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We report a general method for the calculation of Jahn-Teller coupling constants byab initio methods widely
available today in standard packages. The vibrational frequencies corresponding to those obtained
experimentally are calculated at the symmetric position using a generalized restricted Hartree-Fock (GRHF)
wavefunction. The energy of the symmetric configuration is calculated as a conical intersection using a complete
active space self-consistent field (CASSCF) wavefunction. The energy of the distorted configuration is
calculated using the same CASSCF active space and occupations. The difference in energy of these two
CASSCF calculations is the Jahn-Teller stabilization energy. In addition to the total energy of the state at
the cusp, the conical intersection calculation determines the vector along which the molecule will distort.
This vector is projected onto the normal modes of the molecule, obtained via the GRHF calculation, so that
estimates of the experimentally observable linear Jahn-Teller coupling constants can be obtained. We also
present a method for the calculation of the quadratic Jahn-Teller coupling constants. This approach has been
applied to and evaluated for the methoxy family of radicals (CH3O, CF3O, CH3S, and CF3S).

1. Introduction

The Jahn-Teller effect1sthat a nonlinear molecule in an
orbitally degenerate state will spontaneously distort from a
symmetric to an asymmetric configurationsis one of the most
fascinating phenomena in chemistry. Jahn-Teller coupling has
been observed in a wide variety of systems, including fullerenes,2

octahedral transition metal complexes,3 solid-state physics and
chemistry,4-6 and gas phase radicals7 and ions.8 Jahn-Teller
coupling has even been suggested as the cause for the anomalous
heat release in “cold fusion”.9 The recent blossoming of the
field of femtochemistry has given rise to numerous studies of
the expected dynamics of Jahn-Teller active molecules.10

Historically, most of the experimental research on Jahn-
Teller active molecules has been done in condensed or solid
phases, precluding the possibility of obtaining detailed experi-
mental information about the potential energy surfaces (PES).
However, recently a number of investigations on isolated, gas-
phase Jahn-Teller active radicals and ions have been performed
that do provide detailed information about the Jahn-Teller
surfaces. The combination of laser spectroscopy and free jet
expansions11 has been applied to obtain the vibronic structure,
and in some cases the rotational structure, of the methoxy family
of radicals (CH3O,12-16 CH3S,13,17 CF3O,18 and CF3S19,20), the
cyclopentadienyl radical,21 the benzene cation,22 the halogen-
substituted benzene cations,8,23,24 the excited states of am-
monia,25 the excited states of H3,26 and the ground and excited
states of the alkali and coinage metal trimers M3 (M ) Na,27

Cu,28 Ag30). The precision of these experiments provides an
ideal benchmark for the evaluation ofab initio methods for
Jahn-Teller surfaces.

It is generally known that Jahn-Teller coupling distorts the
geometry of the molecule such that the minimum of the PES is
not at the symmetric configuration of the nuclei, but at an
asymmetric configuration. What is less generally known is the
effect Jahn-Teller coupling has on the experimentally observ-
able vibrational energy levels of the state. While Jahn-Teller

coupling may distort the bond lengths by less than 0.1 Å or
bond angles by less than 1°, the same amount of Jahn-Teller
coupling might shift and/or split the vibrational energy levels
by hundreds of cm-1. Very significant effects may be seen in
the spin-orbit splittings as well as in the rotational structure.

Many quantum chemical calculations have been performed
in order to determine the distorted geometry and total energy
of Jahn-Teller molecules, a partial list of which includes
organic, cyclic π systems31,32 (C3H3,33 C4H4

+,34 C5H5,35

C6H6
+,36-39 C6H6

-,39,40 C6F6
+,36 C7H7,41 and C8H8

+ 42), tri-
methylenemethane,43 the methane cation and its derivatives
(CH4

+,44-46 CF4
+,47 CCl4+,48 and the heavier ions49), the

ammonium radical (NH4),50 the methoxy51,52 and trifluoro-
methoxy53 radicals, and several small transition metal com-
plexes.31,54,55There have been far fewer attempts aimed at the
calculation of the experimentally observable vibronic coupling
constants that characterize the geometric distortion, vibrational
shifts and splittings, and rotational structure. This is particularly
important, since it is just such calculations that would be of the
most aid in the spectral analysis. Conversely, experimental
results should be used to judge the quality of a particular
calculation.

Quantum chemistry has rapidly progressed to the point where
standardab initio calculations can predict many spectroscopic
parameters of closed-shell molecules and states to reasonably
good accuracy. Bond lengths and angles for organic molecules
can be typically calculated to within a few percent of the
experimental values,56 which means that the rotational constants
can be calculated to comparable accuracy. Vibrational frequen-
cies can be calculated to within 50 cm-1,57 a reasonably good
level of accuracy. Many thermodynamic properties of small
organic molecules can be calculated to within a few kcal/mol
accuracy using the G1,58 G2,59 G2MP2,60 and complete basis
set61 methodologies. With the development of methods that
include high levels of electron correlation (and the development
of computers to run these calculations), even properties such
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as the binding energy in van der Waals complexes can be
calculated accurately.62

However, no method has yet been reported to accurately and
systematically calculate the vibronic parameters that are used
to experimentally characterize a Jahn-Teller active molecule.
In this paper, we initiate efforts to rectify this situation. We
present a method to calculate the vibrational frequencies of a
Jahn-Teller molecule, both those of the active and of the
inactive modes. For the active modes, these frequencies cor-
respond to those of the undistorted molecule, which are the
values available from a standard Jahn-Teller analysis of an
experimental spectrum. Our method also predicts the experi-
mentally measurable linear and quadratic Jahn-Teller coupling
constants as well as the resultant stabilization energies and
distorted geometries. One clear advantage of our method is that
it relies exclusively onab initio programs that are widely
available today in commercial packages.

Our calculations are designed to serve several purposes. First,
the extremely detailed experiments that have been performed
on the isolated methoxy radicals, and to a lesser extent the Jahn-
Teller active aromatic systems, serve as benchmarks against
which theab initio calculations can be compared. If anab initio
calculation is validated, it likely will supply additional informa-
tion (e.g., detailed geometries, thermodynamic properties, etc.)
about the molecule that is not readily obtained experimentally.
Second, the spectra of Jahn-Teller molecules are often quite
complex and difficult to analyze. Therefore, anab initio method
that can predict the constants used in a Jahn-Teller analysis is
extremely valuable to the experimentalist, even if its precision
is limited. Even a qualitatively correct prediction of the energy
levels or simulated spectrum would be of significant value to
the experimentalist trying to analyze exceedingly complex
experimental data. To accomplish these tasks, we will clarify
what should and should not be inferred from a givenab initio
calculation for a Jahn-Teller molecule and how the results relate
to experimental observables.

We first present a condensed version of the quantum
mechanics of a Jahn-Teller state, with particular emphasis on
the geometry of the PES and the resultant parameters that are
used in the spectroscopic analysis of the vibronic energy levels.
We then outline the goals of anab initio calculation on a Jahn-
Teller molecule, review previous work in this area, and present
our approach. The methoxy family radicals are used to evaluate
how well the calculations perform.

2. The Jahn-Teller Potential Energy Surface

It is instructive to review the general shape and character of
the PES of a Jahn-Teller active molecule.63-68 The Jahn-Teller
PES is a special case of a crossing between two electronic states.
Curve crossings have been intensely researched for nearly three-
quarters of a century,69 yet much still remains to be learned
about them. A number of excellent expositions on this topic
have appeared in the literature, and we refer the reader to them
for discussion of many of the details that we will forego
here.70-75

There are several types of curve crossings that might occur
for a nonlinear molecule. The most familiar type is the
“accidental” crossing of two or more electronic states. These
crossings occur not because of symmetry constraints but merely
because the energies of the two states “accidentally” become
coincident at the geometry of the crossing. This type of curve
crossing is extremely important in the photochemistry of
molecules, mostly because the density of excited electronic states
is generally quite high in the neighborhood of ultraviolet
excitation energies.71

The Jahn-Teller PES is a special case of a curve crossing
for a molecule that nominally belongs to a point group with a
C3 or higher axis. A Jahn-Teller distortion occurs when the
electronic state is orbitally degenerate, for example, a2E state
of a C3V molecule. In this case, a “curve crossing” occurs at the
symmetric configuration of the nuclei between the two com-
ponents of the degenerate electronic state (Figure 1a-c il-
lustrates the normal spectroscopic interpretation of the Jahn-
Teller distorted PES). At the symmetric configuration,X0, the
gradient of the potential with respect to some of the vibrational
degrees of freedom is nonzero. This gives rise to linear Jahn-
Teller coupling, whereby a distortion along the vibrational
coordinates of an appropriate symmetry will lift the degeneracy
and stabilize the molecule. If cylindrical coordinatesFi andφi

are used to describe the vibrational coordinates of the Jahn-
Teller active mode, a moat of minimum energy is found atFmin.76

In the absence of quadratic Jahn-Teller coupling, the PES is a
constant for all values ofφi at Fmin and the molecule is free to
“pseudorotate” about the moat (Figure 1b). However, if
quadratic Jahn-Teller coupling cannot be neglected, local
minima (Emin,i) and maxima (Emax,i) exist about the moat, giving
rise to at least partially hindered pseudorotation (Figure 1c).

