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We present a new wave packet based theory foditeet calculation of energy-transfer moments in molecular
collision processes. This theory does not contain any explicit reference to final state information associated
with the collision dynamics, thereby avoiding the need for determining vibratiotation bound states (other

than the initial state) for the molecules undergoing collision and also avoiding the calculation of state-to-state
transition probabilities. The theory applies to energy-transfer moments of any order, and it generates moments
for a wide range of translational energies in a single calculation. Two applications of the theory are made that
demonstrate its viability; one is to collinear HeH, and the other to collinear H& CS, (with two active
vibrational modes in C$. The results of these applications agree well with earlier results based on explicit
calculation of transition probabilities.

I. Introduction and therefore yields moments over a wide range of energies in
. - . . . . a single calculation. This is in contrast to a time-independent
Interest in collisional energy transfer involving highly excited formalism that would require a separate computation to be
polyatomic molecules has grown significantly in recent years. carried out at each collision energy. The moments of the energy-
Such energy-transfer processes, which provide a mechanism f0liransfer cross sections, which result from the theory, fully
the dissipation and accumulation of energy in excited molecules, characterize the energy'-transfer cross sections. '
are important in the_ relaxati(_)n of photoexCite_d molecules and The theory developed here is similar in spirit to the other
In gas-phase chemical kinetics. Much of t_he Increased Interes'Fquantum theories that have been developed in recent years that
in energy-transfer processes can be attributed to two factors: determine averaged information about a scattering process
(1) the development of experimental spectroscopic teChniquesdirectly from the Hamiltonian, without the need for determining
for the direct study of the time evolution of the excited species fully state-resolved informati’on Of particular note here is the
during relaxat_iohz e_md (2) the develc_)pment of theoretical work by Miller et al? for determ.ining the cumulative reaction
methods for s.|mulat|on c_>f these experimefits. o . probability and the thermal rate constant for bimolecular
_The theoretical modeling of energy transfer in vibrationally - -,omica) reactions. However, the present application to energy-
highly excited molecules using quantum methods is difficult 1 »nqter moments is not directly related to this work, since one
because of the large number of accessible quantum statesc,not take advantage of the simplifying features of reactive
Indeed, the complete solution to such a problem, i.e., SOVINg ¢ es in the present application, and there is a dependence of
the quantum scattering equations to yielbithe inelastic state-  {he moments on the initial state that complicates our evaluation.
to-state collision probabllltle.s, is clearly very challeng_mg. As Following a discussion of the details of the new theory
a resylt, mos} of the theoretlpal work done so far has involved (section 11), the results of its application to collinear collisions
classical trajectory calculations. However, there has been of He + Hy (section Ill) and of He+ CS, (section IV) are

ggggzrgvai%u;gig?gsfn?fQZZ:E;Z'SWIisﬁgé”{gr?ﬁgﬁéiozem gesented and comparisons to other calculations are made.
’ y y ection V summarizes our conclusions.

of low dimensionality, so quantum calculations continue to be
of interest for these kinds of problems.

In most practical applications only highly averaged quantities
are measured or are of interest, such as the moments of the The general strategy of the time-dependent computations
energy-transfer rate constants and cross sections. In this papeinvolves preparation of an initial wave packet on a grid in the
we present a new quantum theory for tfieect calculation of asymptotic region where the He atom is separated from its
the moments of energy-transfer cross sections. This theory doe<ollision partner by a large distance. This wave packet is then
not require the computation of the very large number of bound- given momentum in the negatixelirection & being the atorn
state energies and eigenfunctions that are required in conven-molecule scattering coordinate) through multiplication by a
tional coupled-channel calculations nor does it require the complex phase factor. The time-dependent Stihger equation
computation of the individual transition probabilities to these is then solved by propagating the wave packet forward in time
large numbers of closely spaced vibrationedtational states. in many relatively small steps using the complex Chebychev
The theory is based on a time-dependent wave packet formalismpolynomial expansioff~12 of the evolution operator. As the
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wave packet evolves, it is reflected back alongxfeeordinate. Fourier transforming the initial wave packet to ob#in
An “analysis line”, corresponding to a fixed valuexpfs defined
to lie perpendicularly across the exit valley in its asymptotic f(k) = 1 . 'Kxg(x) dx (5)

region. At each time step, a cut is taken through the wave packet
along this analysis line, and the resulting wave function is
analyzed as defined for our new theory (see details below). The
analysis makes use of the fast Fourier transform (FFT)
techniqué*15 for conversions between the coordinate and
momentum domairt8 and between the time and energy
domains.

