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We investigate the effect of an applied field, the internal molecular field produced by donor-acceptor groups,
as well that of an effective field by the environment, on the electronic properties and geometric structure of
substituted polyenes of finite length. We use analytically tractable methods to study (a) the effect of static
field on the bond length alternation (BLA) of finite polyene rings and (b) the effect of static field on even
and odd open chains. We find that the field drives the rings to lower BLA and that odd chains in a static field
can show reversal of BLA through the equal bond length limit.

1. Introduction

Organic molecules and polymers with extendedπ-conjugation
have attracted attention for optoelectronic and photonic applica-
tions because of their large nonlinear optical (NLO) responses.1-3

Optimization of the performance of materials for those applica-
tions has been the focus of extended research.2,4,5 Central to
the problem of optimization lies the question of the relation
between structure, both chemical and geometric, and the
electronic and optical properties, both linear and nonlinear.

In particular, donor-acceptor substituted polyenes have been
suggested as an important class of organic molecules for large
second-order NLO responses.4-6 Most studies have focused on
the influence of the donor-acceptor strength in a two-state
model7 in which the response increases as the difference in the
ground- and excited-state dipole moment matrix elements
increases. It has been recently found, however, by Marder et
al. that, in small donor-acceptor polyenes, geometric structure
and optical responses (both linear and nonlinear) are connected
in a simple way.8-10 Their idea is that the internal field of the
molecule (due to the donor-acceptor as well as the environment
such as the polarity of the solvent) controls its structure and
hence the optical response. Numerical calculations support their
conjecture.11 Theπ-electron bond length alternation (BLA), the
average difference between adjacent carbon-carbon bonds, has
been chosen as the parameter to describe the geometrical
structure. The change of BLA from its original value (neutral
donor-acceptor system) through the equal bond length situation
(BLA ) 0) to its reversal of magnitude (charge-separated
system) is correlated to the applied field and hence to the optical
properties.

To elucidate the origins of these results, we study the effect
of a static applied field on the geometry of systems that are
modeled after the donor-acceptor polyenes. The models are
chosen to contain the essence of the physical systems and can
still be solved analytically. We use Hu¨ckel theory, which has
been widely used to describe the qualitative behavior of
conjugated molecules.12

First, we study the effect of an applied field on the energy
spectrum and structure of finite even-membered rings of any

length. Within Hückel theory and periodic boundary conditions,
we find that the presence of the field drives the system toward
lower BLA. We then lift the periodic boundary condition
restriction and compare the effect of the field on even and odd
linear hydrocarbon chains. We consider the simplest possible
cases, the three- and four-carbon linear polyenes, and obtain
functional forms between the field and displacement of atoms
from equilibrium. We find those forms to differ, reflecting the
different symmetries of the two systems. Although the odd
system’s ground-state energy contains odd power terms in field
and displacement, the even one contains only even ones. We
show that this result holds for any finite length open-ended
chain. We conclude that the BLA can reverse signs by passing
through zero (the equal bond length case) only in the case of
the odd positive ions. It is a consequence of the inherent
degeneracy of the ground state of odd chains, which is absent
in the even case for finite systems. This result appears when
the proper boundary conditions are imposed; if periodic bound-
ary conditions or the infinitely long limit are applied, this end
effect disappears.

In section 2 we consider the effect of the applied field on
even-membered rings where periodic boundary conditions are
meaningful. We look at the stability of the bond-alternating
configuration in the presence of the field, through the second
derivative of the ground state, similar in spirit to the calculation
of Longuet-Higgins and Salem.13 We find that the field favors
the equal bond legth chain, i.e., disfavors bond alternation. In
section 3.1, we compare the ground-state energy and equilibrium
displacement of three- and four-carbon linear chains in the
presence of the field with open-end boundary conditions. We
show that the odd positive ion exhibits BLA reversal. In section
3.2 we show that the different behavior of odd and even chains
persists for any finite chain length. In section 4 we comment
on the physical origin of our results.

