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of Silicon

Marcel Ovidiu Vlad,* T Gianfranco Cerofolini,* and John Ross*

Department of Chemistry, Stanford Warsity, Stanford California 94305-5080, and ST Microelectronics,
20041 Agrate M, Italy

Receied: Nawember 6, 1998; In Final Form: January 4, 1999

A renormalization group approach to self-similar multilayer aggregation processes is suggested on the basis
of the following assumptions. 1. The aggregate is generated by a layer-by-layer process, the rate of growth
of a given layer being proportional to the number of free sites in the preceding layer. 2. The process is
self-similar, that is, from layer to layer the rates of growth are scaled by a subunitary positive Grossmann
factora. It is shown that this mechanism of growth leads to temporal scale invariance. For large times the
total rate of the process decreases in time according to a hyperbolic law modulated by oscillations occurring
on a logarithmic time scale, with a period equal to the logarithm of the reciprocal value of the scaling factor
a. In the long run the time-dependence of the total mass of the aggregate is given by a logarithmic function
of time also modulated by logarithmic oscillations. The model is applied to the tunnel-assisted wet oxidation
of silicon. It is assumed that multiple layers of silicon oxide are generated by a mechanism that involves a
tunneling process through the silicon oxide layers. In this case Grossmann’s scaling factor and the period of
logarithmic oscillations have simple physical interpretations: the scaling factor is the transparency of a layer
of silicon oxide, and the period of logarithmic oscillations is a measure of the tunneling length. The logarithmic
oscillations of the model give a theoretical description of the stepped behavior of the oxidation process observed
in the experiments reported in the literature. The presented results are of interest both from the points of view
of statistical physics of fractals and nonlinear chemical kinetics.

1. Introduction literature. The logarithmic oscillations are characteristic for the
renormalization group theory. They were first noticed by
theoreticians in the sixties and seventies in connection with the
. ; A study of energy cascades in turbulent fiaamd in the real space
!arge 'number of oscnlgtory chemical react'|ons have been renormalization of the energy for the Ising mo8dihey also
investigated both experimentally and theoretically. Moreover, occur for systems described in terms of the Shiesingfrghes

systema;ic techniques are available for providin_g m_echan_istic stochastic renormalization schefmeand for transport processes

exp!ananons of the expe(lmental data and for projecting a glver.1 in ultrametric space%!° The renormalization group logarithmic

oscnlator_y system. The Ilterature_ o\}r\;sgms_ subject is enormous; oscillations have been identified in fluid mechadicg and in

e el e physclogy ofthe ung? A far a5 e know ey have
y UITENCE ot been reported yet in chemical kinetics.

of a chemical oscillation: (1) The system should be operated o . )
far from thermodynamic equilibrium and (2) The corresponding 1 h€ renormalization group model for multilayer aggregation
kinetic equations must be nonlinear. Although these conditions Sudgested in this paper may be used for the description of the
are not sufficient they are assumed to be necessary for idealchemical process of the wet oxidation of silictrt! Our
homogeneous chemical systems described by the mass-actioff€0retical approach is based on the combination of the
law. Recent research, however, goes beyond the ideal chemicaf€normalization procedure of Grossmé‘hwnh a stochastic
systems described by the mass action law; for instance, forVersion of the ShlesingeiHughes renormalization method
nonideal systems some unexpected phenomena may occur, suchuggested by us for the §tudy of transport processes in disordered
as chemical oscillations in the immediate vicinity of thermo- syster.né?fﬂm ultrametric space%?,gnd for the study of recycle
dynamic equilibriunt: row§ in porous met_ﬂ&? Our_ mo_del is equwalent to a linearized

In this paper we investigate a class of linear kinetic models YeSion of the nonlinear kinetic equations suggested by Cero-

for multilayer aggregation that may display a new type of folini***’ for gxplaLning the stepped behavior of the wet

temporal chemical oscillations, which occur on a logarithmic ©Xidation of silicor?

time scale, rather than in real time. The occurrence of The structure of the paper is as follows. In section 2 we give
logarithmic oscillations for a linear kinetic model contradicts & general formulation of the problem. Sections 3 and 4 deal

the above mentioned nonlinearity paradigm encountered in thewith the physical and mathematical self-similar features of the
model, respectively. In section 5 the relationships between the

t Stanford University. suggested approach and the description of the wet oxidation of
*ST Microelectronics. silicon are investigated and a comparison between our theoretical

The study of chemical oscillations is a field of major
importance in theoretical and applied chemical kinetiésA
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predictions and the experimental data is made. Finally in section that the system may display self-similarity if the rate coefficients
6 the physical and chemical implications of the model are ky, u=1, 2, ... obey the scaling condition

outlined from the points of view of both chemical kinetics and

fractal physics. k, = ka" u=1,2, .. (6)

2. Formulation of the Problem wherea < 1 is a scaling factor smaller than unity akds a

We consider a plane surface on which many identical particles "éference rate coefficient. In general Grossmann's scaling
may aggregate in a regular fashion. On the first layer of particles cOndition (eq 6) may seem rather formal. We shall see, however,

a second layer may be formed by aggregation and so on, Iayerthat. in the case of t_he wet ox_ldatlon _of SI.|ICOH eqg 6 has a
by layer, up to infinity. This aggregation is similar to the ones Straightforward physical meaning, which is related to the
used in statistical physics for generating random fractal struc- "€action mechanism. o _
tures, for instance with diffusion-limited aggregat®nwe The purpose of the present article is to study the scaling
assume that there is an infinite supply of particles and that the P€havior of the total specific reaction ra(§) and of the average
kinetics of the process can be described by the mass action lawSiZ€ Of the aggregat®(t) per lattice center in the case when
We assume that initially there amd, identical sites on the € growth rates are given by eq 6.

