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A renormalization group approach to self-similar multilayer aggregation processes is suggested on the basis
of the following assumptions. 1. The aggregate is generated by a layer-by-layer process, the rate of growth
of a given layer being proportional to the number of free sites in the preceding layer. 2. The process is
self-similar, that is, from layer to layer the rates of growth are scaled by a subunitary positive Grossmann
factor a. It is shown that this mechanism of growth leads to temporal scale invariance. For large times the
total rate of the process decreases in time according to a hyperbolic law modulated by oscillations occurring
on a logarithmic time scale, with a period equal to the logarithm of the reciprocal value of the scaling factor
a. In the long run the time-dependence of the total mass of the aggregate is given by a logarithmic function
of time also modulated by logarithmic oscillations. The model is applied to the tunnel-assisted wet oxidation
of silicon. It is assumed that multiple layers of silicon oxide are generated by a mechanism that involves a
tunneling process through the silicon oxide layers. In this case Grossmann’s scaling factor and the period of
logarithmic oscillations have simple physical interpretations: the scaling factor is the transparency of a layer
of silicon oxide, and the period of logarithmic oscillations is a measure of the tunneling length. The logarithmic
oscillations of the model give a theoretical description of the stepped behavior of the oxidation process observed
in the experiments reported in the literature. The presented results are of interest both from the points of view
of statistical physics of fractals and nonlinear chemical kinetics.

1. Introduction

The study of chemical oscillations is a field of major
importance in theoretical and applied chemical kinetics.1-3 A
large number of oscillatory chemical reactions have been
investigated both experimentally and theoretically. Moreover,
systematic techniques are available for providing mechanistic
explanations of the experimental data and for projecting a given
oscillatory system. The literature on this subject is enormous;
we mention only three recent reviews.1-3 It is usually assumed
that two different conditions are necessary for the occurrence
of a chemical oscillation: (1) The system should be operated
far from thermodynamic equilibrium and (2) The corresponding
kinetic equations must be nonlinear. Although these conditions
are not sufficient they are assumed to be necessary for ideal
homogeneous chemical systems described by the mass-action
law. Recent research, however, goes beyond the ideal chemical
systems described by the mass action law; for instance, for
nonideal systems some unexpected phenomena may occur, such
as chemical oscillations in the immediate vicinity of thermo-
dynamic equilibrium.4

In this paper we investigate a class of linear kinetic models
for multilayer aggregation that may display a new type of
temporal chemical oscillations, which occur on a logarithmic
time scale, rather than in real time. The occurrence of
logarithmic oscillations for a linear kinetic model contradicts
the above mentioned nonlinearity paradigm encountered in the

literature. The logarithmic oscillations are characteristic for the
renormalization group theory. They were first noticed by
theoreticians in the sixties and seventies in connection with the
study of energy cascades in turbulent flow5 and in the real space
renormalization of the energy for the Ising model.6 They also
occur for systems described in terms of the Shlesinger-Hughes
stochastic renormalization scheme7-8 and for transport processes
in ultrametric spaces.9,10The renormalization group logarithmic
oscillations have been identified in fluid mechanics11,12 and in
the physiology of the lung.13-15 As far as we know they have
not been reported yet in chemical kinetics.

The renormalization group model for multilayer aggregation
suggested in this paper may be used for the description of the
chemical process of the wet oxidation of silicon.16,17 Our
theoretical approach is based on the combination of the
renormalization procedure of Grossmann18 with a stochastic
version of the Shlesinger-Hughes renormalization method
suggested by us for the study of transport processes in disordered
systems,19-21 in ultrametric spaces,22 and for the study of recycle
flows in porous media.23 Our model is equivalent to a linearized
version of the nonlinear kinetic equations suggested by Cero-
folini 16,17 for explaining the stepped behavior of the wet
oxidation of silicon.24

The structure of the paper is as follows. In section 2 we give
a general formulation of the problem. Sections 3 and 4 deal
with the physical and mathematical self-similar features of the
model, respectively. In section 5 the relationships between the
suggested approach and the description of the wet oxidation of
silicon are investigated and a comparison between our theoretical
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predictions and the experimental data is made. Finally in section
6 the physical and chemical implications of the model are
outlined from the points of view of both chemical kinetics and
fractal physics.