A useful distinction is often made between a “static” Jahn-
Teller effect and a “dynamic” Jahn-Teller effect. The former
refers to the situation when the Jahn-Teller coupling is
sufficiently strong to permanently distort the molecule. In this
case, a Hamiltonian appropriate for the point group of the
distorted molecule is most suitable for the analysis of the
vibronic and rotational structure. The dynamic Jahn-Teller
effect77 occurs when the molecule is not localized at the
geometry of the global minimum in the potential energy surface
at the distorted configuration. In this case, a Hamiltonian of
the symmetric molecule is most often used, with several
corrections added to it to account for the slight distortion of
the PES. In this paper, we will be concerned only with dynamic
Jahn-Teller coupling.

While not necessarily a curve crossingper se, “pseudo-Jahn-
Teller coupling” is, as the name implies, closely related to Jahn-
Teller coupling.78 The pseudo-Jahn-Teller effect occurs when
one electronic state is mixed with another via vibronic coupling.
In this case, neither a curve crossing nor a degenerate electronic
state is required. Pseudo-Jahn-Teller coupling is strongest
between states close in energy, such as occurs between the
1A′1 and1E′ states derived from an (e′′)2 configuration of aD3h

molecule. We will not discuss pseudo-Jahn-Teller coupling or
“accidental” curve crossings any further, rather we restrict
ourselves to “true” Jahn-Teller crossings.

Parts a′-c′ of Figure 1 representdifferentslices through the
samePES as in Figure 1a-c. The primed slices are the planes
that contain the pointsX0, Xmax, and Xmin. These points
correspond respectively to the symmetrical configuration of the
nuclei and the configurations at which there is the minimum of
energy,Emin, and its local maximum,Emax. (In (b′) Emin ) Emax.)
Since the primed figures requireXmax and Xmin, which are
known only from calculations, the lower set of slices in Figure
1 is most important for ourab initio calculations. A key purpose
of this paper will be to relate this lower set of traces of Figure
1 to the experimentally accessible upper set.

The Jahn-Teller PES contains several unique features that
cause complications in both the spectroscopy of the state and
in ab initio calculations of it. First, the symmetric configuration,
which is used as the basis for the spectroscopic analyses, is a
conical intersection of the two components of the electronic

2322 J. Phys. Chem. A, Vol. 103, No. 14, 1999 Barckholtz and Miller



state. Only recently haveab initio methods been developed to
handle this situation properly.70,74,79-82 Furthermore, the first
derivatives at the conical intersection are nonzero, making
calculations of the vibrational normal modes and frequencies
at this point difficult. However, as we show in the next section,
it is precisely these normal modes and frequencies that are used
as the starting point for the spectroscopic analysis of the vibronic
structure of the state.

3. Summary of the Jahn-Teller Effect in Spectroscopy

The Jahn-Teller theorem is applicable to orbitally degenerate
states, which necessitate open-shell electronic configurations.
All of the Jahn-Teller molecules that we will discuss have
doublet spin states, though vibrationally resolved spectra have
been obtained for a few Jahn-Teller active molecules in other
spin states. In the following discussion, we restrict ourselves to
a 2E state of a molecule belonging to theC3V point group, which
is appropriate for the ground states of the methoxy radicals,
which we use as examples. Others have presented analagous
derivations for the other point groups, including those with a
C4 principal axis83-85 and the cubic point groups.86,87

Jahn-Teller coupling causes a breakdown of the Born-
Oppenheimer approximation, which means that the nuclear and
electronic degrees of freedom cannot be conveniently separated,
as is the case for most molecules. The consequence of this
breakdown for spectroscopy andab initio calculations is that
defining a PES, a Hamiltonian, and a basis set is not a trivial
matter. Nearly all analyses of the vibronic structure of Jahn-
Teller states have used as the reference or zeroth-order wave-
function the eigenfunctions of the harmonic oscillator Hamil-
tonian of theundistortedmolecule. This might seem like an
odd choice, considering that the undistorted molecule is not a
minimum on the PES. However, it is a very convenient choice,
as corrections to the Hamiltonian can be evaluated in terms of
the harmonic oscillator basis functions. The alternative is to start
with a harmonic oscillator Hamiltonian and basis set for the
distorted molecule. Corrections to this Hamiltonian must still
be added, as the PES is not harmonic, nor can it be readily
approximatedVia anharmonic corrections. To the best of our

knowledge, no one has yet gone this route in analyzing the
vibronic structure of Jahn-Teller states. An additional advantage
of starting with the undistorted molecule as the reference state
is that it provides a clear and simple way to include spin-orbit
coupling in calculations of the spin-vibronic structure.19

For these reasons, we take as the starting point for the
spectroscopic analyses of the vibrational and rotational structure
of Jahn-Teller states the harmonic oscillator and symmetric
top basis functions appropriate for the symmetric configuration
of the nuclei. At the symmetric configuration of the nuclei, the
electronic wavefunction is degenerate and the two (complex)
components, E(, of the 2E electronic wavefunction can be
labeled byΛ ) (1. To the electronic basis set we append the
harmonic oscillator basis functions for thep two-dimensional
Jahn-Teller active modes and the 3N - 6 - 2p harmonic
oscillator basis functions for the non-Jahn-Teller active modes.
For the methoxy family of radicals, all of which belong to the
C3v point group, these basis functions are ofeanda1 symmetry,
respectively. (There are no vibrational modes ofa2 symmetry
in the methoxy radical.) To include spin-orbit coupling in the
calculation, the projection,Σ, of Son the symmetry axis is also
appended to the basis set.

The vibration-rotation Hamiltonian for a Jahn-Teller state
has been derived in detail elsewhere,19 and we will only present
the results of the derivations here, which will serve to define
the molecular parameters that are obtained from the spectral
analyses andab initio calculations. The Hamiltonian for the
molecule is the sum of a number of terms,

where ĤT is the kinetic energy of the nuclei. The potential
energy,V̂, is a function of the nuclear coordinates that are used
to define the PES in a nonrelativistic calculation, such as those
presented in this paper. For a relativistic calculation,ĤSO + V̂
defines the PES, but for the present case we include the spin-
orbit operator with the rotational operator as (ĤSO + Ĥrot) to
obtain the rotational structure inclusive of spin-orbit coupling.
The spin-orbit Hamiltonian is parametrized by the productaúe,

TABLE 1: Terms in the Vibronic Jahn -Teller Potentiala

term description form

Ĥ e
0 electronic potential at the symmetric configuration Coulomb, exchange, ...

Ĥh,a1
harmonic oscillator for the modes that are not Jahn-Teller active ∑

i)1

3N-6-2p1

2
λi|Qi|2

Ĥh,e harmonic oscillator for thep Jahn-Teller active mode ∑
i)1

p

∑
r)+,-

1

2
λi|Qi,r|2

Ĥl linear Jahn-Teller coupling ∑
i)1

p

∑
r)+,-

kiQi,r

Ĥqii
quadratic Jahn-Teller coupling within a single mode ∑

i)1

p

∑
r)+,-

1

2
gii(Qi,r)

2

Ĥqij
quadratic Jahn-Teller coupling between two modes ∑

i)1

p

∑
r)+,-

∑
j>i

1

2
gijQi,rQj,r

a The parameters are defined as

λi ) 〈E(|( ∂
2V̂

∂Qi,+∂Qi,-
)

0
|E(〉; ki ) 〈E(|( ∂V̂

∂Qi,(
)

0
|E-〉;gij ) 〈E(|( ∂

2V̂
∂Qi,(∂Qj,(

)
0
|E-〉

with Qi,( ) Fie(iφi.

Ĥ ) ĤT + V̂ + ĤSO + Ĥrot (1)
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where úe is the projection of the electronic orbital angular
momentum on theC3 axis anda is the spin-orbit coupling
constant.

The potential energyV̂ is conveniently approximated by a
Taylor expansion,19 using the vibrational normal modes as the
basis. Each term in the expansion is evaluated at the symmetric
configuration, leading to

where the explicit form for each term is given in Table 1.
The parameters of Table 1 are not those that are usually

obtained from an analysis of the vibronic structure of a Jahn-
Teller active molecule. Instead of the parameterλi of Ĥh,a1

and
Ĥh,e, the spectral analysis yields the “equilibrium” vibrational
frequencies,ωe,i, defined as

whereMi is the reduced mass of the vibrational mode. (The
reader should note that the subscripte in ωe,i does not represent
the symmetry of the vibrational mode, but rather stands for
“equilibrium.” For the Jahn-Teller analyses, the “equilibrium”
frequency is taken to be the unperturbed vibrational frequency
of the symmetric configuration.)

In addition to being a useful visualization of the state, the
PES of the Jahn-Teller state also defines a number of the
parameters used in the spectroscopic analyses. For nonzeroki

andgii, the PES corresponding to a slice through the PES along

the ith normal coordinate is given by

where in the last equality the expansion of the radical has been
truncated at terms quadratic inFi. Figure 1 shows a representa-
tion of the PES. (If spin-orbit coupling is included, these
equations are modified slightly.19) The minima and local maxima
of the PES are obtained by finding the roots of eq 5,

These formulas introduce two commonly used Jahn-Teller
parameters;Di is the linear Jahn-Teller coupling constant for
the ith mode andKi is its quadratic Jahn-Teller coupling

Figure 1. Slices through the Jahn-Teller PES. Curves (a), (b), and (c) are slices through the surface that correspond toφi ) 0 of the ith Jahn-
Teller active mode. Curves (a′), (b′), and (c′) are slices through the surface that containsX0, Xmin, andXmax. In the limit of a single Jahn-Teller
active mode, the slices labeled with and without primes are equivalent; in the general case, they are not. The curves are drawn for the following
Hamiltonians: (a) and (a′) harmonic oscillator with zero Jahn-Teller coupling; (b) and (b′) nonzero linear Jahn-Teller coupling; (c) and (c′)
nonzero linear and nonzero quadratic Jahn-Teller coupling. In curves (b), (b′), (c), and (c′), the dotted lines are the average potentialU0, which is
still a harmonic curve.