The following discussion presents the details of the new
theory and how it can be implemented in the time-dependent
guantum mechanical calculations. We begin by writing down
an equation for the cross section for inelastic collision from
initial state i to final state ¥’

Starting with the initial wave packet given in eq 4, the time-
dependent Schidinger equation is solved by propagating in
discrete time intervals using the complex Chebychev polynomial
expansiort?~13 After each time interval, the wave packet is
evaluated along an analysis line in the asymptotic region
such thak = X.. If we represent a cut through the wave packet
along this analysis line at timeas W (x.,y,t) and expand it in
terms of the eigenfunctions of the final state of the collision
partner gi(y), we can compute the time-dependent coefficients,
Ci(t):22.23

cw=[" W(x_yt)d 6
0i—(E) =K£2 Z 23+ 1)1 — 0, ) 1(t) j;zo PAY) P (X.y.t) dy (6)

The Fourier transform of these time-dependent coefficief#$3s

wherek; = pi/h, Jis the total angular momentum of the_ system, A(E) = 1 fio eiEt/th(t) dt @)
and SLf are the elements of th® matrix. We then define the 27 Jt=0
quantity of interest, which is the cross section for the moments

of energy transfer: whereA((t) are the corresponding energy-dependent coefficients.

The S matrix element is then given Bj24

oAEE) = o (BB ) AG
where E is the collision energy andE is the difference in
energy between the initial and final vibrational states of the and therefore
collision partner AE = E; — E;. The quantity in eq 2 is the
cross section for theth moment of the energy transfer at energy g Af( B,
E. Forn = 1 this is just the cross section for energy transfer, | Hf(E)| B 2 kikf ©)

and the average energy transf&fECequalsoil/ci®. Note that
although we have developed the theory for scattering in three Thys, the cross section is given by egs 3 and 9. Substitution of
dimensions, the corresponding one-dimensional theory is easilyeq 9 into eq 3 gives

developed by restricting the sum ow&to J = 0 and omitting

the factor ofz/k? in eq 1. Note also that the quantity being h (1
calculated has been summed over all final states and thereforec(AE,E) = — [— Z 2 (E—E)"
depends only on the initial state. Substituting eq 1 into eq 2 47w2
and assuming # f, we have n
h? k(E — E)
N T ) N =—Z(2J+1)Z—x
o(AEE) = Z — Z 21+ DISLAE-E) @) Ak f(—K) [ 472

S Js € E 0,y () TB(Y)| x

The quantity|§ﬂf|2 can be obtained from the wave packet.

The Fourier grid Hamiltonian (FGH) meth¥dis used to WJ(XW,y,t')@E”h dt dt’
compute the one-dimensional vibrational eigenfunctions, and vz

these in turn are used to define a potential-optimized discrete SEU
variable representation (DVR) with its associated grid points T Z 2+ 1)f f e
and basis function®-2! The eigenfunction of the initial state 167k [f(—k)

of the collision partnergi(y), is computed in this DVR basis. J _Ey\n
This wave function is then multiplied by a Gaussian function W (Xm,y,t)l[Z (B — E) lo(y) Ip(y) K] x

in the x (scattering) coordinate [expB(x — %o)3)], and the

product of these two functions is multiplied by an incoming [ (x,.y,t) =" dt dt (10)
traveling wave in thex coordinate. Therefore, the initial wave R _ o
packet can be written as Now let Hy be the internal Hamiltonian such that
W(xy) = e—ﬂ(X—Xo)ze—ik(X—Xo)(p () = g(¥)i(y) (4) I:|y|¢f(y)|:'= Elody)D (11)
1 I I

We must then analyzg(x) to determine how much of it and

corresponds to a momenturk’{(i.e., we find the amplitude of |5 (y) TBi(y)| = i
the component of the wave packet with magnitude of the Z f f
momentunk that is in the appropriate direction to simulate a

