Energy Surface.The study of the Li2 PES
is another natural choice for testing the efficacy of any theory
which is designed to bypass intruders. This system, though rather
small, has an entire range of low-lying excited states acting as
intruders at various distances. The functionsφ1 ) 1σg

2 1σu
2 2σg

2

andφ2 ) 1σg
2 1σu

2 2σu
2 comprise the two reference determinants

that make up our active space and are the functions needed to
describe the bond-breaking.

At the equilibrium geometry,38 there are intruders which mix
strongly with the functionφ2, since the active orbital 2σu orbital
lies much higher than the other active 2σg orbital in this
geometry. At the distancesR around 5 and 9 au, there are
avoided crossings of the higher excited functions withφ2. Only
a rather accurate theory would thus be able to give a very smooth
behavior at around this point. BeyondR ) 11.0 au the two
model functions become prominently quasidegenerate.

As mentioned earlier, we have carried out detailed calcula-
tions using a small basis of DZ35 quality and further with a
somewhat larger basis (6-311G**) from the GAMESS library.

Figure 1. Geometrical arrangement of the four H2 molecules in the
H8 model problem.

TABLE 3: Comparison of the Second-Order Ground-State
Energies of H8 with the FCI Resultsa

SS-MRPT

R SCF (au) SR-MBPT MR-MBPT RS BW FCI (au)

0.0001 -4.065 562 18.068 8.017 11.372 21.736-4.204 803
0.001 -4.065 828 18.225 8.041 11.402 21.746-4.204 886
0.003 -4.066 418 18.543 8.095 11.467 21.767-4.205 075
0.01 -4.068 474 19.375 8.281 11.684 21.832-4.205 769
0.03 -4.074 276 20.257 8.797 12.212 21.939-4.208 036
0.06 -4.082 780 19.867 9.495 12.747 21.922-4.212 169
0.08 -4.088 316 19.286 9.895 12.962 21.838-4.215 336
0.10 -4.093 745 18.685 10.242 13.101 21.73-4.218 763

a H-H bond length) 2.0 au. Basis and geometry: ref 36. All energy
entries except for SCF are differences with respect to the FCI values,
in 10-3 au (mH).

Figure 2. Geometrical arrangement ofC2V insertion of Be in H2.
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For the DZ basis we have compared our results obtained by
SS-MRPT(RS) and SS-MRPT(BW) methods with those from
the single reference based SR-MBPT, the MR-MBPT, and the
FCI calculations.

As can be seen clearly from the plots given in Figure 3, the
single reference theory starting withφ1 diverges at large values
of R since its reference functionφ1 encounters an intruder in
φ2. More interesting is the MR-MBPT plot, which shows a
discontinuity in the range ofR≈ 5-6 au and also atR≈ 8-10
au, clearly indicating its breakdown in the presence of intruders.
However, the state-specific plots are considerably better at all
ranges ofR. As expected, the results from the MR-MBPT at
large values ofR are also good, although they are not quite as
accurate as our SS-MRPT results. For the larger basis we have
only carried out the SS-MRPT(RS) and SS-MRPT(BW) cal-
culations and compared with a CISDTQ calculation since we
could not perform a FCI with this basis. In Figure 4 we have
given a plot of the PES of the molecule in these three cases.
The figure shows the close comparison with the CISDTQ curve.

For this system we have also evaluated the spectroscopic
constants by fitting a Morse potential to our computed ground
state PES. We have thus obtained the dissociation energyDe,
the equilibrium bond-distanceRe, the harmonic vibrational
frequencyωe, and the anharmonicity constantâωe. In Table 5
we present these values for the DZ and 6-311G** bases together

with the FCI and CISDTQ values as applicable. The experi-
mental values are listed alongwith for comparison.39

(e) F2 Potential Energy Surface.Another interesting and
often studied system is the F2 molecule. Though the F-F bond
is rather weak, giving a very low dissociation energy, neverthe-
less this single bond is highly correlated making its study rather
interesting. We have scanned the PES of the system over a wide
range of internuclear separations using a DZ+ P basis.40 We
have also carried out calculations for this system with the single
reference based SR-MBPT and the MR-MBPT. In Figure 5 we
give the plots of the PES for the SR-MBPT, MR-MBPT, and
our SS-MRPT calculations. The performance of the single
reference theory is quite poor at largeR as can be seen from
the figure. The MR-MBPT plot is seen to have an erratic
behavior aroundR ) 5 au because of intruders. In contrast, our
SS-MRPT plots are seen to behave quite smoothly.