V̂ ) Ĥ e
0 + Ĥh,a1

+ Ĥh,e + Ĥl + Ĥqii
+ Ĥqij

(2)

ωe,i ) 1
2πc( λi

Mi
)1/2

(3)

Ui,( ) 1
2

λiFi
2 ( Fiki [1 +

2giiFi

ki
cos 3φi +

gii
2Fi

2

ki
2 ]1/2

(4)

≈ 1
2

λiFi
2 ( (kiFi + giiFi

2 cos 3φi) (5)

Fmin,i )
ki

λi(1 - Ki)
; φmin,i ) 0,

2π
3

,
4π
3

(6)

Emin,i ) -
ki

2

2λi(1 - Ki)
) -

Diωe,i

(1 - Ki)
≈ -Diωe,i(1 + Ki) (7)

Fmax,i )
ki

λi(1 + Ki)
; φmax,i ) π

3
, π,

5π
3

(8)

Emax,i ) -
ki

2

2λi(1 + Ki)
) -

Diωe,i

(1 + Ki)
≈ -Diωe,i(1 - Ki) (9)
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constant. Both are dimensionless and are defined in terms of
the reduced mass,Mi, of the mode and the parameters of Table
1,

and

These parameters will be used henceforth to describe the Jahn-
Teller coupling.

The energies of eqs 7 and 9 are relative to the symmetric
configuration, which is defined as the zero of energy. The depth,
ε(1), of the moat is the linear Jahn-Teller stabilization energy
and is a direct measure of the net effect the Jahn-Teller
coupling has on the energy of the molecule. From eqs 7 and 9,
the stabilization energy due to linear Jahn-Teller coupling is
obtained by settingKi ) 0, which yields

The additional stabilization due to quadratic Jahn-Teller
coupling in the mode,εi

(2), is

The barrier to pseudorotation about the moat is then 2Diωe,iKi

) Emax,i - Emin,i.
A common approximation is to assume that the Jahn-Teller

stabilization energy of the state is a sum of the Jahn-Teller
effect in the individual modes. This approximation results
directly from the assumption that the direct cross termĤqij

of
Table 1 is negligible, which all experimental analyses to date
have made. It is consistent with the notion that the Jahn-Teller
distortion can be accurately represented as the sum of distortions
along independent (harmonic) vibrational modes. Under these
assumptions, the total Jahn-Teller stabilization energy can be
expressed as the sum over each individual mode’s contribution,

This concept is illustrated in Figure 1. The top three curves
are labeled with points on the surface and stabilization energies
appropriate for a slice through the surface along a given active
mode. The bottom three curves are for the slice that corresponds
to the “direct” stabilization fromX0 to Xmin or Xmax. We define
more rigorously in section 5 the vectorx1, which is the vector
of steepest descent fromX0 to Xmin or Xmax, as shown in Figure
1b′,c′.

4. Relationship between the Spectroscopic andab Initio
Quantities

One approach to the calculation of the vibronic energy levels
of a Jahn-Teller surface would be to exhaustively map the
entire PES with anab initio or density functional method. This
type of calculation is relatively common for small molecules

but still requires arduous calculations of the PES and even more
troublesome fitting procedures of the calculated surface to a
potential, from which the vibronic and rovibronic quantum levels
could be calculated. While in principle this type of approach is
possible for a Jahn-Teller active molecule, such calculations
have yet to be reported. These calculations will remain prohibi-
tive for quite some time for the larger Jahn-Teller active
systems, such as the halogen-substituted benzene cations. As
such, a more efficientab initio method is desired.

If the experimental analysis used a Taylor expansion about
the minimum of the Jahn-Teller PES, there would be no
particular difficulty in theab initio calculation of the expansion
parameters of the Taylor expansion. The geometry could be
optimized to the minimum and the second, third, and higher
derivatives calculated. While not very common, methods to
calculate these higher derivatives have been developed for some
ab initio wavefunctions.88

However, as presented in the previous section, the experi-
mental analysis of the Jahn-Teller spin-vibronic structure is
most easily accomplished using a Taylor expansion about the
symmetric configuration. Because this point is a nonstationary
point of the surface, the calculation of the coefficients of the
Taylor expansion byab initio methods is not a trivial undertak-
ing. In this section, we describe the relationship betweenab
initio methods and the various quantities that need to be
calculated for a complete description of the Jahn-Teller PES
of a molecule. We will use as an example of these ideas the
ground state of the methoxy family of radicals, which are small
enough that high-levelab initio calculations can be performed.

4.1. Geometries and Energies.Calculations atXmin andXmax.
By far the most commonly calculated property of Jahn-Teller
active molecules is the geometry and total energy of the distorted
molecule. These calculations are relatively straightforward to
perform, as they require only a single configuration wavefunc-
tion and are therefore amenable to the standard programs and
methods available via manyab initio packages. The distorted
molecule can be treated just like any other moleculesthe
geometry of the distorted configuration can be optimized, and
analytical second derivatives, and therefore vibrational frequen-
cies, can be calculated. These calculations are clearly valuable,
as they reveal the nature of the distortion, for example, whether
distortions in the ground state of methoxy occur along the bond
lengths, bond angles, or dihedral angles. Fairly accurate total
energies of the global minimum also can be calculated by the
use of correlated methods based on single-configuration wave-
functions.

Calculations of the distorted geometries often utilize the
symmetry of the electronic state atXmin andXmax of the PES.
For example, an E state of aC3V molecule will split into one
state each of A′ and A′′ symmetry following a distortion that
lowers the symmetry of the molecule toCs. At Xmin (in Figure
1c′), the electronic wavefunction transforms as one of these
symmetries, while atXmax it transforms as the other. Theab
initio calculations of these distorted surfaces are perfectly suited
to determining the symmetries of the electronic states at these
two points.

The calculated total energy and the relative total energies of
Xmin andXmax are perfectly valid calculations of the value of
the energies of the molecule at those points on the PES. If both
of these points are located, and confirmed by vibrational
frequency calculations, the computed difference in their total
energies is an approximation to the stabilization energy due
solely to quadratic Jahn-Teller coupling. However, the com-
puted difference will correspond to a sum of the quadratic

Di )
ki

2

2p[Mi

λi
3]1/2

(10)

Ki )
gii

λi
(11)

εi
(1) ) Diωe,i )

ki
2

2λi
(12)

εi
(2) ) Diωe,iKi (13)

εtotal ) E0 - Emin (14)

≈ ∑
i)1

p

(εi
(1) + εi

(2)) ) ∑
i)1

p

Diωe,i(1 + Ki) (15)
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stabilization energies of all of the Jahn-Teller active modes;
i.e., it will be approximately equal to∑iεi

(2). To make the best
comparison with experiment, or to predict the vibronic structure
of a state, this sum needs to be apportioned into its individual
contributions from the active modes. A rigorous method for
accomplishing this feat has not yet been reported; in section 5,
we present an approximate method for calculating the quadratic
coupling constants, which are fortunately in most cases rather
small.

As an example, we show in Table 2 the geometries and
energies forXmin and Xmax of the ground state of CH3O
calculated via a number of different computational methods.
Because it is a small radical with a relatively simple electronic
structure, there is not a great deal of difference between the
calculated geometries. The calculated bond angles at the minima
are the most sensitive parameter to the distortion, and all of the
methods agree that at the minimum energy the Hi-C-O angle,
where Hi is the unique H atom in the mirror plane of theCs

geometry, is significantly compressed from its tetrahedral value
(109.5°) while at the maximum it is correspondingly expanded.
Changes in the Hi-C-H0 methyl scissors angle or the C-H
bond lengthsr(C-Hi/0) appear to be relatively minor.

Calculations at the Symmetric Point.One of the most
important properties provided by anab initio calculation is the
molecule’s stabilization energy derived from the Jahn-Teller
distortion, i.e., εtotal, eq 14. While a single-configuration
wavefunction can be used for a calculation of the energy of a
point on the distorted portion of the PES, a single-configuration
wavefunction is wholly inadequate for the calculation atX0, as
shown in several previous works.32

At X0, the degeneracy of the state imposed by the symmetry
of the molecule requires that a two-configuration wavefunction
be used in theab initio calculation of its energy. Early attempts
at these calculations focused on the application of two-
configuration self-consistent field methods (TCSCF), which
were able to provide reasonable energies of the state. However,
until recently, analytical first and second derivatives of the
energy were not available for a generalized Hartree-Fock
wavefunction. Extensions of the TCSCF were made possible
with the advent of the multiconfiguration self-consistent field
(MCSCF) methods, which allow for a “state-averaged” wave-
function to be computed. However, only a few calculations at
X0 have been reported using these methods.

