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A general formula for the adiabatic-to-diabatic mixing angle in terms of the electronic dipole moments is
derived within a two-state model. It expresses the electronic coupling determining the rate of electronic transfer
in terms of the off-diagonal diabatic dipole moment.

1. Introduction

The electronic coupling between the initial and final diabatic
states is the major factor that determines the rate of electron
transfer.1,2 Within the Golden Rule approximation, the electronic
transfer rate is proportional to the square of the electronic
coupling.2c It is therefore expedient to develop such approaches
which can provide reasonable estimations of the electronic
coupling. One of these approaches was developed by Newton
and co-workers1 who named it the generalized Mulliken-Hush
method.3 This approach1c,d uses the expression for the mixing
angle of the transformation from the adiabatic states diagonal-
izing the electronic Hamiltonian to the diabatic ones4 in terms
of the adiabatic dipole moment derived by Macı´as and Riera,3a

and Werner and Meyer5b under the assumption that the diabatic
states are so well localized that the corresponding off-diagonal
diabatic dipole moment is equal to zero. These are in particular
the charge-localized donor and acceptor states, which are widely
used in modeling the electron coupling1,2 and which can be
viewed as a good approximation of “most” diabatic states.4b

On the other hand, to calculate the electronic coupling, Cave
and Newton1c,d used the block diagonalization procedure
developed by Cederbaum et al.6 for determining diabatic states.
Such procedure is rather suitable for introducing chemically
reasonable diabatic states and naturally defines an off-diagonal
dipole moment whose magnitude can then be thoroughly
examined.

Polarizable solvent may significantly influence the electronic
coupling.1,2,7a-e This influence is controlled in particular by the
off-diagonal dipole moment gained by the solute in terms of
its vacuum diabatic states.7d In the case when such an off-
diagonal diabatic dipole moment is small enough, the standard
perturbation technique can be applied to estimate its effect on
the electronic coupling. It has been recently pointed out by
Matyushov and Ladanyi7d that, despite the smallness of this off-
diagonal dipole moment compared to the diagonal ones, its
contribution to the electronic transfer matrix elements can
nevertheless reach the same order of the magnitude as that of
diagonal moments. Also, in the case of weak donor-acceptor
complexes, the off-diagonal dipole moment can be rather large
so as to donate a considerable intensity to the charge-transfer
band.3b The authors7d also emphasized the importance of the
inverse problem in the study of the electronic transfer, namely,

the problem of determining diabatic parameters from the known
adiabatic ones. Such a problem cannot be solved with the
aforementioned formula for the mixing angle.7f

The aim of the present work is to obtain a general formula
for the mixing angle in terms of the adiabatic dipole moments
which is derived without the assumption of neglecting the off-
diagonal dipole moment and which therefore will be also useful
for perturbation estimations when this dipole moment is small
enough. This is done in section 2. In section 3, we derive the
expression for the diabatic Hamiltonian in terms of the off-
diagonal dipole moment and summarize our results.

2. Adiabatic-to-Diabatic Mixing Angle vs Dipole Moments

Consider electronic HamiltonianH(r ;R) with corresponding
eigenfunctionsΨk(r ;R) and eigenvaluesEk(R). Ψk(r ;R)’s form
the adiabatic basis set.r denotes the electronic variables whereas
R ) (R1, ...,RR, ...) nuclear ones. ProjectingH(r ;R) onto two-
dimensional subspace generated, say, byΨ1 ≡ Ψi andΨ2 ≡
Ψf results in a 2× 2 diagonal Hamiltonian matrix with the
diagonal matrix elementsHkk ) Ek, k ) i,f ( i is used for the
initial, f for final states, respectively). Such projection procedure
gives rise to a so called two-state problem that appears to be a
rather useful tool1-3,7 in estimating the electronic coupling. The
latter one is defined as an off-diagonal element ofH(r ;R) in
the diabatic basis set formed byΨ̃i andΨ̃f: H̃if ≡ 〈Ψ̃i|H|Ψ̃f〉r.
Here, the integration is carried out overr only. Within the two-
state problem, the diabatic states are obtained by rotating the
adiabatic ones via a certain orthogonal transformation,

φ is the adiabatic-to-diabatic mixing angle. It is determined by
the nonadiabatic derivative couplingf if

(R) ) 〈Ψi|∇RRΨf〉r via the
equation4

Equation 2 implies that the nonadiabatic derivative coupling
f̃ if
(R) in the diabatic basis completely vanishes. This is actually

the definition of a diabatic or strictly diabatic basis.4

We now consider the adiabatic electronic dipole momentmkl

) 〈Ψk|r |Ψl〉r. Following Newton et al.,1b-e their components
are dealt with in a common (mean) direction. Definingmkl as
the projection ofmkl on this chosen direction, one obtains that
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the two-state dipole matrixm ≡ (mkl)kl obeys some sort of
“equation of motion”,

or in matrix form,

In eq 3, F is a nonadiabatic derivative coupling matrix with
matrix elementsf ij for any pair of states and [..., ...] are standard
commutation brackets. SubscriptR is hereafter suppressed.