surface and that the process of aggregation starts at the initial

time t = 0. The kinetic evolution of the process is simply 3. Physical Approach to Renormalization Group

described, to a good approximation, by the equations As far as we know the scaling behavior of the solutions of
the evolution equations (eq—B) has not been investigated in
dN,(t)/dt = K'[N,_4(t) — N,(®)] u=12,.. (1 the literature. In this section we suggest a physically oriented
approach to this problem by analogy with the renormalization
with the initial condition group scheme suggested by Shlesinger and Hughes for random

walks?-8 By means of Laplace transformation egs3llead to

No(0) = No(t) = constant N,(0)=0 u=1,2,.. a formal series expansion for the Laplace transform of the

(2) specific total growth rate:
whereNy, u =1, 2, ... are the numbers of particles from the Q) — _ [®,s
layers 1, 2 andk,, u = 1, 2, ... are the rate coefficients of M =Ls® fo e °r(t) dt 7)

aggregation corresponding to the different layers. The evolution

equations (1) are based on the assumption that the rate ofVNeresis the Laplace variable conjugate to the time t ad
aggregation of theth layer is proportional to the numbhi, — and the overbar denote the Laplace transformation. By applying

N._1 of unoccupied (free) sites in the & 1)th layer. We are the Laplape transfo.rmation to eqs 2 and by eliminating from
interested in the determination of the time evolution of the total the resulting equations the Laplace transforms of the numbers

rate of aggregation(t) expressed in terms of the average number olf pz;rtlcles frt;)m_ the different layers, after some elementary
of aggregated particles corresponding to a site on the initial 2/9€0ra we obtain

surface. We have © U a"
o T(9) = Z |‘|l _ (8)
1 m=1)a™ + (s/K)

1 = [dNy(1)
r) = Y qu(t) 3)
o= = This equation displays some self-similar features that can be
where outlined by rewriting it in the following form:
1 dNy(t) () = 0u(8) + 01(9)TxAS) + Tu(9T()Tu(S) + ... (9)
r,t) = Nt u=12, .. (4)
0 where

are the specific rates of growth of the different layers. We are
also interested in the evaluation of the time dependence of the
total average sizB(t) of the aggregate corresponding to an initial
lattice center:

§,.(9 = [a"(@" + (IK))] m=1,2, .. (10)

are transfer functions, which describe the growth kinetics of
the different layersm = 1, 2, ... It is easy to check that these
transfer functions have the property

Ona(9 =0,9a), m=1, 2, ... (11)

where the terms in the sum express the contributions of the and therefore eq 9 can be rewritten as
different layers.

Since egs 1 are linear their integration is very simple. Each 1(s) = 9,(9)[0,(a) + 0,(5a)0,(da) +
function Ny(t) can be written as a linear combination of 0.(52)0.(a)0.(53) + .1 = 6.(9)7F(Fa) =
exponentials of the form expfkt), u =1, 2, ... expressing the 9,(S/2)5(S2):(S/2) 1=9,87( )_
contributions of the growth processes of the different layers. [@/(@a+ (k)1 + () (12)
At first sight the dynamics of such a process may seem trivial
because a combination of exponentials cannot express any self
similar features of the growth process. This claim is however
not true. In a general study of the dynamics of the linear ot ,
evolution equations of the type (1), Grossméninas shown r(t) = j;w(t Jrfa(t — t)] dt + (1) (13)

RO = [r(0) dt=" [N(O/N] (5)

from which, coming back to the time variable by means of an
inverse Laplace transformation we obtain
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where
Y(t) dt = exp[—(ka)t](ka) dt

with
Sty dt =1 (14)

is the probability density of the timé& necessary for the
completion of the first layer.

Equations 12 and 13 have a structure typical for a renormal-

ization group equation; they express the self-similarity of the

Vlad et al.

larger than the average time necessary for the completion of
the first layer,

BO= [ ty(t)dt = 1/(ka) (21)
Then in this region for the computation of the time integral in

eq 13 we can approximate the probability density) dt by a
delta function:
P(t) dt =~ o(t") dt for >t (22)

This approximation is justified by the fact that for large values
of the ratiot/on the time scalg the exponential probability

growth process due to the scaling condition (eq 6) for the rate density (eq 14) for(t) is very sharp, with a large heigkti=

coefficients of growth corresponding to the different layers.