2. Bond Alternation in Finite Cyclic Polyenes in Presence
of an Applied Field

To explore the effect of the applied field on the bond length
alternation, we take advantage of periodic boundary conditions
to obtain exact results. Thus, we begin by even carbon polyenes
rings of finite length with general formC4n+2H4n+2. We express
the ground-state energy in terms of the displacement of the
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carbon atoms from the equal bond length configurationx and
the applied fieldf. The calculation proceeds in the spirit of that
of that of Longuet-Higgins and Salem13 (LHS). The σ bond
energy as a function ofx is given by (1/2)ω2x2, favoring equal
bond lengths (x ) 0); theπ contribution is given by

where f is the applied field,x is the bond order alternation
parameter, andR(x) is the polarizability as a function ofx. LHS13

found that

was negative, and so theπ energy favored bond alternation (i.e.
x*0). The question we ask is whether the field-dependent term
in eq 1 favorsx ) 0 (i.e., (d2R/dx2)x)0 < 0) or x * 0 (i.e.,
(d2R/dx2)x)0 > 0). In the former case, a competition of two
effects is created so that one could imagine that for certain limits
of f the favorable form becomes the equal distant bond length
chain. In the latter, the field acts in the same direction as bond
alternation, thus not providing a means of achieving BLA) 0
or reversing the BLA by that method. We will show that the
former is the case here.

As in LHS, the ground-state energy is taken to be the sum of
the occupied orbitals (for a ring of 4N + 2 atoms)

where

We denote the resonance integrals across the double (â2) and
single (â1) bonds by

We express alternately increasing and decreasing bond lengths
by modifying the resonance integrals so that

wherex is a small positive quantity (â0 is negative). The actual
change in bond length is equal toax, wherea is a positive
parameter. The second derivative ofEg

π(x,0) with respect tox
was found13 to be negative and increases asN ln N.

To see the effect of the field on the energy as a function of
x, we now proceed to calculate the second derivative of the
linear polarizability with respect tox. The standard expression
from perturbation theory forR

where〈ψg(x)|µ|ψe(x)〉 is the transition moment matrix element
between an excited state and the ground state. The prime denotes
a restricted sum, due to exclusion of the ground state. For
consistent use of periodic boundary conditions in finite systems,
the periodic representation of the dipole moment operator is
the appropriate one.14 For a ring of 4N + 2 carbon atoms,

wherel ) 2l0 is twice the equal bond length magnitude andx1

and x2 are angles defined in such a way that the single and
double bond lengths are given for smallx by

and

We find

Since the HOMO to LUMO transition carries most of the
oscillator strength, we consider only this excitation in the sum.
R now becomes

The appropriate wave functions are now those forj ) N

where

and

From eq 2, we obtain for the energy difference

Substituting eqs 6, 8, and 9 into eq 7, for a small displacement
of bondsx,

The sums in eq 10 can be done, and we find

Eg
π(x,f) ) Eπ(x,0) - 1

2
R(x)f 2 (1)

(dEg
π

dx2
(x,0))

x)0

Eg
π(x,0) ) 2 ∑

j)-N

N

εj

εj ) xâ1
2 + â2

2 + 2â1â2 cos[2jπ/(2N + 1)] (2)

â2 e â1 < 0 (3)

â1 ) â0e
-x, â2 ) â0e

x (4)

R ) 2∑
e

′
|〈ψg(x)|µ|ψe(x)〉|2

Ee(x) - Eg(x)
(5)

µ̂ )
e(2N + 1)l

2π [ ∑
j)-n

n {cos( 2πj

2N + 1
+ x1)|2j〉〈2j| +

cos(2π(j + 1/2)

2N + 1
+ x2)|2j + 1〉〈2j + 1|}] (6)

ls ) l0 + ax

ld ) l0 - ax

x1 ) -x2 ) ax2π
(2N + 1)l

R(x) = 2
|〈ψHOMO|µ̂|ψLUMO〉|2

∆E
(7)

ψHOMO )
1

x4N + 2
∑

j

{eijθN-iγN|2j〉 +

ei(2j+1)θN/(2+iγN)|2j + 1〉} (8)

θN ) 2πN
2N + 1

= π

γHOMO(x) ) 1
2

arctan(tanhx tan
πN

2N + 1) ) -γLUMO(x)

∆E ) 2|â0|x2 cosh 2x + 2 cos
2Nπ

2N + 1
(9)

R(x) )
e2l2(2N + 1)

8π2|â0|x2 cosh 2x + 2 cos
2Nπ

2N + 1

|[∑
j

cos( 2πj

2N + 1
+ x1(x))e-2πj/(2N+1) -

∑
j

cos(2π(j + 1/2)

2N + 1
+ x2(x))e2π(j-1)/(2N+1)]|2 (10)
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Therefore, [R′′]x)0 < 0 and

so that the external field works in the opposite direction to the
π-electron energy (i.e., the second derivative with respect tox
of theπ-electron energy is negative, and the second derivative
of the energy due to the electric field is positive). That is, the
electric field effect favors equal bond lengths.