It is possible to force the point group symmetry of the
molecule to be that atX0 and to use a one-configuration

wavefunction, of a lower symmetry, to calculate an energy. The
geometry can also be optimized within the constraints imposed
by the higher symmetry ofX0. In this way, an energy can be
calculated for the symmetric configuration that can be used with
the one-configuration energies of the distorted configurations
to estimate a Jahn-Teller stabilization energy. However, the
lowest-energy wavefunction atX0 will be obtained with a two-
configuration reference wavefunction, and the one-configuration
wavefunction is thus an upper bound on the energy atX0. (This
is strictly true only for those methods that are variational, such
as Hartree-Fock wavefunctions. For the other methods, such
as those based on Møller-Plesset theory and density functional
theory, the one-configuration methods atX0 are only ap-
proximations to the energy atX0.)

In Table 3, we show the calculated geometries and one-
configuration wavefunction energies for CH3O, constrained to
C3V symmetry. Because the one-configuration wavefunction is
not an appropriate wavefunction for the degenerate electronic
state underC3V symmetry, the geometry optimization does not
find a minimum on the surface. The one-configuration wave-
function will only be a minimum on the surface belonging to
the lower-symmetry point group. The table also lists the
calculated stabilization energyεtotal using the one-configuration
energy given in Table 2 forXmin. While these calculations of
εtotal may be a relatively good approximation to the experimental
value (458 cm-1 for CH3O in Table 5), this approach avoids
the problem of calculating the vibrational frequencies and Jahn-
Teller coupling constants needed for a determination of the
vibronic structure of the molecule.

4.2. Vibrational Frequencies. Ab initio calculations of
vibrational frequencies are only valid at stationary points on

TABLE 2: Calculated Geometries and Vibrational Frequencies for Xmin and Xmax of the CH3O Radicala

minimum maximum

method ROHF UHF B3LYP UMP2 CAS exptc ROHF UHF B3LYP UMP2

energyb -114.416236-114.420749-115.050462-114.420343-114.686083 -114.416122-114.420621-115.050205-114.685832
r(C-O) 1.384 1.383 1.369 1.388 1.421 1.37 1.385 1.383 1.370 1.390
r(C-Hi) 1.087 1.088 1.111 1.101 1.085 1.10 1.085 1.085 1.102 1.096
r(C-Ho) 1.085 1.085 1.104 1.096 1.085 1.10 1.086 1.087 1.107 1.098
∠(Hi-C-O) 106.1 106.1 105.2 104.8 105.7 110 112.6 112.7 114.9 113.6
∠(Ho-C-O) 111.5 111.6 113.6 112.3 111.2 110 108.3 108.3 108.8 108.0
∠(Hi-C-Ho) 108.6 108.5 110.9 108.0 109.0 109 109.8 109.9 109.6 110.0
ω1 2843 2833 2916 2895 2843 2843 2836 2936 2903
ω2 1416 1482 1550 1503 1398 1359 1402 1394 1377 1377
ω3 993 1078 762 1082 917 1051 1033 1026 1070 1155
ω4

+ 2911 2909 3024 3006 2915 2835 2909 2906 3032 3004

ω4
- 2905 2892 2986 2976 2857 2835 2908 2894 2974 2977

ω5
+ 1483 1418 1401 1410 1473 1417 1463 1462 1524 1476

ω5
- 1424 1409 1401 1393 1241 1417 1462 1458 1461 1464

ω6
+ 1083 986 1127 950 1078 1065 1149 1148 1198 1024

ω6
- 706 726 980 794 1018 1065 742i 763i 729i 836i

a See section 6 for the computational details.b Total energy in hartrees.c From Table 5.

TABLE 3: Calculated Geometries and Energies for X0 of
the CH3O Radical Using One-Configuration Methods

ROHF UHF B3LYP UMP2

energya -114.414498-114.418982-115.048120-114.684718
r(C-O) 1.41 1.41 1.41 1.41
r(C-H) 1.10 1.10 1.10 1.10
∠(H-C-O) 109.1 109.1 109.0 109.0
∠(H-C-H) 109.8 109.8 109.9 109.9
εtotal

b 381 388 514 300

εtotal
(2) c 25 28 56 55

a Total energy in hartrees.b Calculated using the energy atXmin, Table
2, in cm-1. c Calculated using the energies ofXmin andXmax, Table 2,
in cm-1.
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the surface, such asXmin andXmax. However, the experimental
analyses of the Jahn-Teller surface use as their starting point
the vibrational frequencies atX0. Therefore, the one-configu-
ration wavefunction calculations of the vibrational frequencies
atXmin andXmax are of limited value to the prediction of Jahn-
Teller coupling constants. The vibrational frequencies that are
often reported forXmin of a Jahn-Teller molecule serve only
to verify that a minimum has been found. These frequencies
arenot those obtained from the analysis of the vibronic structure
of a Jahn-Teller state. The reason is that the potential is not
harmonic in the vicinity ofX0 andXmin, and harmonic spacings
of the Jahn-Teller active modes are not observed.

As an example of this often poorly understood feature of the
Jahn-Teller surface, we show in Table 2 the vibrational
frequencies calculated for the ground state of the methoxy
radical, as well as those determined experimentally. The table
includes vibrational frequencies calculated forXmin and Xmax

using a variety of one-configuration wavefunctions (ROHF,
UHF, UMP2, B3LYP) and a multiconfiguration CASSCF
wavefunction. There are some similarities between the frequen-
cies calculated with one-configuration wavefunctions and those
either calculated with the two-configuration wavefunction or
observed experimentally. However, it is clear from the com-
parisons shown in the table that the frequencies from the one-
configuration wavefunctions would be of extremely limited
value as a preliminary step in the analysis of experimental data
for these molecules.

One might naively think that the calculated frequency splitting
of the Jahn-Teller active modes atXmin will be the splitting
observed experimentally. However, the splitting of the vibra-
tional frequencies calculated by theab initio methods forXmin

or Xmax bears no close relationship to that observed experimen-
tally. For example, the splitting of theVi ) 1 level of a Jahn-
Teller active mode depends on the equilibrium vibrational
frequencyωe,i and the Jahn-Teller coupling constantsDi and
Ki, and possibly the spin-orbit coupling constantaúe of the
state. (For a molecule with more than one Jahn-Teller active
mode, the splitting of the lowest vibrational level depends upon
all of the Jahn-Teller constants, not just the coupling constant
for the mode of interest.) The correlation of these parameters
to the two vibrational frequencies that will be calculated for
the Jahn-Teller active mode atXmin is minimal at best. For
example, in the methoxy radical, the equilibrium vibrational
frequency ofν6 is 1065 cm-1, while Hartree-Fock calculations
at theCs minimum produce vibrational frequencies of 706 and
1083 cm-1. TheV6 ) 1 level is experimentally observed12c to
be split by Jahn-Teller and spin-orbit coupling into four levels
at energies of 652, 914, 1194, and 1200 cm-1. The disparity is
also significant forν5, for which theCs frequencies calculated
at the HF level are 1483 and 1424 cm-1, while the experimen-
tally observed energies ofV5 ) 1 are at 1313, 1403, 1487, and
1492 cm-1. The vibrational frequencies calculated for theCs

geometry cannot easily be corrected to yield the observed
vibronic energy levels.

Furthermore, the frequencies of the modes that are not Jahn-
Teller active are also not calculated correctly at the distorted
configuration. For the modes that are not Jahn-Teller active
(for example, thea1 modes of aC3V molecule), these corrections
are so small that no analyses of experimental spectra have yet
required them. The relevance to the calculation of vibrational
frequencies atXmin is that at the distorted geometry the lower
symmetry allows the modes to mix with each other, while they
are strictly forbidden from mixing atX0. For example, upon
the lowering of the symmetry of methoxy fromC3V to Cs, the

emodes split into one mode each ofa′ anda′′ symmetry, while
thea1 modes are ofa′ symmetry. Therefore, the calculation of
the a′ vibrational frequencies and normal modes atXmin will
correspond to admixtures, however slight, of thea1 andemodes
of theC3V geometry. The best comparison with the experimen-
tally observed frequencies for a dynamic Jahn-Teller effect will
be with frequencies and normal modes calculated forX0, not
for Xmin. If the Jahn-Teller coupling is so large as to
permanently distort the molecule fromX0, the calculations of
Xmin would be the most appropriate calculations to compare
with experiment.

4.3. Ab Initio Calculations of the Spin-Orbit Coupling
Constants. As we mentioned in the Introduction, almost all
Jahn-Teller active molecules have nonzero spin states. In such
states, a significant first-order spin-orbit coupling is expected,
especially for molecules containing the heavier elements.
Therefore, quantum chemical methods that can predict the spin-
orbit coupling in these states would also be of value. Spin-
orbit coupling is a direct result of relativity, and relativistic
methods are required to properly describe it. A great deal of
progress has been made in this area over the past decade,92-95

using both density functional theory and traditionalab initio
methods. Several types of methods have been used for the
calculation of the spin-orbit coupling constants in degenerate
states, although all of the methods obtain at best semiquantitative
agreement with experiment.91,92,96,97We have initiated efforts
in using relativistic density functional theory to calculate these
constants, with reasonable success.89,90However, for the present,
we shall confine ourselves to nonrelativistic calculations and
treat spin-orbit coupling empirically.

5. Overview of the Computational Approach

The ideal approach is to make no assumptions about the
normal modes and vibrational frequencies. However, as previ-
ously noted, this requires a frequency calculation atX0, which
is a nonstationary point on the surface. As we present in the
next section, we have usedab initio methods that calculate the
aVerageof the two Jahn-Teller surfaces, and in so doing obtain
the vibrational frequencies and normal coordinates of all of the
vibrational modes of a Jahn-Teller active molecule at the point
X0.