Equation 3 is valid for an arbitrary finite basis set, not only
for the two-state problem and for any electronic operator. In
case ofn states, the generalization of the nonadiabatic derivative
coupling matrix is obvious. Defining the dipole moment matrix
in this diabatic basis asm̃ and taking into account that the
nonadiabatic derivative coupling matrix vanishes in the diabatic
basis set, one obtains from eq 3 that

Equation 5 expresses a “smoothness” of the dipole moments in
the diabatic basis set.8

Introducingm( ) m11 ( m22, one then rewrites eq 4 as

Applying further the orthogonal transformation (1) to the
adiabatic dipole matrixm, one converts it to the diabatic one,

Equation 5 will be used now to determine the mixing angle
φ. For this purpose, we substitute eq 7 into eq 5 and obtain

These eqs 8 give us the general solution for the adiabatic-to-
diabatic mixing angle

Equation 9 can be easily verified. Here,γ is a numerical
coefficient defined by the imposed boundary condition. This is
equivalent to solving first-order differential eq 2 that requires
imposing certain boundary condition. For instance,γ can be
evaluated from some value of the off-diagonal dipole moment
m̃12. A choice ofγ ) ∞ in eq 9 yields the formula tan 2φ0 )
2mif/m- which was obtained by Macı´as and Riera5a and Werner
and Meyer.5b The corresponding transformation (1) with the

mixing angle φ0 eliminates off-diagonal elementm̃if of the
diabatic dipole matrix. Ifγ * ∞, the mixing angle determined
by eq 9 rewritten as tan 2φ ) tan(2φ0 + cot-1 γ) results in such
expressions for the diabatic dipole matrix,

Equations 10-12 include the value ofγ equal to 2m12/m-. It
corresponds to the mixing angleφ ) π/4 that converts the
adiabatic off-diagonal dipole momentm12 to the diabaticm̃12

) -m-/2.
Equation 12 demonstrates thatm̃12 varies from a minimum

of (-m-/2, -|m-
2 - 4m12

2|/xm-
2+4m12

2) to a maximum of

(m-/2, |m-
2 - 4m12

2/xm-
2+4m12

2). It is worth noticing that
the infinite value ofγ is actually the singular point ofm- and
m̃12, that is, the point where all their derivatives with respect to
γ vanish. It is interesting to notice that, as follows from the
second equation in (6), one particular choice ofm̃12 that satisfies
a “smoothness” (5) is thatm̃12 ) âm+ where â is some
numerical coefficient,â ) 1 corresponds to the Mulliken
approximation9 (see also eq 40 in ref 7d). Such a choice ofm̃12

yields, for example,γ ) xm-
2+4m12

2-m+
2/m+ if m12

2 g
m11m22.

3. Diabatic Hamiltonian in Terms of Off-Diagonal Dipole
Moment

Rotating the adiabatic Hamiltonian matrix by the mixing angle
(9), one obtains its diabatic form,

In (13),E0 ) (E1 + E2)/2 and the energy offset∆E ) E1 - E2.

∇Rm ) [m, F] (3)
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Substitutingγ ) ∞, which corresponds to a vanishing off-
diagonal diabatic dipole moment, into eq 13 results in the
generalized Mulliken-Hush formula1 for the diabatic electronic
coupling

Thus, in the general case whenγ * ∞, eq 13 allows the
electronic coupling to be expressed in terms of the off-diagonal
diabatic dipole moment. Some consequences of this equation
can be drawn. First, substitutingγ ) 2m12/m- in the last
equation (13) yields|H̃12| ) ∆E/2. Second, within the Mulliken
approximation9 when m̃12 is equal tom+, one easily obtains
that the electronic coupling becomes equal to

Equation 15 implies that, with the fixed functionsµ12(R) and
µ((R), the inclusion of off-diagonal diabatic dipole moments
extends the domain of values of the electronic couplingH̃12

that, in turn, may enhance or diminish the rate of electron
transfer. Third, eq 13 can be applied for perturbative estimates
of the electronic coupling if the off-diagonal diabatic dipole
moment is small enough. Using eq 12 for|γ| g 2m12/m-, one
derives that the zero-order electronic couplingH̃12

|0| exactly
coincides with the generalized Mulliken-Hush couplingH̃12

[0]

while its first- and second-order corrections take the following
expressions:

One sees that to first order, inclusion of the off-diagonal diabatic
dipole moment increases the electronic coupling. The second-
perturbation term diminishes the sum of its two first terms.
Furthermore, one may show that the mixing angleφ coincides

with the angle tan-1(2H̃12/(H̃11 - H̃22)) diagonalizing the diabatic
Hamiltonian matrix. Summarizing, based on a smoothness of
the diabatic dipole moment, we obtain the formula for the
electronic coupling that takes the off-diagonal diabatic dipole
moment into account, and therefore, will be useful to estimate
the electronic coupling in terms of quantities which are directly
accessible through electronic spectroscopy.