3. Odd vs Even Finite Linear Polyenes in Presence of an
Applied Field

3.1. Three- and Four-Carbon Chains.We investigate the
effect of the applied field on the structure of donor-acceptor
finite polyenes further, through the bond alternation parameter.
In particular, we consider odd as well as even open finite chains.
The periodic boundary condition is no longer appropriate. In
this section, we begin by considering the simplest case, three-
and four-carbon open-chain molecules, and we obtain the
ground-state energy and dipole moment as a function of the
bond alternation parameterx and the applied fieldf. We find
that the functional dependence is quite different, reflecting the
different symmetries of the two systems. In particular, although
the properties of the even system contain only even powers in
fx, those of the odd also contain odd power terms, such asxf.
Motivated by the above result, we study further the radical as
well as the positive ion and find that BLA reversal through the
equal bond length case occurs for odd positive ions. We show
that the results of ref 11 are qualitatively reproduced for this
case.

We follow the notation introduced in section 2. In particular,
for the radical in site representation where the charge of an
electrone is 1 andf is the applied field,

For x ) 0, in terms ofy ) f/â0 the three orbital energies are

The first-order corrections inx are

On the other hand, for the four-membered chain,

The orbital energies are now (again in terms ofy ) f/â0)

whereS ) (9y4 + e4x - 12 sinh 2x + 30y2e-2x + 4)1/2. There
is no term linear inxf. We will show in section 3.2 this
difference in behavior to persist for longer chains.

Let us consider the three-carbon open chain further. To mimic
a donor-acceptor substituted polyene, we replacef by g ) -∆
+ f in the Hamiltonian matrix. Thus, at zero applied field, site
1 has energy-∆ and site 3 energy+ ∆. In the presence of the
field f, the site energies are transformed to+g and -g,
respectively. Note that the energies retain the same form, with
f replaced byg so thatg is the effective field on the system.

Now consider a three-electron, three-carbon chain. The total
π energy in the Hu¨ckel model is then

wherey ) g/â0. We can also compute the dipole moment of
this system to this order and find (as a function of field)

Thus,µ is an even function ofx for smallx. If we now consider
a two-electron, three-carbon chain, the total energy and dipole
moment become

and

The σ electron energy is given by

so that the equilibrium value ofx as a function of field is given
by

One can easily see that the same result holds for a four-
electron, three-carbon chain. Thus, for|f - ∆| e (2)1/2, the bond
alternation,xeq, is nearly a linear function of applied field and
is zero atf ) ∆. This is similar to the relationship found in ref
8. Moreover,xeq saturates as a function ofy and then goes to
zero again for largey. In the intermediate range, however,xeq

has a slightly sigmoidal shape as a function of field (see Figure
1 of ref 11). We now calculate the molecular polarizabilities as
a function of field by differentiatingEπ with respect toy. Note
thatxeq is given by eq 15 so that, for practical purposes, in the
region |y| < (2)1/2, y is proportional toxeq. The molecular

ε1,2 ) ( 1
2
x10y2 + 4 cosh 2x + 2e-2x + 2S

ε3,4 ) ( 1
2
x10y2 + 4 cosh 2x - 2e-2x + 2S

EN)3
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+
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+ O(g2x2) ) -(∂Eπ
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x
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polarizabilitiesR, â, andγ are further derivatives ofµ(x,f) with
respect tof. Since f and xeq are linearly related, the polariz-
abilities can be considered to be further derivatives with respect
to xeq, leading to forms for the polarizabilities in agreement with
those found in refs 8 and 11.

By examining any positive or negative ion odd-atom donor-
acceptor system, we find the same qualitative behavior as above.
The molecules considered in ref 11 are 11-atom systems, with
(effectively) 10π electrons.

We see from this analysis that the qualitative results of refs
8 and 11 are present already in the Hu¨ckel model ofπ-electron
molecules.

3.2. Generalization for Any Finite Chain of Length N. In
the previous section we found that the three-carbon atom
molecule behaves differently from that of four carbons. The
results were a direct consequence of the absence of linear terms
in the field f and displacementx in the four-carbon case.
Specifically, the energy level at the zero of energy was shown
to be proportional toxf, which caused the BLA reversal as
explained in section 3.1. Here, we demonstrate that these two
results hold for any linear chain of lengthN when the open end
conditions are imposed.

In the Appendix, we find the expansion of the secular
determinant for tridiagonal Hamiltonian matrices of the form
considered here, in powers of the effective fields∆i at the sites.
The result is given in eq A4. Here, we show that the secular
determinant for even and odd chains is different; for odd chains
the determinant has a term linear in the∆i, while for even chains,
it has no linear term. The Hamiltonian for even chains follows
that of eq 14, while those for odd follows that of eq 13. Here,
the ∆i’s are the field terms andM0 is the Hamiltonian forf )
0. Note that the diagonal terms ofM0 contain the eigenvalues
{λ} of M . We are interested in the first-order correction of the
eigenvalues to the field (the linear response), so we can truncate
the expansion in eq A4 after the first two terms.