1/@0and very narrow, with a small widti0= 1/(ka), and

From the physical point of view these equations express the therefore the delta function (22) is a very good approximation
fact that the growth process would have exactly the same for it.

dynamics if the first layer were removed from the system; the
only effect of leaving out the first layer would be a change of
the time scale in the evolution equations by a multiplicative
factora. Moreover, if the firstn layers were removed from the

system, the only effect of such a change would be a change of

the time scale in the evolution equations by a multiplicative
factora”. By making an analogy with the renormalization group

theory, such a physical behavior should lead to temporal scale

invariance for the specific growth raté) in the limit of large

times. There is a simple physical approach for investigating the

self-similar behavior of simple renormalization group equations
of the typé—8

y() = b y(@) + f(x)

wheref(x) — 0 asx — . The solution of this equation is made
up of the sum of a nonanalytic componen(x), which has the
main contribution ag — o« and by transient analytic contribu-
tion z(x) which decreases quickly to zero for large values:of

(15)

y() = w(x) + z(x) (16)

The expression for the nonanalytic contribution(x), can

be evaluated from the homogeneous part of eq 15, which is

valid in the limitx — o
w(X) = bw(ax) asx — o a7)

by using an interaction representation of the solution of the form:

w(x) = x'Q(x)

whereH is an unknown real number ar@(x) is an unknown
function, respectively. By inserting eq 18 into eq 17, a
straightforward calculation shows thidtmust be given by the
relationship

(18)

H = In(b)/In(1/a) (19)

and thatQ(x) must be a periodic function of kwith a period
In(1/a); indeed, the function given by eq 18 is a solution of eq
17 only if H is given by eq 19 an(x) fulfills the condition:

Q(In(x)) = Q(In(x) + In(1/a))

which expresses the periodicity @(x) on a logarithmic, Irx,

(20)

By inserting eq 22 into eq 13 we come to a functional
equation for the specific total growth ratét), which is a
particular case of eq 17 correspondingbte= a:

r(t) = ar(at) (23)
Its solution is given by eq 18 where, according to eq 19 the
fractal exponent is equal to [Ina)/[In(1/a)] = —1. Thus we
have
r(t) =t'Q(In t) (24)

where, as in eq 18)(In t) is a periodic function of Irt with a
period In(14). In order to evaluate the total specific size per
lattice centerR(t) of the aggregate, it is advantageous to
decompose the periodic functig®(In t) into a constant term
equal to its logarithmic time average:

Qo= ["“Q(b) db (25)

In(1/a)
and into a periodic term il = In t with average value zero:
Qnt)=0Q(nt) — Q,
with
In(1/a)
S0 Qy(0) db=0

By inserting egs 24 and 15 into eq 5 and evaluating the time
integral for large times we get the following expression for the
total specific average size of the aggregate at time

R() = QqInt) + Z(In 1)

(26)

ast — oo (27)

where

() = Qb)) db

is also a periodic function of Ih with a period In(14). We
notice that for large times the total average specific size of the
aggregate increases slowly in time according to a logarithmic
law modulated by logarithmic oscillations.

In summary in this section we have shown that, due to the
assumed Grossmann scaling condition (eq 6) of the rate
coefficients attached to the different layers, the growth of the
aggregate is self-similar and characterized by a scaling exponent

(28)

scale. Even though eq 13 does not have a form given by eqs 15H = —1. For large times the specific rate of growtft)
or 17, the asymptotic behavior of its solutions can however be decreases according to a hyperbolic law)(modulated by slow

investigated by using this physical approach. If the titrie

oscillations occurring on a I scale. Similarly, the specific
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average total size of the aggreg&®@) increases slowly intime  given by eq 30 for real values of the lahelln particular we
according to a logarithmic law of the Elovi¢dtype modulated have

by logarithmic oscillations. The physical approach presented

in this paper shows without doubt that the logarithmic growth A(u,a) = A,a) u = integer (35)
of the aggregate and the logarithmic oscillations are generated

by the self-similarity of the growth process, layer by layer. By using the new integration variable

Unfortunately this technique cannot be used for evaluating the

constant and the periodic functions entering eqs 24 and 27 for x = ka Pt (36)
the total specific rate of growth and for the total size of the

aggregate, respectively. These functions can be determined by,gar 5 succession of elementary transformations, eq 34 can be
using a mathematical approach based on the use of the Poissop.ritten in a more convenient form:

summation techniqué; this approach is presented in the

following section. Gy(akta)

1
4. Explicit Integration of the Evolution Equations "0 = EkaAl(a) exp(-aky + {[In(l/ a)] +
The explicit time dependence of the total rate of growth 2 i 27 u In(aki)
can be evaluated by means of an inverse Laplace transformation — Y { G, (akta) cog———
of eq 8. After lengthy but straightforward calculations eq 8 leads t{in(1/a)]é= In(1/a)
to 27 uIn(akt)
G, (akta) sin 1) (37)
r(t) =) ka'A,(a) exp[—a‘ki] (29)
0= where
where In(z/X
Go(za) = [ A1+ ( ),a expx)dx  (38)
0 0 In(1/a)
Aa) = Sa)/s,4(a) u=1,2.. (30)
and and
In(z/x) | cos| [27 uIn(x)
u + _ [Z Y
@) =1,5() = |_l(1 —aMu=1,2,.. G.(za) = J, All T inay® {sin} In(L/a)
m=

. exp(=x)dx (39)
S@) = limS§,(a) 1>a>0 (31
e Equation 37 can be used for investigating the asymptotic
Note thatS(a@) is a well-known convergent infinite product Pehavior of the total rate of growtft) for large times. Fot >
commonly used in astrophysics as well as in number th&ory. T = 1/(ka), in egs 38 and 39 the\ functions can be
In order to investigate the asymptotic behavior of the rate of @Pproximated by unity because for largave have
growthr(t), we use the Poisson summation technigfuibat is,

we use the identity Alua) ~ Ay(a) ~ [L@m[s(a)/ﬁu—l](a)] =1 foru>0
(40)
+oo +o0
Zf(n) = ch (32) and therefore
where the coefficients Gy(akta) ~ ﬁ)akt exp(=x) dx=1 — exp(—akf) ~ 1
. for t> = 1/(ak) (41)