He atom approaching its collision partner). This is done by We also must evaluate (see eq 10)
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(Y)W 0, Yt ) = [l K W (Yt ) D (12)

where k. is the momentum operator for the coordinate.
Equation 12 follows from the fact that in the limit— oo, P9
becomes a plane wavé®ewhen projected onto the eigenfunc-
tion ¢¢(y) for f = i. To evaluate this expression, we define the
function ®; by

center of mass
H

2

I ’ 3 . . — . . ision.
k [WIxy,t) = | DIy, H)0 (13) Figure 1. Definition of coordinates for the collinear He H; collision

also immediately obtained. The corresponding one-dimensional

This equation is evaluated by Fourier transformif(xy.t) theory is obtained from eq 15 by settidg= 0 and multiplying
alongx and multiplying byky, then back Fourier transforming. by k.

Equation 10 can now be rewritten in the form
[ll. Test Cases: He+ H2 Inelastic Collisions

n —
0 (AEE) For testing purposes, we have applied the one-dimensional
h? o version of the new theory to the collinear He H, system,
_— Z (22+1) j; L/; g EgEh considering both harmonic and Morse binding potentials for H
167k |f(—k) | The calculations are set up following the formalism discussed

by Clark and Dickinsori®

J X J ! I
W (%Y 1) (Hy — B)"I Dk, y.t)dt dt' (14) The collision problem is illustrated in Figure 1. All three
] atoms are constrained to move along the line defined by the
If we now define molecular axis, H(1}H(2). The distance between the He atom
' and the center of mass oflik represented by, andy andZ
Xy,E) = ﬁ e'Ef/h(ﬂy — E)"®)(x,.y.t') dt’ are the H(1)-H(2) and He-H(1) distances, respectively. The

incident He atom encounters the repulsive core of the intermo-
lecular potentialV'(Z), between He and H(1), and H(1) and

d
an H(2) are bound by the intramolecular potentii(y").
i We consider both the harmonic and Morse binding potentials,
lpj(y'E) - j; eIEVhlpJ(Xm'y't) dt which take the form
then eq 14 can be rewritten as V() = 1/2f v — Yo 0)2 (16)
h? - —aly — — 1P

2
Amu K T(=k)1 (15) wheref is the harmonic oscillator force constagte is the
H(1)—H(2) equilibrium distance, anB anda are the Morse
Equation 15 shows the primary result of the new theory, pote_ntial well depth and steepness parameter, respecti\_/ely.
which is that the cross sections for the moments of energy It is then useful to tfa_nsform to dlm.ensmnless coordmates
transfer can be obtained directly, without first obtaining the state- (x¥,2) where the collision problem is most conveniently
to-state inelastic collision cross sections. Although the initial €xPressed. Therefore, we have
energyE; appears in eq 14 and the eigenfunciigfy) is needed

to define the initial wave packet in eq 4, these can be determined X=n[LIy)X = yYed
with significantly less effort than is needed to determine the
entire spectrum of energy levels for a full state-resolved y=ny - y'eO)
scattering calculation. In addition, if one only wishes to calculate
moments for a statistical ensemble of states (such as a Z=X—Y
microcanonical ensemble), the sampling of initial conditions can
be performed in many ways that do not require eigenvalues and 1 = [(uf)4h]
eigenfunctions.

Note what is involved in the evaluation &f". One first needs 1= (MyyMy) (M) + Myz)
to evaluate@i as described above. Then the applicationpf
is performed using highly efficient potential optimized discrete g= mH(Z)/(mH(l) + rnH(Z))

variable representation techniqués!® The symbol §” repre-

sents all the internal coordinates of the collision partners. The The Schidinger equation may then be writtén

internal Hamiltonian is divided into a separable (kinetic energy ) 5

plus potential) and a nonseparable (potential) part. The potential =19 10 +V(y) + V@) |w = lEIP

optimized discrete variable representation technique provides 2m g2 2 8y2

us with a compact grid based matrix representation of the

separable part of the Hamiltonian, while the nonseparable wherem = (mMyeMu)/[Mu)(Mhe + My + Mue)], V(y or 2)

potential part is handled by direct multiplication. A time Fourier = V'(y or 2)/(¥-fiwe), andE is the total energy of the system in

transform is then used to determiié units of 1hhwe (we = 27tc times the vibrational constant as
Because the theory is formulated within a time-dependent defined in Herzberd). In these coordinates, eqs 16 and 17

framework, the energy dependence of these cross sections idecome

2
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V(y) = 1/2)’2 50

V(y) = DJexp{ —y/(2D)"%} — 1]