The total energies of the pointsX0, Xmin, andXmax on the
surface also are required for a complete description of the Jahn-
Teller coupling. A significant advance has been made recently
by Robb and co-workers in the implementation of a CASSCF
algorithm that is able to optimize the geometry of a molecule
at a curve crossing, accidental or otherwise, between two
states.79-82,98 These calculations have proven very successful
in the qualitative, and sometimes quantitative, calculation of
the photochemistry of organic molecules.80,99 This method is
clearly of interest to the calculation of the Jahn-Teller PES, as
it will properly calculate the symmetric configuration of the
nuclei as a conical intersection. These calculations provide a
truly meaningful total energy of the conical intersection. The
conical intersection also determines the vector along which the
molecule will distort to remove the degeneracy. Furthermore,
if the same active space of orbitals and electrons is used to
calculate the energy of the distorted minima and maxima, the
total Jahn-Teller stabilization energy can be calculated. These
calculations, when coupled with the calculations of the vibra-
tional frequencies of the state, form the basis of our method for
the ab initio calculation of Jahn-Teller coupling constants.
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5.1. Goals.To achieve our goals, theab initio calculations
should directly predict the following properties of the state:

‚ the geometry and total energy,E0, at the symmetric point,
X0

‚ the geometries at the minimum,Xmin, and at the local
maximum,Xmax, around the moat (see Figure 1)

‚ the corresponding total energiesEmin andEmax at Xmin and
Xmax, respectively

‚ the harmonic frequencies,ωe,i, and normal modes of all of
the vibrations, both Jahn-Teller active and inactive

‚ the linear Jahn-Teller coupling constantDi and stabilization
energyεi

(1) for each Jahn-Teller active mode
‚ the quadratic Jahn-Teller coupling constantKi and stabi-

lization energyεi
(2) for each Jahn-Teller active mode

The first three items of this list pertain to the nature of the
Jahn-Teller distortion and are fundamental to understanding
it. The final three parameters are defined by the Jahn-Teller
distorted PES and are essential for the calculation of the vibronic
energy levels and hence the observed spectra.

The geometries at the conical intersection (X0), minima
(Xmin), and maxima (Xmax) of the PES are clearly of interest.
The total energies at these points are also critical to understand-
ing the distortion of the molecule. The difference in energy
between the pointsX0 and Xmin is the definition of the total
Jahn-Teller stabilization energy, eq 14. The difference between
Emin andEmax determines the extent of quadratic Jahn-Teller
coupling, eqs 7 and 9. These calculated energies will be used
in the calculation of the Jahn-Teller coupling constants.

The vibrational frequencies of the normal modes are defined
as being evaluated atX0. This definition may seem at odds with
the requirement that frequencies be calculated at a stationary
point on the PES, although as we shall demonstrate, this
difficulty can be circumvented. However, the vibrational
frequencies and normal modes ofX0 are used as the basis for
the Taylor expansion of the potential. The uniqueness of the
Jahn-Teller active state is that the first derivatives of the energy
with respect to the Jahn-Teller active modes are nonzero and
that these derivatives, along with the vibrational frequency,
define the linear Jahn-Teller coupling constants, which together
with the quadratic coupling constants are critical to understand-
ing the spectra of Jahn-Teller active molecules.

While numerous calculations to date have concentrated on
the calculation of the geometry and stabilization energy of the
state, very few have attempted to calculate the degenerate
vibrational frequencies and Jahn-Teller coupling constants. Our
method of calculating these is probably the most novel feature
of this work and is also the most useful calculation in aiding
the interpretation of the vibronic structure of the state. The
closely related stabilization energiesεi

(1) andεi
(2) for each mode

complete our list of objectives for the calculations.
Also of interest to spectroscopists are the rotational constants

of the molecule. As with the vibronic structure, the rotational
structure of a Jahn-Teller active state is normally approached
by adding correction terms to the Hamiltonian appropriate for
a symmetric top. For this reason, the symmetric top rotational
constants (A0, B0, andC0) determined in a spectral analysis will
correspond to the rotational constants atX0. At sufficiently high
resolution, the correction termsh1

JT and h2
JT to the typical

symmetric top Hamiltonian can be determined, which will yield
the rotational constants atXmin andXmax.14-16,100,101

Our approach to the calculation of a Jahn-Teller PES is quite
different from previous attempts. We are able to predict all of
the parameters from our list of goals by combining several
different types of calculations in the following way. Briefly,

our calculations of the Jahn-Teller coupling constants are
performed according to the following recipe:

1. The vibrational frequencies and normal modes atX0 are
calculated by generalized restricted Hartree-Fock (GRHF)
calculations.

2. The geometry and energy atX0 are calculated using the
CASSCF conical intersection methodology.

3. The geometries and energies atXmin and Xmax are
determined via CASSCF calculations. These energies, along
with the conical intersection energy atX0, give the total linear
and quadratic Jahn-Teller stabilization energies.

4. The linear Jahn-Teller coupling constants are calculated
by projecting the distortion vectorxd, determined by the
CASSCF conical intersection calculation, onto the GRHF
normal modes.

5. The quadratic Jahn-Teller coupling constants are calcu-
lated by projecting the normal mode corresponding to the
imaginary frequency atXmax, calculated at either the CASSCF
or ROHF level, onto the GRHF normal modes.

5.2. GRHF Calculations of the “Equilibrium” Vibrational
Frequencies.The experimental parametersωe,i that are used
in the analysis of the vibronic structure of a Jahn-Teller active
molecule are defined as the vibrational frequencies ofX0. While
X0 is not a stationary point on the PES, the key to the calculation
of the vibrational frequencies is to recognize that the average
of the two distorted potentials is a harmonic surface with a
minimum atX0, and its vibrational frequencies correspond to
those used in the vibronic analysis. We denote this average
potential asU0, which, for the ith vibrational mode, has the
form (eq 5)

Clearly, if this average potentialU0 can be calculated, the
vibrational frequencies and normal modes can also be calculated.

For a Hartree-Fock wavefunction, the2E wavefunction
arising from an (e)3 configuration is written as a normalized
combination of the two components of thee pair of orbitals,

In practice, the wavefunction of eq 17 is obtainedVia a
generalized restricted Hartree-Fock (GRHF) algorithm available
with the CADPAC suite of programs.102 This package includes
analytical second derivatives for a GRHF wavefunction, which
makes possible the easy calculation of the vibrational frequencies
for the average potential atX0. One could also calculate this
wavefunction using an equally weighted state-averaged CASS-
CF method, which might seem appropriate since we use the
CASSCF method for the calculation of the energies. However,
software to calculate vibrational frequencies for such a wave-
function is not yet available. We will therefore use the GRHF
wavefunction, which should be sufficiently accurate for our
purposes.

Our example is the degenerate wavefunctions of a2E state,
which is appropriate for our benchmark molecules, the methoxy
family of radicals. However, the principles of these frequency
calculations can be applied to any orbitally degenerate state,
including 2Π and 2∆ states of linear molecules and triply
degenerate states of molecules that belong to a cubic point group.
One advantage of these calculations is the well-known scaling
factor for Hartree-Fock vibrational frequencies57 that can be
applied to the GRHF results.

Ui,0 ) 1
2
(U+ + U-) ) 1

2
λiFi

2 (16)

2E(HF) ) 1

x2
(ex

2ey
1 + ex

1ey
2) (17)
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5.3. CASSCF Calculations of the Geometries and Energies
of the Critical Points of the PES.As we discussed earlier, the
wavefunction for the distorted points on the surface can be
calculated using either single-configuration or multiconfiguration
methods. As discussed above, we calculate the vibrational
frequencies atX0 with a two-configuration Hartree-Fock
wavefunction and single-configuration Hartree-Fock wave-
functions forXmin andXmax are simple to calculate. However,
the difference in energy between the two-configuration wave-
function atX0 and the single-configuration wavefunction atXmin

is not a valid calculation of the total Jahn-Teller stabilization
energy. The two calculations differ in the number of configura-
tions used and are therefore calculations at two different levels
of theory. Thus, the difference in their energies depends upon
the computational methods and is nearly meaningless. However,
the one-configuration wavefunctions atXmin and Xmax are of
equal quality, and the difference in energy between their energies
should be a good calculation of the total quadratic Jahn-Teller
stabilization energy.

We have therefore chosen the CASSCF method for the
calculation of the total Jahn-Teller stabilization energy,i.e.,
the differenceE0 - Emin. The energyE0 is calculated as a conical
intersection using the CASSCF methodology included in the
Gaussian94 quantum chemistry package.103 The distorted mini-
mum of the PES is then optimized at the CASSCF level using
the same active space of electrons and orbitals. This calculation
yields the geometry (Xmin), total energy (Emin), and vibrational
frequencies of the distorted minimum. As discussed in the
previous section, these are not the frequencies used in the
prediction of the vibronic structure of the state but are calculated
only to verify that a true minimum has been found. The local
maximum of the well of the PES can also be optimized, since
its electronic state is of different symmetry, yielding its geometry
(Xmax) and energy (Emax). Again, the frequencies at the
maximum are not particularly useful for understanding the
vibronic structure of the state, though we will use the normal
mode of the imaginary frequency to predict the quadratic
coupling constant.