2. Formulation of the Problem

We consider a plane surface on which many identical particles
may aggregate in a regular fashion. On the first layer of particles
a second layer may be formed by aggregation and so on, layer
by layer, up to infinity. This aggregation is similar to the ones
used in statistical physics for generating random fractal struc-
tures, for instance with diffusion-limited aggregation.25 We
assume that there is an infinite supply of particles and that the
kinetics of the process can be described by the mass action law.
We assume that initially there areN0 identical sites on the
surface and that the process of aggregation starts at the initial
time t ) 0. The kinetic evolution of the process is simply
described, to a good approximation, by the equations

with the initial condition

whereNu, u ) 1, 2, ... are the numbers of particles from the
layers 1, 2 andku, u ) 1, 2, ... are the rate coefficients of
aggregation corresponding to the different layers. The evolution
equations (1) are based on the assumption that the rate of
aggregation of theuth layer is proportional to the numberNu -
Nu-1 of unoccupied (free) sites in the (u - 1)th layer. We are
interested in the determination of the time evolution of the total
rate of aggregationr(t) expressed in terms of the average number
of aggregated particles corresponding to a site on the initial
surface. We have

where

are the specific rates of growth of the different layers. We are
also interested in the evaluation of the time dependence of the
total average sizeR(t) of the aggregate corresponding to an initial
lattice center:

where the terms in the sum express the contributions of the
different layers.

Since eqs 1 are linear their integration is very simple. Each
function Nu(t) can be written as a linear combination of
exponentials of the form exp(-kut), u ) 1, 2, ... expressing the
contributions of the growth processes of the different layers.
At first sight the dynamics of such a process may seem trivial
because a combination of exponentials cannot express any self-
similar features of the growth process. This claim is however
not true. In a general study of the dynamics of the linear
evolution equations of the type (1), Grossmann18 has shown

that the system may display self-similarity if the rate coefficients
ku, u ) 1, 2, ... obey the scaling condition

wherea < 1 is a scaling factor smaller than unity andk is a
reference rate coefficient. In general Grossmann’s scaling
condition (eq 6) may seem rather formal. We shall see, however,
that in the case of the wet oxidation of silicon eq 6 has a
straightforward physical meaning, which is related to the
reaction mechanism.

The purpose of the present article is to study the scaling
behavior of the total specific reaction rater(t) and of the average
size of the aggregateR(t) per lattice center in the case when
the growth rates are given by eq 6.

3. Physical Approach to Renormalization Group

As far as we know the scaling behavior of the solutions of
the evolution equations (eq 1-3) has not been investigated in
the literature. In this section we suggest a physically oriented
approach to this problem by analogy with the renormalization
group scheme suggested by Shlesinger and Hughes for random
walks.7,8 By means of Laplace transformation eqs 1-3 lead to
a formal series expansion for the Laplace transform of the
specific total growth rate:

wheres is the Laplace variable conjugate to the time t andLs

and the overbar denote the Laplace transformation. By applying
the Laplace transformation to eqs 1-3 and by eliminating from
the resulting equations the Laplace transforms of the numbers
of particles from the different layers, after some elementary
algebra we obtain

This equation displays some self-similar features that can be
outlined by rewriting it in the following form:

where

are transfer functions, which describe the growth kinetics of
the different layers,m ) 1, 2, ... It is easy to check that these
transfer functions have the property

and therefore eq 9 can be rewritten as

from which, coming back to the time variable by means of an
inverse Laplace transformation we obtain

dNu(t)/dt ) ku[Nu-1(t) - Nu(t)] u ) 1, 2, ... (1)

N0(0) ) N0(t) ) constant Nu(0) ) 0 u ) 1, 2, ...

(2)

r(t) )
1

N0
∑
u)1

∞ [dNu(t)

dt ] ) ∑
u)1

∞

ru(t) (3)

ru(t) ) 1
N0

dNu(t)

dt
u ) 1, 2, ... (4)

R(t) ) ∫0

t
r(t) dt ) ∑

u)1

∞

[Nu(t)/N0] (5)

ku ) kau u ) 1, 2, ... (6)

rj(s) ) Lsr(t) ) ∫0

∞
e-str(t) dt (7)

rj(s) ) ∑
u)1

∞

∏
m)1

u [ am

am + (s/k)] (8)

rj(s) ) gj1(s) + gj1(s)gj2(s) + gj1(s)gj2(s)gj3(s) + ... (9)

gjm(s) ) [am/(am + (s/k))] m ) 1, 2, ... (10)

gjm+1(s) ) gjm(s/a), m ) 1, 2, ... (11)

rj(s) ) gj1(s)[gj1(s/a) + gj1(s/a)gj2(s/a) +
gj1(s/a)gj2(s/a)gj3(s/a) + ...] ) gj1(s)rj(s/a) )

[a/(a + (s/k))]{1 + rj(s/a)} (12)

r(t) ) ∫0

t
ψ(t′)r[a(t - t′)] dt′ + ψ(t) (13)
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where

with

is the probability density of the timet′ necessary for the
completion of the first layer.