40 P
respectively, wher®, = DJ/(Yhwe). The interaction potential,
V(2), is chosen to be
V(2) = V, exp(—az) 30r
5}
8]
whereVp anda are constants. Since the Hamiltonian is invariant 2
under the transformation— x + 9, Vo — Vo exp@9d), where © 2oL

0 is a constantyp may be chosen arbitrarily, and thus, we set
it to 1 hartree divided by/;hwe. Now the model systems are
completely specified by the dimensionless constamts %/, o
= 0.314, andDe = 9.3, values that are realistic for Hél, 10 |
collisions?526.28,29

For later reference we note that the quantized vibrational
energies are (in units dfwe)

%0 750 10.0 15.0 20.0
E,=2(n+",) (18) E
Figure 2. Energy-transfer moments for collinear HeH; collisions,
E,=2[(n+ 1/2) —(n+ 1/2)2/(4De)] (19) with H, modeled as a harmonic oscillator and initially in the ground

state. Filled circles indicate results for the second moment from time-

. . independent calculations of Clark and Dickingén.
for the harmonic and Morse cases, respectively.

Our calculations for the He- H, system are based on grids 125 - T - T " T
consisting of 256 evenly spaced points in theoordinate and
10 points of a potentially optimized gfiti’® in they coordinate.
The step size in time for the calculations is taken to be 0.10,
and we propagate for 500 time steps. Fhparameter, which
determines the width of the initial wave packet, is set to 1.0.
For the harmonic case, the kinetic energy is chosen to be 6.0,
and the strength of the quartic complex damping function used 075 F
in the absorbing potential (as defined by Viband Balint-
Kurti®%) is —33.0. For the Morse case, the kinetic energy is 4.0,
and the strength of the damping function-46.5.

Figures 2 and 3 present the cross sections for the moments
of the energy transfer(AE,E), versus total energ, for the
He + H; system with H represented as a harmonic and as a
Morse oscillator, respectively. Included in these figures are the 025 F
results from our new theory (for= 0—3) as well as the results
of time-independent quantum calculations fo+= 2 by Clark
and Dickinsor?® They calculated exact quantum mechanical
vibrational energy transition probabilities, which can be con- 00005 50 00 5o 200
verted into energy-transfer moments using eq 2 and either eq E
18 or eq 19. All results in both figures refer to the initial state Figure 3. Energy-transfer moments for collinear HeH; collisions
being equal to the ground state oh.HThese figures show  as in Figure 2 but with limodeled as a Morse oscillator.

excellent agreement between the results from the new theory ¢ f_gimensional classical simulations. These studies deter-
and the results of Clark and Dickinson for both test cases. mined that although the collinear model is missing the low-

Another test of the theory is provided by the zeroth moment, ¢.o
) L ' quency bend mode of GShe energy-transfer moments from
which should be unity, independent & Here, the figures yho' collinear model are very similar to those from the full-

indicate that this moment is indeed very close to unity. Overall 4 ongjonal calculations. Later, additional classical dynamics
then, this application demonstrates a successful first applicationc5 oy jations were done in conjunction with quantum calculations
of the new theory for the direct calculation of the energy-transfer ;, <t ,dies by Schatz and co-workét§2The quantum dynamics

moments. calculations were performed using coupled-channel calculations
. with basis sets of 500 (for energies up to 75 kcal/mol (ref 29))
IV. Collinear He + CS and 1000 (for energies up to 92 kcal/mol (ref 30)) vibrational
In this section we apply the new theory to a collinear model states from a discrete variable representation calculation. These
of He + CS; in which both the intermolecular and intramo- studies demonstrated very good classicplantum agreement
lecular potentials are chosen to be realistic. This collinear model of the energy-averaged first moments over a wide range of
has been studied in the past by both classical and quantummolecular vibrational energies, provided that the translational
methods, with particular emphasis on the classicglantum energy is not too low (translational temperatures below 300 K).
correspondence for the energy-transfer moments. The early To calculate the moments of energy transfer for HES,
classical dynamics wofkincluded comparisons of the energy- using the new theory, we definéto be the coordinate between
transfer properties associated with the collinear model to thosethe He and the center of mass of £, to be the coordinate