From the CASSCF calculations we obtain several quantities
that can be compared directly with experiment. The rotational
constants forX0 are those determined in a rotationally resolved
experiment.19 The corrections to the rotational constants due to
the distorted surface are typically described using the parameters
h1 andh2, which are related to the rotational constants atXmin

andXmax.101 Therefore, the rotational constants calculated for
Xmin andXmax can be compared with those determined experi-
mentally from the rotational correction terms. Unfortunately,
these corrections are generally quite small and have been
determined experimentally for only a few molecules, making
adequate comparisons of our method with experiment in this
area difficult. We will show just one comparison between
experiment and theory for CH3O, though we will provide
predictions for the other methoxy radicals.

The linear Jahn-Teller stabilization energyεtotal, eq 14, is
calculated by the CASSCF calculations as the difference in
energies of the conical intersection geometry and the minimum
geometry,εtotal ) E0 - Emin. The quadratic stabilization energy
can also be determined from the CASSCF calculations ifXmax

is also located. In addition to their intrinsic importance, the
calculated stabilization energies form one of the crucial com-
ponents of our calculation of the Jahn-Teller coupling constants.

5.4. Calculation of the Linear Jahn-Teller Coupling
Constants.A conical intersection actually occurs not at a single
configuration of the nuclei, but along a “seam” of intersec-

tion.70,81For a molecule withM vibrational degrees of freedom,
the two states will be degenerate along a seam of intersection
that corresponds toM - 2 degrees of freedom of the molecule.
(It is possible that the seam of intersection will occupyM - 1
degrees of freedom, but this case is not relevant to the Jahn-
Teller problem.) In other words, if the geometry of the molecule
is distorted along any one of theseM - 2 degrees of freedom,
the degeneracy of the two surfaces is maintained. In most cases,
and the Jahn-Teller surface is one, a minimum of the energy
with respect to theseM - 2 degrees of freedom will exist. The
ab initio codes that have been developed incorporate gradient
methods to find these minima in the intersection space. We use
the algorithms developed by Robb and co-workers,79,81 though
we point out that a complementary method has been extensively
developed by Yarkony.74,75,104

The two degrees of freedom that are not included in the seam
of intersection correspond to motions on the PES that lift the
degeneracy. Two vectors can be usefully defined,79,81 the
“gradient difference vector”x1 and the “nonadiabatic coupling”
vectorx2. These two vectors span what has been termed70 the
“branching space” of the conical intersection. A distortion of
the molecule in the branching space will lift the degeneracy of
the conical intersection. For the case of two surfaces “ac-
cidentally” crossing, distortion of the molecule from the conical
intersection along one of these vectors will lead to the “products”
while motion along the other vector will lead to “reactants.”

The two vectorsx1 andx2 are defined as

and

where ∂q is an infinitesimal displacement of the Cartesian
coordinates of the nuclei79,81,82andE1 andE2 are the energies
of the two wavefunctions that atX0 are degenerate. For the
Jahn-Teller surface, the two vectorsx1 andx2 are perpendicular
to each other. In addition to locating the geometry of the
minimum of the seam of intersection and its energy, the
CASSCF conical intersection calculation also determines these
two vectors. These vectors can be thought of as the steepest
descent path from the conical intersection at right angles to one
another. In the picture of Figure 1b′, following x1 on the lower
surface will lead to the minimum atφ ) 0 while following x2

corresponds to the slice throughφ ) π/2.
The vectorx2 bears a striking resemblence to the expansion

coefficient of the linear term in the Taylor expansion, Table 1.
BecauseĤ of eq 19 is equivalent toV̂ of the potential, eq 2,
the vectorx2 is the gradient of the electronic state with respect
to the 3N Cartesian coordinates of the molecule, whileki is the
gradient of the potential with respect to theith normal mode of
the molecule. The relationship between these parameters is given
by application of the transformation matrix,L , from normal
coordinates,Qi (i ) 1, ..., 3N - 6), to Cartesian coordinates,
qR (R ) x1, y1, z1, x2, ..., zN), which we know from the GRHF
vibrational calculation,

The gradient of the state with respect to the normal modes can
then be converted to a sum over the components of the gradient

x1 )
∂(E1 - E2)

∂q
(18)

x2 ) 〈E1|∂Ĥ
∂q |E2〉 (19)

qR ) ∑
i)1

3N-6

lRiQi (20)
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with respect to Cartesian coordinates,

From the definition ofki (Table 1) and eq 21, we derive the
following equation forki,

whereK is the magnitude of the vectorx2, xd is the unit vector
in the direction ofx2, andx2R andxdR are theR components of
the vectorsx2 and xd, respectively. The dot productQi‚xd is
easily obtained from the normal modes of the GRHF calculation
and the vectorxd, which is given as part of the Gaussian94
output for a conical intersection calculation. The value ofK is
not directly obtainable from the output but is easily calculated
in the following way.

From the CASSCF conical intersection calculation we know
E0 and from the CASSCF calculation of the minimum of the
PES we knowEmin, and therefore we know the difference
between these two energies,εtotal. If quadratic coupling is small,
then the total Jahn-Teller stabilization energy has contributions
only from the linear term,

From eq 12, we can rewriteεtotal as

whereci ) Qi‚xd. The summations are shown as being taken
over all 3N - 6 normal modes, but only the Jahn-Teller active
modes will have nonzeroci. All of the variables of eq 24 are
known from either the CASSCF calculations (εtotal andxd) or
the GRHF calculations (Qi and λi) with the exception ofK,
whose value can then be calculated as

The individual Jahn-Teller stabilization energies can then be
calculated as

Coupling eq 26 with eq 12 yields an equation for the linear
Jahn-Teller coupling constant,

for which the value ofωe,i has been determined by the GRHF
calculation.

Any error in theab initio calculations ofεtotal ) E0 - Emin

will be propagated into the calculation ofεi
(1) and Di. For

example, if the quantityE0 - Emin is calculated in error by the
CASSCF calculations by some factor, then all of the linear
coupling constants and stabilization energies will be in error
by that same factor. However, their relative sizes will not be
affected by this error. On the other hand, if the distortion vector
xd is not accurately predicted by the conical intersection
calculation, then the relative contributions of theDi and εi

(1)

will be affected. The same conclusion applies if the frequencies
or the normal modes are calculated incorrectly.

5.5. Calculation of the Quadratic Jahn-Teller Coupling
Constants.If the second derivatives of the energy with respect
to the Cartesian coordinates were also calculated at the conical
intersection, the quadratic coupling constants for each active
mode could be determined in an analogous fashion to the
calculation of the linear coupling constants. However, the
implementation in the currentab initio programs include only
the first derivatives of the energy. We have therefore adopted
a less rigorous, but still qualitatively correct, approach for the
calculation of the typically much smaller quadratic Jahn-Teller
stabilization energies for each vibrational mode.

As we discussed earlier, a single-configuration wavefunction
is acceptable for the calculation of the geometry and energy of
the lower symmetry sections of the PES. In particular, a
calculation atXmax is the location of a transition state to the
pseudorotation of the molecule about the moat in the PES. While
the second derivatives atXmax are not equivalent to those at
X0, the normal mode of the imaginary frequency of the transition
state calculation atXmax should closely correspond to the mode
or modes that have quadratic Jahn-Teller activity. We therefore
approximate the individual mode’s quadratic Jahn-Teller
stabilization energy in the following way.

The normal mode,xmax, for the imaginary frequency of the
transition state calculation atXmax is the motion of steepest
descent fromXmax to Xmin. If only one vibrational mode of the
molecule were Jahn-Teller active,xmax would be exactlyφ
(Figure 1c′). For the general case, we apportion the contributions
of the different vibrational modes toxmax by projectingxmax

onto the normal modes from the GRHF calculation,

We then combine eq 28 with theab initio calculations of the
quadratic Jahn-Teller stabilization energyεtotal

(2) ) 1/2(Emax -
Emin) and its definition in terms of the quadratic coupling
constants, eq 13, to obtain

In all of the radicals and ions studied in this paper, the
quadratic stabilization is extremely small compared to the linear

∂V̂

∂Qi

) ∑
R

( ∂V̂

∂qR
)(∂qR

∂Qi
) ) ∑

R
lRi( ∂V̂

∂qR
) (21)

ki ) ∑
R

lRi〈E(|( ∂V̂

∂qR
)

0
|E-〉

) ∑
R

lRix2R

) K∑
R

lRixdR

) K(Qi‚xd) (22)

εtotal ) E0 - Emin ≈ ∑
i)1

p

εi
(1) (23)

εtotal ) ∑
i)1

3N-6 ki
2

2λi

) ∑
i)1

3N-6 K2ci
2

2λi

) K2 ∑
i)1

3N-6 ci
2

2λi

(24)

K2 ) εtotal( ∑
i)1

3N-6 ci
2

2λi
)-1

(25)

εi
(1) )

ki
2

2λi

)
ci

2K2

2λi

)
ci

2
εtotal

2λi ∑
i′)1

3N-6 ci′
2

2λi′

(26)

Di )
εi

(1)

ωe,i
(27)

xmax ≈ ∑
i

c′iQi,( (28)

εi
(2) ) 1

2
(c′i)

2(Emax - Emin) (29)

Ki )
εi

(2)

Diωe,i
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stabilization energy, which is already on the order of only a
few hundred cm-1. The challenge is therefore finding a
computational method that finds both a maximum and a
minimum on the PES and also provides a reasonably accurate
calculation of the difference in energy between them. As we
discussed in the previous section,Xmin and Xmax usually
correspond to different symmetries of the electronic wavefunc-
tion. Furthermore, single-configuration methods are appropriate
for the calculation of the wavefunctions forXmin andXmax, which
means that single-configuration HF calculations or the multi-
configuration CASSCF methods can be used.