Equations 12 and 13 have a structure typical for a renormal-
ization group equation; they express the self-similarity of the
growth process due to the scaling condition (eq 6) for the rate
coefficients of growth corresponding to the different layers.
From the physical point of view these equations express the
fact that the growth process would have exactly the same
dynamics if the first layer were removed from the system; the
only effect of leaving out the first layer would be a change of
the time scale in the evolution equations by a multiplicative
factora. Moreover, if the firstn layers were removed from the
system, the only effect of such a change would be a change of
the time scale in the evolution equations by a multiplicative
factoran. By making an analogy with the renormalization group
theory, such a physical behavior should lead to temporal scale
invariance for the specific growth rater(t) in the limit of large
times. There is a simple physical approach for investigating the
self-similar behavior of simple renormalization group equations
of the type7-8

wheref(x) f 0 asx f ∞. The solution of this equation is made
up of the sum of a nonanalytic component,w(x), which has the
main contribution asx f ∞ and by transient analytic contribu-
tion z(x) which decreases quickly to zero for large values ofx:

The expression for the nonanalytic contribution,w(x), can
be evaluated from the homogeneous part of eq 15, which is
valid in the limit x f ∞

by using an interaction representation of the solution of the form:

whereH is an unknown real number andQ(x) is an unknown
function, respectively. By inserting eq 18 into eq 17, a
straightforward calculation shows thatH must be given by the
relationship

and thatQ(x) must be a periodic function of lnx with a period
ln(1/a); indeed, the function given by eq 18 is a solution of eq
17 only if H is given by eq 19 andQ(x) fulfills the condition:

which expresses the periodicity ofQ(x) on a logarithmic, lnx,
scale. Even though eq 13 does not have a form given by eqs 15
or 17, the asymptotic behavior of its solutions can however be
investigated by using this physical approach. If the timet is

larger than the average time necessary for the completion of
the first layer,

Then in this region for the computation of the time integral in
eq 13 we can approximate the probability densityψ(t′) dt′ by a
delta function:

This approximation is justified by the fact that for large values
of the ratiot/〈t〉 on the time scalet, the exponential probability
density (eq 14) forψ(t) is very sharp, with a large heightka )
1/〈t〉 and very narrow, with a small width〈t〉 ) 1/(ka), and
therefore the delta function (22) is a very good approximation
for it.

By inserting eq 22 into eq 13 we come to a functional
equation for the specific total growth rater(t), which is a
particular case of eq 17 corresponding tob ) a:

Its solution is given by eq 18 where, according to eq 19 the
fractal exponentH is equal to [lna]/[ln(1/a)] ) -1. Thus we
have

where, as in eq 18,Q(ln t) is a periodic function of lnt with a
period ln(1/a). In order to evaluate the total specific size per
lattice centerR(t) of the aggregate, it is advantageous to
decompose the periodic functionQ(ln t) into a constant term
equal to its logarithmic time average:

and into a periodic term inb ) ln t with average value zero:

with

By inserting eqs 24 and 15 into eq 5 and evaluating the time
integral for large times we get the following expression for the
total specific average size of the aggregate at timet:

where

is also a periodic function of lnt with a period ln(1/a). We
notice that for large times the total average specific size of the
aggregate increases slowly in time according to a logarithmic
law modulated by logarithmic oscillations.

In summary in this section we have shown that, due to the
assumed Grossmann scaling condition (eq 6) of the rate
coefficients attached to the different layers, the growth of the
aggregate is self-similar and characterized by a scaling exponent
H ) -1. For large times the specific rate of growthr(t)
decreases according to a hyperbolic law (t-1) modulated by slow
oscillations occurring on a lnt scale. Similarly, the specific

ψ(t) dt ) exp[-(ka)t](ka) dt

∫0

∞
ψ(t′) dt′ ) 1 (14)

y(x) ) b y(ax) + f(x) (15)

y(x) ) w(x) + z(x) (16)

w(x) ) bw(ax) asx f ∞ (17)

w(x) ) xHQ(x) (18)

H ) ln(b)/ln(1/a) (19)

Q(ln(x)) ) Q(ln(x) + ln(1/a)) (20)