Co= Y f(y) exp(2iny) dy (33 and

can be expressed in terms of the Fourier transform of the G*(akta) = akt{ COS} 27 uln(x)
functionf(y). We change in eq 29 the summation label fram u —Jo [sin In(1/a)

ton=u — 1 and evaluate the resulting series with the help of 27U
egs 32-33. By noticing that the imaginary part of the result *

exp—x)dx =

t> [{(42)

vanishes, after some algebra we obtain In(1/a)
1 where with
r(t) = —akA(a) exp(—aki) +
2 Fi(bc)—{Re}r(z—bJric)
* 1+ ,C) = =
J dyA(L + y,a) exp(—a*kt) + Im
I@@)= [t " exp(-t) dt (43)

22 j;mdykeiHyA(l + y,a) exp(—a*Pkt) cos(2r uy) (34)

are the real and imaginary parts of the gamma function of
whereA(u,a) is an analytic continuation of the functioh,(a) complex argument, respectively.
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By using the approximate equations 41 and 42 we recover 12 ——
from eq 37 the asymptotic scaling law (eq 24) where the inair(Hp0:12%)
component), and Q:(In(aki) of the function 10~ * n(10%em™) .
r'd
| in0,;:Ny=1:4(H,0:<0.1ppm) -7
Q(n t) = Q, + Qy(In(aky) (44) i R ///
[73
; 2 6 -
are given by % /,/ s
£ f—
Qo = [In(1/a)] (45) s / /
and 5 2 — -
o 1t llllIII 11 lIIIIII 1 III]Jll L1 lll|l|[ 11 IIIIIII 1
Qi[In(akd] = 1 10 102 10° 104 108
2 © =4 2T u o 2 uIn(aky N time (min)
x Z‘ ' Figure 1. Oxide thicknesg grown during room temperature oxidation
In(l/a) ¢= In(1/a) In(1/a) ; : oS !
27 u In(ak) of a single crystal, (100) oriented, oftype silicon in wet and dry air.

observed for wet oxidation of heavily dopgdype silicon and, with

a higher rate, fon type silicon (after Ohmi et &).

46) The dopant concentratiamwas 10° cm™3. A similar behavior is also
In(1/a)

( 27 u ) .
F {1, sin
In(1/a)

Similarly, by considering two large timesandty, integrating 12
the expression (eq 24) frotgto t and making use of eqs 44

46, we recover the expression (eq 27) for the asymptotic
behavior of the total specific size of the aggregate, where the
periodic contribution=(In t) is given by

=[in(kad] = R(ty) —

[
o

Oxide Thickness (A)
o

Z FHa, sin + 4
&u In(1/a) In(1/a)
[ 2zu 27 uIn(akt) 2
F|1, co +
In(1/a) In(1/a) °
0 27 uln(akt) ! 2 ? ! ®
Zi |:+(1, 2T u )sin (aky 10 10 10 10 10
Sru In(1/a) In(1/a) t (min)

Figure 2. Linear-logarithmic plot of the experimental oxidation kinetics
of p, p*, n, andn* type (100) silicon resulting from exposure to wet
air. Data forp type silicon are taken from Mende etZIThe other

. . . . . . data are taken from Morita et &l Lines have been drawn as done in
In conclusion, the direct integration of the evolution equations +-">9 and 30.

leads to results consistent with the physical approach presented

in section 3. We have recovered the Elovich logarithmic law modulated by oscillations which occur on a logarithmic time
for the total size of an aggregate, as well as the oscillatory scale (Figures 1 and 2).

logarithmic modulation. The mathematical approach presented One of the present authors, in collaboration with other

in this section leads to analytic expressions for the proportional- researchers, has suggested a number of reaction mechanisms
ity factors, the characteristic frequencies, and the Fourier seriesfor explaining the experimental dath2%30 Although the as-

( ZW) E[Znuln(akt)
F |1, co
In(1/a) In(1/a)

representing the logarithmic oscillations. sumptions concerning the detailed reaction mechanisms are

different for these three models, the main kinetic equations are
5. Application to the Wet Room Temperature Oxidation the same for all the models. The initial model was based on the
of (100) Silicon assumption that molecular oxygen and the adsorbed water on

Silicon oxidation at room temperature has been the subject the surface are involved in sequences of different cycles, each
of many experimental studies in the past years. The literature CYcle corresepondlng to one layer of oxide. Each cycle involves
on this subject is rather large and we do not intend to review it three steps? 1. The molecular oxygen Qreacts with Si-Si

here. For information on these experimental studies see refs 16P0nds to form siloxanic centers -SD—Si. 2. The siloxanic
17, 24, 29-31. The room-temperature oxidation in wet air of ~Centers S-O—Si react with the absorbed water® on the

the (100) face of a single crystal of silicon creates multiple layers Surface to form StOH groups, thus rendering new silicon atoms
of silicon oxide, each layer being generated after the almost t0 react with oxygen. 3. The water is readsorbed on each
complete generation of the previous layer. The thicknest hydroxyl group. o

the SiQ layer grown during wet oxidation is a stepped function The first step is assumed to be very fast and not limited by the

of time, which can be described by a main logarithmic trend ©Xygen diffusivity inside the formed oxide and, similarly;®i
is assumed to give an almost complete coverage of the surface.