We have actually had the most success in these calculations
using the restricted open-shell Hartree-Fock method rather than
the CASSCF wavefunctions. For the methoxy family of radicals,
the ROHF calculations do predict minima and maxima on the
surface, albeit the calculated differences in energy vary from
only 9 cm-1 in the case of CH3S to the largest of 25 cm-1 in
CH3O. These results will be discussed for each radical.

6. Computational Details

6.1. CASSCF Calculations.The CASSCF calculations of
X0, Xmin, andXmax were performed using Gaussian94.103 Two
critical choices had to be made concerning the size of the active
space and the basis set. Unfortunately, the CASSCF calculations
are quite time-intensive and limitations had to be placed on each
of these choices. The results quoted in the remainder of the
paper were obtained using an active space of 5 electrons and 6
orbitals with a 6-31G* basis set. The valence electronic structure
of the CX3Y radicals can be summarized as [C-X σ bonds][X
lone pairs](1a1)2(2a1)2(1e)3(3a1)0[virtuals]. The 1a1 orbital is
nominally the Ynsσ lone pair, the 2a1 orbital is the C-Y σ
bond, the 1e orbital is the Ynpπ lone pairs, and the 3a1 orbital
is the C-Y σ* orbital. The 2a1, 1e, 3a1, and a virtual orbital
that approximated the (n + 1)pπ orbital of Y were the active
space. For CH3O only, we investigated smaller and larger active
spaces as well as a 6-31G** basis set. The predictions of the
Jahn-Teller coupling constants were not significantly affected
by the change in active space or basis set.

In practice, Xmin was found by starting the geometry
optimization near the geometryX0, located by the conical
intersection calculation. The standard optimization algorithms
would usually then locateXmin automatically. To findXmax, the
initial geometry used was that ofXmin, but the symmetry of the
electronic state was swapped. For example, if the minimum
corresponded to a state of2A′ symmetry under theCs point
group, then the maximum was usually located as the2A′′ state.
In each case, the location of a minimum or maximum was
verified by a vibrational frequency calculation. No local minima
in the PES could be found at the CAS level for any of the CX3Y
radicals. For this reason, the ROHF calculations of the maximum
and minimum energies were used in the calculation of the
quadratic stabilization energies.

6.2. GRHF Calculations. The GRHF calculations were
performed using the CADPAC package of programs102 with a
6-31G* basis set. The Coulomb and exchange coupling coef-
ficients were entered as described in the manual105 for a (π)3

configuration of a linear molecule. As with the CASSCF
calculations, a test calculation on CH3O using a larger basis set
(6-31G**) had a negligible effect on the calculation of the
vibrational frequencies and normal modes, and hence the Jahn-
Teller coupling constants. The ROHF calculations of the minima
and maxima were also performed with the CADPAC software.

6.3. Calculations of the Distorted Geometry.The calcula-
tions reported in Table 2 were all done using a 6-31G* basis

set. The restricted open-shell Hartree-Fock (ROHF) calculations
were performed with the CADPAC program, which has analyti-
cal second derivatives available. The unrestricted Hartree-Fock
(UHF), unrestricted Møller-Plesset (UMP2), and hybrid Har-
tree-Fock/density functional B3LYP calculations were all done
with the Gaussian94 program. The CASSCF active space was
identical to that used in the calculation of the Jahn-Teller
stabilization energy.

6.4. Projection of xd onto the GRHF Normal Modes. A
short computer program was written to perform the projection
of the vector xd onto the normal modes from the GRHF
calculation. The major task of this program is to extract the
relevant information from the output files and to remove the
mass weighting from the vibrational normal modes for the
calculation of the linear and quadratic coupling constants. The
program is available upon request from one of the authors.

7. Results and Discussion for the Methoxy Family of
Radicals

7.1. CH3O. The methoxy radical has been intensely scruti-
nized by electronic structure calculations. Three topics have been
investigated the moststhe nature of the Jahn-Teller distortion
in the ground state,51,52the isomerization along the ground-state
surface to CH2OH,106 and its excited states.107

All of the calculations of the ground state distortion agree
that the minimum and maximum of the PES correspond to2A′
and2A′′ symmetries of the electronic wavefunction, respectively.
Our ROHF and CASSCF calculations of these points on the
PES are listed in Table 4, and a further collection of calculations
can be found in the review by Cook.52 It is significant that the
largest changes in the geometry are in the bond angles. It is
therefore expected that the vibrational modes that involve the
bond angles the most should show the greatest Jahn-Teller
activity.

Table 5 contains the experimentally determined Jahn-Teller
parameters for all four of the CX3Y radicals along with the
values calculated using ourab initio algorithm detailed earlier.
These parameters include the six vibrational frequencies (three
Jahn-Teller inactive modes (ν1, ν2, andν3) and three Jahn-
Teller active modes (ν4, ν5, and ν6)), the three linear Jahn-
Teller coupling constants and corresponding stabilization en-
ergies, and the quadratic stabilization energies for each mode.
The table also includes the geometry obtained from the CASSCF
conical intersection calculation and a comparison of it with the
experimentally determined structure obtained from the rotational
constants of the symmetric point of the surface.

It is not surprising that the vibrational frequencies should
agree reasonably well between the experiments and the Hartree-
Fock calculations, given that the latter are scaled by an
empirical57 factor. Both the experimental analysis and the
calculations agree that the mode showing the most Jahn-Teller
activity is ν6, which is nominally the methyl rocking motion,
or alternatively, the tilting of the O atom off theC3 axis. The
agreement between the calculations and the experimental value
of D6 is extremely good, and in fact is probably better than
could have been expected.

The quadratic Jahn-Teller coupling in all of the methoxy
radicals is quite small, as both the experiments andab initio
calculations have shown. In fact, at the CASSCF level, we were
unable to locate maxima about the moat for any of the four
radicals. However, at the ROHF level, maxima were located
and it is the imaginary normal mode from the ROHF calculation
and the difference in energy between the ROHF minimum and
ROHF maximum that were used in the calculation of the
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quadratic Jahn-Teller stabilization energies. In Table 5 we quote
not the quadratic Jahn-Teller coupling constantsKi but instead
the quadratic Jahn-Teller stabilization energy for each mode,
εi

(2). We have chosen this representation because of the error
associated with the calculation of those linear vibrational
coupling constants that are quite small (D4 andD5 in CH3O).
From eq 30, any error in the prediction ofDi will be carried
through as an error inKi. For ν5 andν4, the percent error inDi

is quite large, but the total error is not. Therefore, we have used

εi
(2), calculated via eqs 28 and 29, as the point of comparison

between experiment and the calculations because it will not
contain the error associated withDi. It can be seen in Table 5
that the agreement between the calculated and experimental
values ofεi

(2) is quite good, especially given the small size of
these values.

As with the analysis of the vibrational structure of a Jahn-
Teller active molecule, the rotational structure is most easily
derived by beginning with the rotational constants of the
symmetric top atX0. Corrections, generally quite small, are then
made to the symmetric top Hamiltonian to reproduce the
observed rotational energy levels of the molecule. Elsewhere19

we have shown how, based on a theoretical approach originally
developed by Watson,101 the Jahn-Teller coupling constants,
vibrational frequencies, and rotational constants can be used to
calculate the Jahn-Teller corrections to the symmetric top
rotational constants. These calculations involve the use of the
centrifugal derivatives of the vibrational modes, which can be
readily calculated from theab initio normal modes.109 We show
in Table 6 the calculated rotational correction termsh1

(JT) and
h2

(JT) for all four CX3Y radicals. A comparison of the calculated
and experimental values can be made only for CH3O, for which
the experimental values19 areh1

(JT) ) 3.38(3)× 10-4 cm-1 and
h2

(JT) ) 7.81(2) × 10-2 cm-1. Given the small size of these
parameters, it is satisfying that the calculations obtain the correct
order of magnitude for them.