〈t′〉 ) ∫0

∞
t′ψ(t′)dt′ ) 1/(ka) (21)

ψ(t′) dt′ ≈ δ(t′) dt′ for 〈t′〉 . t (22)

r(t) ) ar(at) (23)

r(t) ) t-1Q(ln t) (24)

Q0 ) 1
ln(1/a)

∫0

ln(1/a)
Q(b) db (25)

Q1(ln t) ) Q(ln t) - Q0

∫0

ln(1/a)
Q1(b) db ) 0 (26)

R(t) ) Q0(ln t) + ¥(ln t) ast f ∞ (27)

¥(b) ) ∫0

b
Q1(b′) db′ (28)
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average total size of the aggregateR(t) increases slowly in time
according to a logarithmic law of the Elovich26 type modulated
by logarithmic oscillations. The physical approach presented
in this paper shows without doubt that the logarithmic growth
of the aggregate and the logarithmic oscillations are generated
by the self-similarity of the growth process, layer by layer.
Unfortunately this technique cannot be used for evaluating the
constant and the periodic functions entering eqs 24 and 27 for
the total specific rate of growth and for the total size of the
aggregate, respectively. These functions can be determined by
using a mathematical approach based on the use of the Poisson
summation technique;27 this approach is presented in the
following section.

4. Explicit Integration of the Evolution Equations

The explicit time dependence of the total rate of growthr(t)
can be evaluated by means of an inverse Laplace transformation
of eq 8. After lengthy but straightforward calculations eq 8 leads
to

where

and

Note that S(a) is a well-known convergent infinite product
commonly used in astrophysics as well as in number theory.28

In order to investigate the asymptotic behavior of the rate of
growthr(t), we use the Poisson summation technique,27 that is,
we use the identity

where the coefficients

can be expressed in terms of the Fourier transform of the
function f(y). We change in eq 29 the summation label fromu
to n ) u - 1 and evaluate the resulting series with the help of
eqs 32-33. By noticing that the imaginary part of the result
vanishes, after some algebra we obtain

whereA(u,a) is an analytic continuation of the functionAu(a)

given by eq 30 for real values of the labelu. In particular we
have

By using the new integration variable

after a succession of elementary transformations, eq 34 can be
rewritten in a more convenient form:

where

and

Equation 37 can be used for investigating the asymptotic
behavior of the total rate of growthr(t) for large times. Fort .
〈t〉 ) 1/(ka), in eqs 38 and 39 theA functions can be
approximated by unity because for largeu we have

and therefore

and

where with

are the real and imaginary parts of the gamma function of
complex argument, respectively.

r(t) ) ∑
u)1

∞

kauAu(a) exp[-aukt] (29)

Au(a) ) S(a)/Su-1(a) u ) 1, 2, ... (30)

S0(a) ) 1, Su(a) ) ∏
m)1

u

(1 - am),u ) 1, 2, ...

S(a) ) lim
uf∞

Su(a) 1 > a > 0 (31)

∑
-∞

+∞

f(n) ) ∑
-∞

+∞

Cn (32)

Cn ) ∑
-∞

+∞

f(y) exp(2iπny) dy (33)

r(t) )
1

2
akA1(a) exp(-akt) +

∫0

∞
dyA(1 + y,a) exp(-a1+ykt) +

2∑
u)1

∞ ∫0

∞
dyka1+yA(1 + y,a) exp(-a1+ykt) cos(2π uy) (34)

A(u,a) ) Au(a) u ) integer (35)

x ) ka1+yt (36)

r(t) )
1

2
kaA1(a) exp(-akt) +

G0(akt,a)

t[ln(l/a)]
+

2

t[ln(1/a)]
∑
u)1

∞ {Gu
+(akt,a) cos[2π u ln(akt)

ln(1/a) ] +

Gu
-(akt,a) sin[2π u ln(akt)

ln(1/a) ]} (37)

G0(z,a) ) ∫0

z
A[1 +

ln(z/x)

ln(1/a)
,a] exp(-x)dx (38)

Gu
((z,a) ) ∫0

z
A[1 +

ln(z/x)

ln(1/a)
,a]{cos

sin }[2π u ln(x)

ln(1/a) ] ×
exp(-x)dx (39)

A(u,a) ≈ A[u](a) ≈ lim
[u]f∞

[S(a)/S[u-1](a)] ) 1 for u . 0

(40)