6 (AEE)

0.50 -
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representing the €S(2) distance, anil, to be the coordinate 10.0 - T Y
between S(1) and the center of mass of $2). Then the
Hamiltonian for the complete system is New Theory
2 2 2 a2 2 2 oo Schaw |
—h° 3 h® 9 A d
—————————— + V(Y.,Y,) + V(X)Y,,Y.
2 9x% 292 2 9Y,2 (Yo VYY) ol |
where 1
. Mye(Ms(q) T Mg + Mg o) E i 1
= <4
Mye T Mgy + Mg + Mgy &
00 | J
sy = McMg o)
tome+ mgp, ] i
0= Mg (Mg + Mg2)
2 Mg(p)+ Me + Mgy -5.0 . L 1 .
4.0 8.0 12.0 16.0
and whereV(Y1,Y>) is the intramolecular potential for Gand E (kcal/mol)

V(X,Y1,Y2) is the intermolecular potential. We use the ,.CS Figure 4. Energy-transfer first moment versus total energy for collinear
potential surface of Carter and Murréliwhich is derived from ~ He+ CS(n =2, Evs = 5.1 kcal/mol) collisions. Open circles indicate
a spectroscopic force field at low energies and which dissociates™Su!ts from coupled-channel calculations by Schiatz.

correctly. On this potential, the dissociation energy to-£€S 200
is 129 kcal/mol and the harmonic stretch frequencies are 674

and 1532 cm®. We also use the He-2 intermolecular potential

of Bruehl and SchatZ.These potentials have been used in L . I;:}:‘;gheory ]
previous studies of collisional energy transfer in the-HES,

system by Schatz and co-workérs:31:32\We present results
for then = 2 (E; = 5.1 kcal/mol) anch = 15 (E; = 15.6 kcal/ 100 F
mol) eigenstates of GSfor which our calculated energies match
those of Scha## to four significant figures.

Our calculations for the He- CS; system are based on grids
consisting of 256 points in th¥ coordinate and 10 points in
the Y1 andY> coordinates fon = 2 or 20 points in ther; and
Y, coordinates fon = 15. The step size in time is taken to be 00 F
100.0, and we propagate for 700 time steps. fhgmrameter
is set to 10.0, and the kinetic energy is 0.005 au (3.14 kcal/
mol) for n = 2 and 0.010 au (6.28 kcal/mol) for = 15. In -
both cases, the strength of the quartic complex damping function
used in the absorbing potential +90.055.

Figures 4 and 5 present the energy-transfer momaht, -10.0 . 1 L . L
(AE,E), versus total energyk, for the collinear He+ CS 150 200 E(kiifmol) 300 350
system. Results from the new theory in these figures are in _ ) )
excellent agreement with the results of coupled-channel caIcuIa—E'gure 2. Energy-transfer first moment versus total energy for collinear
tions by Schat3* e+ CS (n = 15, Eyip = 15.6 kcal/mol) collisions. Open circles

. . . . indicate results from coupled-channel calculations by ScHatz.
The excellent comparisons shown in Figures52provide
encouraging evidence for the utility of the new theory. Clearly, 56 in excellent agreement with previous time-independent

it works well for the collinear models with modest excitation = c5jcylations. These results demonstrate the success of the new
of the collision partner. Future studies of this theory could heqry for collinear collision models where the collision partner
include preparing the collision partner in substantially higher pac modest excitation, and they encourage future applications

excited states to simulate situations involving photoexcited o the new theory to three-dimensional models as well as models
molecules, as discussed in the Introduction. In addition, the \yiih highly excited collision partners.

theory could be applied to three-dimensional collisions, as

T ¥ T M 1 [0]

o (AEEY10™
L]

opposed to being limited to collinear collisions. Acknowledgment. We thank G. Lendvay for helpful con-
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