Here again we evaluate the spectroscopic constants and give
the results in Table 6, along with the experimental results.39

TABLE 4: Comparison of the Second-Order Ground-State Energies of BeH2 with the FCI Resultsa

SS-MRPT

geometry
coordinates
(y, R) in (au) SCF (au) SR-MBPT MR-MBPT RS BW FCI (au)

A (2.54, 0.00) -15.741 664 2.27 divergent 2.568 3.388 -15.779 172
B (2.08, 1.00) -15.699 566 1.794 3.072 1.994 2.772 -15.737 224
C (1.62, 2.00) -15.628 440 4.119 4.343 4.152 5.445 -15.674 818
D (1.39, 2.50) -15.562 676 7.016 5.675 6.547 9.053 -15.622 883
E (1.275, 2.75) -15.521 188 17.105 6.011 11.97 17.147 -15.602 919
F (1.16, 3.00) -15.477 278 114.927 0.189 5.662 23.743 -15.624 481
G (0.93, 3.50) -15.401 953 228.265 0.208 7.231 19.881 -15.693 194
H (0.70, 4.00) -15.360 226 329.646 6.608 0.576 10.666 -15.736 688
I (0.70, 6.00) -15.325 420 125.164 59.573 2.432 7.311 -15.760 878

a Basis and geometry: ref 37. All energy entries except for SCF are differences with respect to the FCI values, in 10-3 au (mH).

Figure 3. PES of Li2 using DZ basis.

Figure 4. PES of Li2 using 6-311G** basis.

TABLE 5: Spectroscopic Constants of Li2 in the Ground
State using SS-MRPT

method Re (Å) De (eV) ωe (cm-1) âωe (cm-1)

SS-MRPT(RS)a 2.723 0.874 362.3479 4.657
SS-MRPT(BW)a 2.727 0.840 375.123 5.195
FCIa 2.716 0.872 376 5.01
SS-MRPT(RS)b 2.635 1.100 353.166 3.513
SS-MRPT(BW)b 2.635 1.064 357.763 3.729
CISDTQb 2.599 1.051 364.226 3.912
exptl resultsc 2.670 1.056 351 2.59

a Reference 35.b Basis: 6-311G** and a Cartesian d function ()0.2).
c Reference 39.
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(f) Molecules with Pronounced Multireference Charac-
ter: CH 2 and C2. We have also studied one specific state of
each of the molecules CH2 and C2 which have a pronounced
multireference character. The effect of correlation is rather high
for these two states. We have done the calculations only at
specific geometeries. These studies are carried out to discern
to what extent the SS-MRPT provides quantitative description
of the ground-state energy.

For the excited singlet state of the CH2 molecule, we have
used the same basis and geometery as employed by Bauschlis-
cher and Taylor41 in their treatment. The calculations have also
been compared with the full CI results. Here we have considered
the two configurations 1a1

2 2a1
2 1b2

2 3a1
2 and 1a1

2 2a1
2 1b2

2 1b1
2 in

our active space. Again, the two active orbitals belong to
different symmetries, and our model space is complete. Here
too we have done the Hartree-Fock, single reference based SR-
MBPT, and the MR-MBPT calculations, to illustrate the relative
performances of the various methods. We list the SCF and the
difference energy values in Table 7, with respect to the FCI
values.