X(t) — x(t) O In(t/ty) (48) On the other hand, water may reasonably be assumed to be

bonded at the superficial hydroxylic groups and unable to diffuse

wherex, is the thickness of the first layer angis the time at to the reaction interface. For this reason it is assumed that
which the first layer is completely formed. This main trend is starting from the second cycle the reaction of adsorbed water



Logarithmic Oscillations in Multilayer Aggregation J. Phys. Chem. A, Vol. 103, No. 25, 1999803

\ / \ / N\ / o :s /oM s<°“ < OH o \s‘/OH
Si—OoH AN TN
\/ N, /\ N\, S _.>|\ H><:\°H &,;ﬂ\(om
i H
/\ o, /\/ H,0 /\/ An }( W
— — H +HO
N NN NN, a _— b o~
/ \ / \ / / \ ) OH N \./H
Si—OH hY¢ HO—S{ HO— S
/ \ / \\ VERN N /g\on NI +:£. ;s-’OH OH
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Figure 4. First model. Mechanism showing the proton transfer from Sou
adsorbed water to disiloxanic interface oxygen via tunneling through Figure 5. Second model. The superficial oxidation of silicon (a) in
a grown-in oxide layer. dry air and (b) in wet air and (c) the oxidation of silicon in wet air at

with an Si—-O—Si at the interface occurs via a tunnel effect the Si=SIC; interface.

through a thermally excited state. It is assumed that this
tunneling step is the rate-determining step of the process.
Quantum mechanical tunneling requires that the mass of the
tunneling particle is sufficiently small. In ref 16 it is suggested
that the proton is the tunneling particle. This assumption is
justified by the fact that KD is a weak Brgnsted acid, i.e., a
proton donor. The following microscopic model has been
suggested: 1. The oxide is characterized at each point by its
thickness expressed in terms of the numbef layers; 2. Water

is adsorbed on the hydrophilic sites at the surface of the;SiO
3. Because of thermal excitation water partially dissociates as
OH™ and H; 4. In a thermally excited state the proton tunnels i — 3 The el h i |
with a transmission coefficien?, to a neutral Brgnsted basic = centers. 3. The electron _charge on stlicon tunne.s to
site at the interface: 5. Under the action of the Coulombic Physically adsorbed £xo form G, . 4. Under the Coulombic
attraction the OH ion migrates to the proton-hosting site at attraction, Q" drifts to the positively charged—{0)sSi™ -

the interface, eventually forming therein hydroxyl groups; 6. OH sites, where it initiates a new reaction cycle.

The migration of the OH ion restores the surface site, which  The main steps of this third model are represented in Figure 6.
becomes available to adsorb anothe©Hnolecule. The overall reaction corresponding to the reaction mechanism
Figure 3 displays the oxidation reactions during the first cycle, from Figure 6 is

and Figure 4 illustrates the proton tunneling from absorbed water
to siloxanic oxygen during the following cycles. Ref 16 provides
qualitative and quantitative arguments in favor of such a
mechanism, based on energetic considerations.

The analysis of this model is resumed in a later publication. Water is necessary for initiating the multilayer oxidation process
In this article further evidence is provided suggesting that the and for allowing it to proceed, but there is no net consumption
hydroxylation is produced by the hydration of a peroxidic bridge Of H20; water behaves as a catalyst and it may activate the
rather than of a siloxanic bridge. Otherwise the main steps of oXidation cycle even in traces.
the process are assumed to be the same. In Figure 5 we give a These three models share an important feature: in all cases
schematic representation of the main reactions involved in the a succession of tunneling processes through the different layers
second mechanism. of silicon oxide is the rate-determining process. Because of this

For both models preliminary computations have shown that
the experimental data are compatible with tunneling (transpar-
ency) factors of the order of magnitude 2pwhich are rather
large for proton tunneling. This observation has generated a third
version of the model, by assuming that the rate-determining step
is electron tunneling from a negatively charged center at the
Si—SiO, surface to adsorbed oxygen. The details of this third
mechanism are presented elsewlérdere we give only the
main steps of the process: 1. Water diffuses easily from the
adsorbed state at the SiGurface to the SiSiO; interface. 2.
Water at the SiSiQ; interface reacts to formO);Sit < OH,

. . HZO . .
2=Si—Si=+0,— 2= Si—0-Si
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=Si-Si=+H,0 — =Si* < OH, “Si=
=Si* « OH, “Si=+0, — =Si" «OH, 'Si+0}
=Si* « OH,"Si=+0; — =Si00" *Si=+H,0
=Si00" *Si= — =Si008i =

=Si00Si = +H,0 —=SiOH HOOSi =

=SiOH HOOSi=+H,0 —=SiOH HOSi=+H,0,
=Si-Si=+H,0, — =Si0Si=+H,0

=SiOH HOSi — =Si0Si=+H,0

Figure 6. Third model. Mechanism showing the electron transfer from
Si~ centers to adsorbed oxygen.O

common feature they all lead to the same type of kinetic

equations, even though the physical meaning of the variables

involved is different. In the following we consider the case of
model 2, for which a detailed kinetic analysis has been presente
in the literaturé'’ In the first place we write an evolution
equation for the generation of the first layer. We introduce the
following notations:f for the fraction of peroxidic sites covered
by water;vo for frequency of vibration along the configuration,
which allows HO and E&Si),0 to react; andPy, the probability

Vlad et al.

excitation, with probability expt AE*/ksT), and proton tun-
neling from the surface to interface, we have

P.,= 7, exp(—AE*kT) (53)
where 7, is the barrier transparency from théh layer to the
surface layer. According to quantum mechaffidbe barrier
transparency”/, can be expressed as
7, = exp(=xAn) (54)
where 4 is the average tunneling length per layer gné a
shape factor depending on the form of the potential baftier.