We first consider even chains, and we show that the linear
term to the field vanishes. It is easy to see from the matrixM0

by inspection that the cofactorsM0(i|i) of complementary sites
are identical:

so that the term vanishes because

by construction.
We now turn to the odd chains. The∆i’s are now increment-

ing in absolute value from the center of the chain where∆ )
0. We can distinguish two types of odd chains: those for which
the two half-chains are even and those for which the two halves
are still odd. In the first case the cofactors of the complementary
sites (that is, sitesj andN - j + 1) are identical. Those terms
cancel, since they are multiplied by the field, which is equal in
magnitude but opposite in sign. Only the two end cofactors
remain, M0(1|1) and M0(N,N). The constant term of the
polynomial equation, independent ofλ goes like sinhx ≈ x.
Now we can rewrite the polynomial equation in powers ofλ,
which is of orderN, with contributionsgj(x) from |M0| and
g′j(x) from the determinant of the cofactors|M0(i|i)|:

where g0(x) ) 0 andg′0 ≈ x. We can obtain the first-order
corrections by substitutingλj ) λj,0 + δj. For the zeroth

eigenvalue,λj,0 ) 0, and so we obtain

The rest of the argument then is identical to that of section 3.1.
The other types of odd chains exhibit a similar behavior, but
the constant term has a more complex functional dependence
on x.

4. Conclusions

In this work, we have investigated the effect of an applied
electric field on the energy spectrum and the structure of finite
polyene systems. Changes in structure have been studied through
the bond length alternation, or the extent of the difference
between single and double bonds across the conjugated chain.
Our work was motivated by recent conjectures that the BLA
plays an important role in determining the nonlinear optical
response in conjugated molecules with strong electron donor
and acceptor substituents.11 The applied field was intended to
mimic the effect of the donor-acceptor groups as well as the
surrounding medium.

Following Longuet-Higgins and Salem,13 we found that the
field-dependent term in the second derivative of the ground-
state energy decreases the bond alternation effect; that is, it acts
in the direction opposite from that of theπ-electron energy term
calculated by LHS. These calculations concerned even cyclic
polyenes with periodic boundary conditions.

We then compared the functional form of the energy as a
function of the field and BLA in even and odd chains and found
a striking difference between the two. The BLA reversal may
be obtained in the odd positive or negative ions, while it is absent
in the even chains. The physical reason for this is that in the
odd chains there is an inherent degeneracy in the ground state.
This is not the case for even finite chains. This effect is lost if
one applies the infinitely long limit or periodic boundary
conditions.

In conclusion, in the weak-field limit, the applied field and
the molecular structure are related. Although the effect of the
applied field is important, the specific forms needed to control
the NLO properties11 were not generally recovered, similar to
the findings of others.15,16 However, the case of odd atom
positive or negative ions exhibit the same BLA behavior as in
ref 11. This result is a consequence of the symmetry of the
problem, which is best understood by lifting the periodic
boundary conditions and studying finite systems.
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Appendix

In this appendix we expand the determinant of a Hermitian
tridiagonal matrixM in powers of its diagonal constituents.M0

is obtained from the original matrix by setting those diagonal
elements to zero. For a general matrix

M0 is obtained by setting∆j ) 0 ∀ j.

δ0 ) fx/[g1(x) + fg′1(x)]

M ) (ε + ∆1 t12 0 ... 0
t21 ε + ∆2 t23 ... l
0 · · ·

0
l ε + ∆N-1 tN,N-1

0 ... 0 tN-1,N e + ∆N

) (A1)

M0(i|i) ) M0
(N+1-i|N+1-i)

∆i ) -∆N+1-i

λN[gN(x) + fg′N] + ...λ[g1(x) + fg′1] + [g0(x) + fg′0]

Finite Polyenes J. Phys. Chem. A, Vol. 103, No. 14, 19992265



The addition theorem of determinants17 expresses a deter-
minant whose constituents of a row or column consists of two
terms as the sum of two determinants. The first contains the
terms of the original determinant by excluding one term of each
of the constituents, while the second contains those excluded
terms. We apply this theorem to each of the columns. For
example, from the decomposition of the first column ofM

we obtain

By applying the same procedure succesively and rearranging
terms, we can obtain the following:

whereM0(i|j) is the cofactor of matrixM0, M0(ij |ij ) the matrix
obtained by deletring rowsi and j, as well as columnsi and j,
and so on.
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