In Figure 2 we show two simulations of the dispersed
fluorescence from the 61 level of the excited state of CH3O.
The spin-vibronic energy levels and transition intensities were
calculated using a program we have described in detail
elsewhere.19 We have chosen this spectrum as it highlights the
majority of the Jahn-Teller active levels. Because of the large

TABLE 4: Calculated Geometries and Vibrational Frequencies for the Minima and Maxima of the Ground State of the CX3Y
Radicalsa,b

CH3O CF3O CH3S CF3S

min min min min

symmetry
ROHF

2A′
CAS
2A′

max
ROHF

2A′
ROHF

2A′
CAS
2A′

max
ROHF

2A′′
ROHF

2A′
CAS
2A′

max
ROHF

2A′′
ROHF

2A′
CAS
2A′

max
ROHF

2A′′
r(C-Y) 1.384 1.421 1.385 1.353 1.384 1.353 1.809 1.814 1.809 1.803 1.807 1.804
r(C-Xi) 1.087 1.085 1.085 1.306 1.306 1.310 1.085 1.085 1.080 1.316 1.316 1.315
r(C-Xo) 1.085 1.085 1.086 1.308 1.309 1.307 1.081 1.081 1.083 1.315 1.316 1.315
∠(Y-C-Xi) 106.1 105.7 112.6 106.9 106.8 112.3 107.4 107.4 111.8 108.6 112.2 112.9
∠(Y-C-Xo) 111.5 111.2 108.3 111.3 111.3 108.5 111.0 111.2 108.8 112.1 108.7 110.0
∠(Xi-C-Xo) 108.6 109.0 109.8 109.7 109.8 108.5 108.5 108.4 109.7 108.3 108.2 107.6
∠(Xo-C-Xo) 110.4 110.5 107.9 107.9 107.9 110.5 110.3 110.1 107.9 107.2 107.1 108.7
ωe,1 2843 2843 2843 1308 1287 1307 2867 2867 2869 1151 1143 1151
ωe,2 1416 1398 1402 881 851 881 1343 1348 1342 749 743 749
ωe,3 993 917 1033 606 595 606 687 673 689 443 438 443
ωe,4

+ 2911 2915 2909 1275 1232 1277 2946 2945 2959 1223 1222 1221
ωe,4

- 2905 2857 2908 1274 1228 1272 2937 2935 2912 1217 1219 1216
ωe,5

+ 1483 1473 1463 581 593 594 1448 1449 1431 525 534 526
ωe,5

- 1424 1241 1462 571 577 555 1394 1399 1420 525 524 524
ωe,6

+ 1083 1078 1149 411 415 403 881 891 960 297 318 315
ωe,6

- 706 1018 742i 212 315 242i 559 648 651i 182 203 196i

a Both the ROHF and CAS frequencies have been scaled by 0.89.57 b Bond lengths are in Å, bond angles in degrees, and vibrational frequencies
in cm-1.

TABLE 5: Comparison of the Experimental and Calculated
Geometries, Vibrational Frequencies, Jahn-Teller Coupling
Constants, Jahn-Teller Stabilization Energies, and
Spin-Orbit Coupling Constants for the Ground States of
the CX3Y Radicals (Experimental Values from Ref 19)a

CH3O CF3O CH3S CF3S

parameter expt calc expt calc expt calc expt calc

r(C-O) 1.37 1.426 1.361 1.388 1.767 1.817 1.828 1.810
r(C-X) 1.10 1.085 1.327b 1.308 1.10b 1.082 1.327b 1.316
∠(Y-C-X) 110 109.4 109.6 109.8 115.8 109.9 109.5 111.1
∠(X-C-X) 109 109.6 109.3 109.1 102.5 109.0 109.5 107.8
ωe,1 c 2822 1215 1305 2776 2851 1142 1151
ωe,2 1359 1422 977 881 1313 1330 765 749
ωe,3 1051 1040 527 606 717 689 449 442
ωe,4 2835 2891 c 1276 c 2932 c 1220
D4 0.02 <0.01 c <0.01 c <0.01 c 0.0
ε4

(1) 57 ≈2 c ≈0 c ≈6 c 0

ε4
(2) c 2 c 4 c 12 c 0

ωe,5 1417 1434 600 583 c 1422 536 525
D5 0.075 0.02 0.04 0.04 c 0.02 0.0 0.0

ε5
(1) 106 33 24 23 c 22 0 0

ε5
(2) 3 3 c 3 c 4 c 0

ωe,6 1065 1082 465d 410 913b 913 320 309
D6 0.24 0.20 0.45 0.55 0.045 0.16 0.24 0.70

ε6
(1) 256 221 233 226 41 144 77 217

ε6
(2) 36 20 12 3 c 2 c 10

εtotal 458 256 245 249 41 171 77 217
aúe -140 -145 -340 -360

a Bond lengths are in Å, bond angles are in deg, and the vibrational
frequencies, Jahn-Teller stabilization energies, and spin-orbit constants
are in cm-1. The linear Jahn-Teller coupling constants are dimension-
less.b Fixed at theab initio value.c This parameter was not determined
in the experimental analyses.d For CF3O, an anharmonicity inν6 was
used in the simulations,ωexe ) 8 cm-1.

TABLE 6: Calculated Jahn-Teller Corrections to the
Symmetric Top Rotational Constants of the CX3Y Radicals,
in cm-1

molecule h1
(JT) h2

(JT)

CH3O 6× 10-4 3.0× 10-2

CF3 O 5× 10-5 3.9× 10-3

CH3S 3× 10-5 1.3× 10-2

CF3S 5× 10-4 4.5× 10-3
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error in the prediction of the quadratic coupling constants, we
have omitted them from the simulations. This is not a major
problem as the effects of quadratic coupling in the spectra are
quite evident once the effects of linear coupling have been
determined.

Figure 2 shows how close we have come to our goal of
predicting the spin-vibronic energy levels and the electronic
spectra for a Jahn-Teller active state. The most important
feature of the spectrum is the large splitting and shifting of the
V6 ) 1 level, designated 61 (j ) 1/2) and 61 (j ) 3/2). The
energies of these levels predicted by theab initio calculations
are in reasonable agreement with those found experimentally.
Furthermore, the intensities of the electronic transitions to these
levels, relative to the origin (00 (j ) 1/2)), are also in good
agreement with the experimental intensities. Starting from the
ab initio simulation, it would be a straightforward process to
adjust the constants to obtain the experimentally observed
spectrum. The agreement for the levels that are predominantly
ν5 andν4, the weaker features at higher energies, is not as good
because of the error in the prediction ofD5 andD4. However,
the predicted vibrational frequencies for these modes are quite
good and the predicted linear coupling constants are of the
correct order of magnitude.

7.2. CF3O. Several previousab initio calculations have been
performed on the ground and excited states of the CF3O radical,
though none of them have reported calculations of the Jahn-
Teller coupling constants.53 Most of these calculations were
concerned with the atmospheric fate of CF3O after its possible
production from the oxidation of chlorofluorocarbons in the

upper atmosphere. Our calculations in Table 5 represent the first
calculations of the vibrational frequencies for the symmetric
configuration.

As with the CH3O radical, the calculations perform quite
admirably, correctly predicting thatν6 is by far the most active
mode in the radical. Again, somewhat surprisingly, the calcula-
tions are even in good quantitative agreement with respect to
the sizes of the linear coupling constant. This is an even more
impressive achievement than in CH3O, given the greater effect
the fluorines will have on the electronic structure of the radical.

7.3. CH3S and CF3S. The agreement between experiment
and theory for CH3S and CF3S is qualitatively very good, but
is quantitatively not as good as the agreement for CH3O and
CF3O. From Table 5, it can be seen that the calculations and
experiment both agree thatν6 is the mode with the greatest linear
Jahn-Teller coupling, with minor contributions fromν5 and
ν4. However, they disagree on the magnitude of the interaction,
with the calculations overestimating it by a factor of 3 in each
radical. This discrepancy can be traced entirely to the calculation
of the total Jahn-Teller stabilization by the two CASSCF
calculations. If these two calculations overestimate the stabiliza-
tion energy by some factor, then the linear coupling constants
will be overestimated by the same factor. Given the limited basis
set and, probably more importantly, the limited size of the active
space in the CASSCF calculations, it is not surprising that the
stabilization energy should be calculated erroneously. However,
it is important to note that the distortion vector from the conical
intersection calculation and its decomposition into contributions
from the normal modes is still a quite good calculationsboth

Figure 2. Simulations of the dispersed fluorescence of CH3O from the 61 level. (a) Simulation using the experimentally obtained constants with
the quadratic coupling constants set to zero. (b) Simulation using the coupling constants predicted by this work, with the quadratic coupling constants
set to zero. Because theab initio calculation does not predict a spin-orbit coupling constant, the value foraúe was taken to be the same as the
experimentally determined value,-140 cm-1. The peak at≈1300 cm-1 is actually two transitions only 7 cm-1 apart.
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the experiments and calculations agree that the Jahn-Teller
coupling is almost entirely contained inν6. We expect that
calculations with a larger active space and calculations that
include dynamical electron correlation would likely improve
the calculation of the Jahn-Teller stabilization energy, and
hence the calculation of the magnitude of the linear coupling
constants.

8. Conclusions

In this work, we have made the first attempts to quantitatively
calculate, viaab initio methods, the spectroscopic parameters
that characterize the Jahn-Teller potential energy surface. The
method that we have developed calculates the vibrational
frequencies, as well as the linear and quadratic Jahn-Teller
coupling constants for an orbitally degenerate electronic state
of nonlinear molecules. The method relies on the use of three
different types of calculationssGRHF calculations of the
vibrational frequencies and normal modes, a CASSCF calcula-
tion of the symmetric configuration as a conical intersection,
and CASSCF calculations of the minimum of the PES. When
combined, these calculations can predict to at least qualitative,
if not quantitative, accuracy the vibronic parameters and
structure of the state.

In the Introduction, we argued that our calculations should
be of value in the interpretation of the experimental data. While
some of the calculations clearly leave room for improvement
(such as the prediction of the quadratic Jahn-Teller coupling
constants), we feel that indeed we have made clear progress
toward this goal with our algorithm for the calculation of the
Jahn-Teller parameters.

Our future work in this area will be directed in several areas.
First, extension to the prediction of the coupling constants in
the aromatic cations and radicals is clearly desirable, as an
extensive array of experiments have been performed on them.23

Second, the effects of dynamic electron correlation should be
included in the calculation of the conical intersection calculation.
(For example, the inclusion of electron correlation in theab
initio method reduced the calculated Jahn-Teller stabilization
energy in VCl4 significantly.91) Finally, for a complete prediction
of observed spectra,ab initio values of the spin-orbit coupling
constant are required.
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