We introduce the notations

E. = &vf exp(—AE*/kgT) (55)
and
a= 7, = exp(-14) (56)
and rewrite egs 52 in the following form:
do /dt=E.a'(1— 6,)6,_, (57)

gNow we make use of the approximation that the completion of

one layer of silicon oxide starts after the preceding layer is
practically completed. Under these circumstancegtbepend-
ent factor in eq 57 can be approximated by observing that,
during the completion of theth layer, the § — 1)th layer is
almost filled up and, is close to unity. Therefore in eq 57 the

that this process occurs. In terms of these parameters, the kineti¢@ctor (1— n)fn—1 can be approximated by the difference of
equation for the formation of the first layer, can be expressed the coverages of the two layers, i.e.,

as

doy/dt= v Pqfn(1 — 6y) (49)
wheren and 6y are the fraction of the silicon atoms from the
surface bonded to peroxidic oxygen and disiloxanic oxygen,
respectively. The condition that oxidation follows hydroxylation
almost immediately is

(0 = £6(1)

whereé is a constant factor of the order of unity. These two
assumptions lead to the following kinetic equation:

(50)

doy/dt=Ey0,(1 — 6,)
with

Eo = &voPyf (51)
The evolution equations for the following layers have a similar
structure

do /dt= (1 - 6,)0,_,fvP, n=12..6,=1 (52)
where6q(t) is the solution of eq 51y is the proton vibration
frequency perpendicular to the surface, &hds the probability
of proton transfer from thath layer to the interfacial layer.

1-6)0,,=06,,-6,,0,=0,,—06, (58)

By using this approximation we can put eq 57 in a form similar
to the general evolution equation (eq 1) for multilayer aggrega-
tion derived in section 1:

do,/dt = k(®)a'(0, , — 0,) (59)

wherek(t) is a time-dependent rate coefficient, which can be
evaluated analytically by integrating eq 51. We have

k(t) = Evf expAE* kgT) x
1- 00(0)
06(0)

-1

1+ exp(E&vyPyft)|  (60)

We notice that in the case of multilayer silicon oxidation, the
scaling condition of the Grossman type given by eq 6 has a
simple physical interpretation: it is due to the quantum
mechanical tunneling of multiple layers of silicon oxide. The
scaling factora is the transparency of a layer of oxide, which,
according to eq 56 varies exponentially with the tunneling length
A. We notice that there is however a difference between the
general model for multilayer aggregation developed in section
1 and the process of silicon oxidation. In section 1 the rate
coefficientk is independent of time whereas for silicon oxidation

Since this process results from the combination of a thermal it is a function of time given by eq 60. However, since the factor
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k(t) enters all equations (eq 57), we can introduce an intrinsic
time scalegz(t), given by

t) = [k®)dt= &vf exp—AEkgT) x

In[6,(0) + (1 — 65(0)) exp=EvyPft)]
= ol }on

In terms of the intrinsic time scalgt), eq 57 can be written is
a form which is identical to eq 1

do,/dr = a6, , — 6,) (62)

0=1 ﬁ 3\
= n(l/a} 4

from the different layers are replaced by the corresponding Figure 7. Surface representation of the differentB(x,0) between

partial coverages. the aggregate size per unit site obtained from the numerical integration
It follows that the general theory developed in section 1 can of the nonlinear model and the approximate analytic expression obtained

be easily applied to silicon oxidation. In particular the loga- PY applying the renormalization group theory. The figure shows a

where the time is replaced by(t) and the numbers of particles

: ; : : surface plot of the differencAR(x,®) as a function of the period of
rithmic law observed experimentally for large times as well as logarithmic® = In(1/a) oscillations and the logarithm of dimensionless

the logarithmic oscillations which modulate it are derived as e x = In(2).
straightforward consequences of our approach. Strictly speaking,
from our theory we derive these dependencies in terms of the ggcillations and of the logarithm of dimensionless tire In

intrinsic time scaler(t) rather than in terms of the real time ¢ e notice that our approximation is excellent for large values
However, the difference between the two time scales is of @ andx, but is very bad for low values of these two variables,
important only for short times. From eq 61 we notice that the \yhere huge oscillations occur. For a period of logarithmic
relationship between the two time scales is nonlinear only for gscijlations bigger than thre€ > 3, which corresponds ta

short times; for times larger than &/(Pf), the dependence < 10-1, the approximation is very good even for moderately

between the two time scales becomes linear large values of the dimensionless time.
. In order to compare the theory with experiment it is necessary
) = v exp(-AE /kBT)+ for t>> 1(Ev P 63) to compute the experimental observable, which is usually the
- voPof ; 0" o oxide thickness(t) grown at timet. In its present form, our

theory is able to give the amount of oxitlé(t) per unit area of
In the particular case of silicon oxidation, the period of oOxidized silicon
logarithmic oscillations® = In(1/a), is proportional to the
tunneling length.. From eq 56 we have > >
W(t) = Ngy + Ng{ Zbﬁm(t) = NJ(1 + k)0(t) + « Zem(t)]
© =In(l/a) = y4 (64) = m= (67)