The singlet ground state of the C2 molecule was also studied
by us using the DZ basis of Huzinaga and Dunning as reported
by Nakatsuji42 and also with a larger DZP basis, as used by
Watts and Bartlett,43 at the equilibrium bond distance of 2.348

au. We have done two calculations with the first basis. In one,
we have kept the two core orbitals and the top nine virtual
orbitals as frozensthis scheme being the same as used by
Nakatsuji.42 In the other, we have kept the two core and the
top two orbitals as frozen. The FCI results shown in the table
corresponds to the respective values using the same orbital-
freezing schemes. For the calculations using the second basis,
we have kept the two core and the top two virtual orbitals as
frozen. Since we could not compute the FCI energies in this
scheme, we cite the CCSD(T) results with the same basis as
given by Watts and Bartlett. In Table 7 we have presented the
results of our calculations where we have once again listed the
SCF and the differences of the SR-MBPT and MR-MBPT with
respect to the CI values. FCI values with the first basis are
quoted, while only the CCSD(T) values with the larger basis
were available.

All the results presented indicate excellent performance of
these size-consistent second-order perturbation methods. In
general, the RS version seems to work better.

V. Concluding Remarks

We have presented in this paper the perturbative counterparts
of our recently developed state-specific multireference CC (SS-
MRCC) theory based on a CAS. In this formulation, all the
model space determinants are treated on the same footing. The
model space coefficients in this formalism are flexible, not
constrained to some preassigned values. Both the components
of the cluster operators and the coefficients are determined self-
consistently by solving the SS-MRCC equations. We have
shown the emergence of the first-order equation for the wave
function and the generation of the second-order energy in both
RS and BW form, depending on our expansion scheme. In the
RS version of the state-specific multireference perturbation
theory (SS-MRPT), the zeroth-order energyE0 is obtained by
diagonalizing the matrix of H in the model space. The zeroth-
order coefficients are also obtained at this stage. In the solution
for the first-order cluster amplitudes,E0 and the coefficients
are kept fixed. Only after the convergence for the cluster
amplitudes is reached, do we relax the coefficients by way of
diagonalizing the second-order matrix of the effective operator,
which provides both the second-order energy and the relaxed
coefficients at that order. For the BW version of the SS-MRPT,
the energy parameterE and the coefficients as well as the first-
order cluster amplitudes are self-consistently determined. We
have presented illustrative aplications of the PES for a number
of model and real systems where the presence of intruders is
quite prominent. We have also applied our formalism to
molecules CH2 and C2, which have pronounced multireference
character at the equilibrium geometry. For comparisons, we have
also presented results from the single reference MBPT, the

Figure 5. PES of F2.

TABLE 6: Spectroscopic Constants of F2 in the Ground
State using SS-MRPT

method Re (Å) De (eV) ωe (cm-1) âωe (cm-1)

SS-MRPT(RS)a 1.385 2.336 985.476 12.888
SS-MRPT(BW)a 1.391 2.043 941.452 13.447
exptl resultsb 1.411 1.659 917 11.2

a Basis: ref 40.b Reference 39.

TABLE 7: Comparison of Second-Order Ground-State Energies with FCI Values for Molecules CH2 and C2 (All Entries in au)

SS-MRPT

system SCF (au) SR-MBPT MR-MBPT RS BW FCI (au)

CH2
a -39.031 552 -4.369 -6.393 -4.751 4.179 -39.027 183

C2
b -75.664 985 -138.692 -13.899 -13.081 3.294 -75.526 293

C2
c -75.831 443 -189.695 2.914 -49.054 1.308 -75.641 748

C2
d -75.605 558 123.68 -203.166 -58.201 6.721 -75.729 238e

a Basis, geometry, and FCI: ref 41.b Basis: ref 42 (freezing as per ref 42.c Basis: ref 42.d Basis: ref 43.e CCSD(T) results reported in ref 43.
Two core and two highest orbitals are kept frozen in the bases in footnotesc andd. All energy entries except for SCF are differences with respect
to the FCI values, in 10-3 au (mH).
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multireference MBPT based on effective Hamiltonians, and the
FCI (or a CISDTQ). Our results clearly indicate that the SS-
MRPT performs smoothly across the regions of avoided
crossings or in the presence of intruders, while the SR-MBPT
or the MR-MBPT performs rather poorly in the various regions
of the PES.
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