Acknowledgment. Prof. Marshall D. Newton is acknowl-
edged for providing reprints of his papers. I thank Prof. Lenz
Cederbaum and Prof. Antonio Macı´as for useful discussions
and warm hospitality during my visit to Heidelberg and
sabbatical year in Madrid. The referee is acknowledged for the
valuable comments and suggestions. I also thank Prof. David
Yarkony for enlightening discussions. This work is supported
in part by DOE-BES Grant DE-FG02-91ER14189.

References and Notes

(1) (a) Newton, M. D.Chem. ReV. 1991, 91, 767 and references therein.
(b) Newton, M. D.; Cave, R. J. InMolecular Electronics; Jortner, J., Ratner,
M., Eds.; Blackwell Science: New York, 1997; pp 73-118. (c) Cave, R.
J.; Newton, M. D.Chem. Phys. Lett.1996, 249, 15. (d) Cave, R. J.; Newton,
M. D. J. Chem. Phys.1997, 106, 9213. (e) Creutz, C.; Newton, M. D.;
Sutin, N.J. Photochem. Photobiol. A: Chem.1994, 82, 47. (f) Cave, R. J.;
Newton, M. D.; Kumar, K.; Zimmt, M. B.J. Phys. Chem.1995, 99, 17501.
(g) Elliott, C. M.; Derr, D. L.; Ferrere, S.; Newton, M. D.; Liu, Y.-P.J.
Am. Chem. Soc.1996, 118, 5221.

(2) (a) Warshel, A.J. Phys. Chem.1982, 86, 2218. (b) DeVault, D.
Quantum-Mechanical Tunneling in Biological Systems; Cambridge Uni-
versity Press: Cambridge, 1984. (c) Marcus, R. A.; Sutin, N.Biochim.
Biophys. Acta1985, 811, 265. (d) Siddarth, P.; Marcus, R. A.J. Phys. Chem.
1992, 96, 3213.

(3) (a) Mulliken, R. S.J. Am. Chem. Soc.1952, 74, 811. (b) Mulliken,
R. S.; Person, W. B.Molecular Complexes; Wiley: New York, 1969. (c)
Allen, G. C.; Hush, N. C.Prog. Inorg. Chem.1967, 8, 357. (d) Hush, N.
S. Prog. Inorg. Chem.1967, 8, 391. Hush, N. S.Electrochim. Acta1968,
13, 1005. (e) Reimers, J. R.; Hush, N. S.J. Phys. Chem.1991, 82, 47.

(4) (a) Smith, F. T.Phys. ReV. 1969, 179, 111. (b) For a current review,
see: Yarkony, D. R.J. Phys. Chem.1996, 100, 18612. Yarkony, D. R.
ReV. Mod. Phys.1996, 68, 985 and references therein.

(5) (a) Macı´as, A.; Riera, A.J. Phys. B: At. Mol. Phys.1978, 11,
L489. Marcı́as, A.; Riera, A.Int. J. Quantum Chem.1980, 17, 181. (b)
Werner, H.-J.; Meyer, W.J. Chem. Phys.1981, 74, 5802.

(6) (a) Pacher, T.; Cederbaum, L. S.; Ko¨ppel, H. AdV. Chem. Phys.
1993, 84, 293 and references therein.

(7) (a) Marcus, R. A.Annu. ReV. Phys. Chem.1964, 15, 155. (b) Levich,
V. G.; Dogonadze, R. R.Dokl. Akad. Nauk SSSR1959, 124, 9. (c) Kim, H.
J.; Hynes, J. T.J. Phys. Chem.1990, 94, 2736. (d) Matyushov, D. V.;
Ladanyi, B. M.J. Phys. Chem. A1997, 102, 5027. (e) Lu, D.; Chen, G.;
Perry, J. W.; Goddard, W. A., IIIJ. Am. Chem. Soc.1994, 116, 10679. (f)
See Appendix of ref 7d.

(8) Kryachko, E. S.; Yarkony, D. R.Int. J. Quantum Chem., in press.
(9) Mulliken, R. S.J. Chim. Phys.1949, 46, 497.

H̃12
(0) )

∆Em12

xm-
2 + 4m12

2
) ∆E

x1 + cot2 φ0

(14)

H̃12 ) (H̃12
(0))2

m+

∆Em-
-

m-

m+m12
H̃12

(0) xm-
2 + 4m12

2 - (m+

m-
)2

m12
2 (15)

H̃12
[1] )

H̃12
(0)

xm-
2 + 4m12

2
m̃12

H̃12
[2] ) -

2H̃12
(0)

m-
2 + 4m12

2
m̃12

2 (16)

4370 J. Phys. Chem. A, Vol. 103, No. 22, 1999 Kryachko