Equation 64 illustrates the physical origin of logarithmic
oscillations in the case of silicon oxidation: the oscillations are
generated by a succession of tunneling events across successi
layers of silicon oxide. S :

Xl'he main problem connected to the application of the whereasNg' depends on the structure of silicon oxide. The

B 0X oX __

renormalization group approach to the study of silicon oxidation ogsler of mag(?xltude ofNg; can be_evaluated from_JSi = (5_
is related to the approximation (eq 58), which is physically PS> wherepg andsare the density and the packing fraction
reasonable. The approximation is very good if the scaling factor Of silicon oxide, respectively. Assuming fera value between
is small, i.e., less thaa < 1071. In order to check the validity that of the diamond cubic lattice and that of the face-centered
of our theoretical approach we have solved numerically the cubic lattice we haves = 0.7-0.8. We consider that only a
nonlinear evolution equations (eq 57) expressed in terms of thefraction 1 — g of this surface can be described by the model

where Ns and Ng are the numbers, per unit area, of silicon
0X

toms in silicon and Sig) respectively, andt = Ng;/Ns. For
the (100) surface of silicon one h&g = 6.8 x 10 cm2,

intrinsic time scaler presented here and that the remaining fractfors already
covered at < 1/(EvoPof) by h layers of silicon oxide. Under
doJdr=a"(1— 6,)0,_, (65) these circumstances eq 67 becomes

and computed the total production of silicon oxide per site, Zt) =W(®)/pg = A% = AL+ k)B(t) +

Rhoniineaf?) @s a function of the intrinsic time. We have o0

compared the result with the analytic expression for the average K ZGm(t)) + Ah] (68)

size of an aggregat&(r) = R(t = k/7), expressed as a function =

of the intrinsic time, which in the case of our general approach

from sections 24 is simply equal ta = kt. Figure 7 displays ~ Wherei® = Nypg = 3.1 A.

the dependence of the difference between these two functions Equation 68 depends on seven independent parameters: the
effective rate coefficient of the first oxidatierhydroxylation

AR(X,@) = Rnonlinea(T = exp@<)) - R(T = eXp@O) (66) process,

as a function of the period® = In(1/a) of logarithmic Ry = &voPof (69)
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::hlguret_&l Compar_lsonl.betV\;eersh eXpeé'mﬁ]mil data:c (dt?]ts) a_r&d t_the Figure 9. Comparison between experimental data (dots) and the
eoretical expression (line) for the oxide thickness for the oxidation theoretical expression (line) for the oxide thickness for the oxidation

of p type silicon. of n type silicon.
TABLE 1: Kinetic Parameters Characterizing the 12
Multilayer Growth of Silicon Oxide on Different Substrates
(for definitions of the parameters see eqs 4964) ®
p-Si n-Si p*-Si n*-Si =10 o
K 0.7 0.7 0.85 0.7 28
Ro(sy) 42x10*% 56x10° 56x105 56x10°5 e
R(s™) 6.0x10° 6.0x10° 6.0x10° -}t) 6
a 20x 102 20x102 2.0x1072 o —
64(0) 0.29 0.37 0.40 0.37 £ &
0 0 0 0.2 PR
h 7 3
3 2
the transparency of a layer of silicon oxige the effective rate
coefficient o -
1 2 3 4 5
R, = vf exp(—AE*/(kgT)) (70) 10 10 10 10 10

. . L . t (min)
Whlc.h descnbes. the OXIC.jatlon Of. t.h.e fOI!OWI.ng layers; the Figure 10. Comparison between experimental data (dots) and the
fraction 6o(0), Wh'_Ch desc_rlbes the initial OX|dat|o_n state of the theoretical expression (line) for the oxide thickness for the oxidation
surface; the fractiom, which depends on the oxide structure, f p+ ype silicon.
and 8 and h, which describe the effect of other oxidation
processes. Suitable choices for these parameters which provide 12
a satisfactory description of the experimental data presented in
the literature are given in Table 1, for the particular casp, of
p*, n, andn* type (100) silicon. The physical basis for the
choice of these parameters is going to be presented in another
paper. Figures-811 give a comparison of the experimental data
presented in the literature with the theoretical prediction of the
model. We notice a satisfactory agreement between theory and
experiment. The logarithmic oscillations show up clearly in the
stepped behavior of the oxidation curves for tie n, andn™
type (100)silicon, presented in Figures 9, 10, and 11.

-
o

(-3

Oxide Thickness (A)
™ o

o

6. Conclusions 1 2 3 4 5
10 10 10 10 10

In this article we have suggested a simple kinetic model of t (min)
layer-by-layer aggregation. We have proved that for a self- rigyre 11. Comparison between experimental data (dots) and the
similar system, obeying a scaling condition of the Grossmann theoretical expression (line) for the oxide thickness for the oxidation
type, in the long run the total size of the aggregate obeys aof n* type silicon.
growth law of the logarithmic type, modulated by oscillations
on a logarithmic time scale. We have shown that our model is behavior of the kinetic curves. We have suggested that for the
capable of describing the main features of the chemical processwet oxidation of silicon, the Grossmann scaling condition is
of the wet oxidation of the (100) face of a single crystal of due to a process of quantum tunneling across multiple layers
silicon, where the logarithmic oscillations show up in the stepped of silicon oxide. We have shown that the model provides a
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systems they are considered to be only a mathematical artifactwest, B. J.; Deering, WPhys. Rep1994 246, 100.

and are usually discarded in the description of real physical or ~ (16) Cerofolini, G. F.J. Colloid Interface Sci1994 167, 453.

chemical processes. There are only few examples for which theregs(g)5 Cerofolini, G. F.; La Bruna, G.; Meda, lAppl. Surf. Sci1996

is no doubt that the logarithmic oscillations of the renormal- ™15y Grossmann, S.; Wegner, P.: Hoffmann, K JHPhys. (Paris) Lett.

ization group exist in the real world. In this paper we have 1985 46, L575. Hoffmann, K. H.; Grossmann, S.; Wegner,Z.Phys.

enriched this small collection with a new example, the wet 1(9)?5 B60, 401. Engel, A.; Grossmann, S.; Mikhailov, A. 8988 B70Q,

oxidation of silicon. _ _ (19) Viad, M. 0.J. Phys. A: Math. Gen1992 25, 749; Int. J. Mod.
From the point of view of fractal physics our model is rather pnrys. 1992 B6, 417. Viad, M. O.; Ross, J.; Mackey, M. Math. Phys.

unusual because our law of growth has a main logarithmic trend 1996 37, 803. Vlad, M. O.; Schofisch, B.; Mackey, M. CPhysical996
rather than a power law trend. However, there is no doubt that A229 343. Viad, M. O.; Metzler, R.; Nonnenmacher, T. F.; Mackey, M.

f del th th tical origin of | ithmi illati C. J. Math. Phys1996 37, 2279.
or our model the mathematical origin of logarithmic oscillations (20) Vlad, M. O.Phys. Re. 1992 A45, 3596:A45, 3600. Viad, M. O.:

is in the renormalization group equations. Our kinetic equations Mackey, M. C.Phys. Re. 1995 E51, 3104;E51, 3120.
for the rate of growth are hyperbolic and modulated by  (21) Vlad, M. O.Phys. Re. 1993 E48 3406;J. Math. Phys.1994
logarithmic oscillations, which corresponds to a fractal exponent 35796;Phys. Scr1994 49, 389;J. Phys. A: Math. Gerll994 27, 1791;

o . e i Int. J. Mod. Phys1994 B6, 2489;Physical994 A207, 483.
equal to—1, a value which is unusual in fractal statistics; this " 55)"\jaq, M. 0. Phys. Scr1993 47, 743: J. Phys. A.: Math. Gen.

special value of the fractal exponent generates the main 1993 26, 4183;Phys. Lett.1994 189, 299.
logarithmic trend in the integral kinetic equations. A slight (23) Vlad, M. O.Physical993 197, 182; Vlad, M. O.; Mackey, M. C.
modification of the model of aggregation presented in this article Phys: Scr1994 50, 615.

“ » . S . . - (24) Ohmi, T.; Isagawa, T.; Kogure, M.; Imaoka, J. Electrochem.
leads to “true” statistical fractal kinetics with logarithmic S0c.1993 140, 804.

oscillations with fractal exponents smaller thanl. This (25) Vicsek, T.Fractal Growth PhenomenaWorld Scientific: Sin-
generalized model also displays some interesting new kineticsgapore, 1990.

features, such as the existence of logarithmic oscillations _ (26) Cerofolini, G. F.Z. Phys. Chem. (Leipzig)978 259, 1020; In
Colloid ScienceEvrett, D. H., Ed.; The Chemical Society: London, 1983;

occurring on a double iterated logarithmic time scale, In.In 5\ D 59.
Work on this problem is in progress and the results will be  (27) Titchmarsh, E. Cintroduction to the Theory of Fourier Integrals,
presented elsewhere. 2nd ed.; Clarendon: Oxford, 1948; pp 60, 62.

(28) Chandrasekhar, S.;'Maoh, G.Astrophys. J195Q 112 393. Hardy,

; G. H.; Wright, E. M.An Introduction to the Theory of NumbefSlarendon
Acknowledgment. The authors thank Prof. Igor Schreiber Press: Oxford, 1945: p 275.

for helpful discussions. This research has been supported in part ' 29y mende, G.; Finster, J.; Flamm, D.; Schulze, Surf. Sci.1983

by the National Science Foundation. 128 169.
(30) Morita, M.; Ohmi, T.; Hasegawa, E.; Kawakami, M.; Ohwada, M.
References and Notes J. Appl. Phys199Q 68, 1272.
(31) Cerofolini, G. F. InSilicon for the Chemical Industry [Idye, H.
(1) Luo, Y.; Epstein, |Adv. Chem. Phys199Q 79, 269. A., Rong, H. M., Ceccaroli, B., Nygaard, L., Tuset, J. Kr., Eds.; Tapir:

(2) Gray, P.; Scott, S. KChemical Oscillations and Instabilities Trondheim, Norway, 1996; p 117.
Clarendon Press: Oxford, 1990. (32) Bohm, D.Quantum TheoryPrentice Hall: New York, 1951.