G0(akt,a) ≈ ∫0

akt
exp(-x) dx ) 1 - exp(-akt) ≈ 1

for t . 〈t〉 ) 1/(ak) (41)

Gu
((akt,a) = ∫0

akt{cos
sin }[2π u ln(x)

ln(1/a) ] exp(-x)dx =

F((1,
2π u

ln(1/a)) t . 〈t〉 (42)

F((b,c) ) {Re
Im }Γ(z ) b + ic)

Γ(z) ) ∫0

∞
tz-1 exp(-t) dt (43)
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By using the approximate equations 41 and 42 we recover
from eq 37 the asymptotic scaling law (eq 24) where the
componentsQ0 andQ1(ln(akt)) of the function

are given by

and

Similarly, by considering two large times,t and t0, integrating
the expression (eq 24) fromt0 to t and making use of eqs 44-
46, we recover the expression (eq 27) for the asymptotic
behavior of the total specific size of the aggregate, where the
periodic contribution¥(ln t) is given by

In conclusion, the direct integration of the evolution equations
leads to results consistent with the physical approach presented
in section 3. We have recovered the Elovich logarithmic law
for the total size of an aggregate, as well as the oscillatory
logarithmic modulation. The mathematical approach presented
in this section leads to analytic expressions for the proportional-
ity factors, the characteristic frequencies, and the Fourier series
representing the logarithmic oscillations.

5. Application to the Wet Room Temperature Oxidation
of (100) Silicon

Silicon oxidation at room temperature has been the subject
of many experimental studies in the past years. The literature
on this subject is rather large and we do not intend to review it
here. For information on these experimental studies see refs 16,
17, 24, 29-31. The room-temperature oxidation in wet air of
the (100) face of a single crystal of silicon creates multiple layers
of silicon oxide, each layer being generated after the almost
complete generation of the previous layer. The thicknessx of
the SiO2 layer grown during wet oxidation is a stepped function
of time, which can be described by a main logarithmic trend

wherex1 is the thickness of the first layer andt1 is the time at
which the first layer is completely formed. This main trend is

modulated by oscillations which occur on a logarithmic time
scale (Figures 1 and 2).

One of the present authors, in collaboration with other
researchers, has suggested a number of reaction mechanisms
for explaining the experimental data.24,29,30 Although the as-
sumptions concerning the detailed reaction mechanisms are
different for these three models, the main kinetic equations are
the same for all the models. The initial model was based on the
assumption that molecular oxygen and the adsorbed water on
the surface are involved in sequences of different cycles, each
cycle corresponding to one layer of oxide. Each cycle involves
three steps:16 1. The molecular oxygen O2 reacts with Si-Si
bonds to form siloxanic centers Si-O-Si. 2. The siloxanic
centers Si-O-Si react with the absorbed water H2O on the
surface to form Si-OH groups, thus rendering new silicon atoms
to react with oxygen. 3. The water is readsorbed on each
hydroxyl group.
The first step is assumed to be very fast and not limited by the
oxygen diffusivity inside the formed oxide and, similarly, H2O
is assumed to give an almost complete coverage of the surface.
On the other hand, water may reasonably be assumed to be
bonded at the superficial hydroxylic groups and unable to diffuse
to the reaction interface. For this reason it is assumed that
starting from the second cycle the reaction of adsorbed water

Q(ln t) ) Q0 + Q1(ln(akt)) (44)

Q0 ) 1/[ln(1/a)] (45)

Q1[ln(akt)] )

2

ln(1/a)
× ∑

u)1

∞ {F+(1,
2π u

ln(1/a))cos[2π u ln(akt)

ln(1/a) ] +

F-(1,
2π u

ln(1/a))sin[2π u ln(akt)

ln(1/a) ]} (46)

¥[ln(kat)] ) R(t0) -

∑
u)1

∞ 1

π u{F+(1,
2π u

ln(1/a))sin[2π u ln(akt0)

ln(1/a) ] +

F-(1,
2π u

ln(1/a))cos[2π u ln(akt0)

ln(1/a) ]} +

∑
u)1

∞ 1

π u{F+(1,
2π u

ln(1/a))sin[2π u ln(akt)

ln(1/a) ] +

F-(1,
2π u

ln(1/a)) cos[2π u ln(akt)

ln(1/a) ]} (47)

x(t) - x(t1) ∝ ln(t/t1) (48)

Figure 1. Oxide thicknesszgrown during room temperature oxidation
of a single crystal, (100) oriented, ofn-type silicon in wet and dry air.
The dopant concentrationn was 1015 cm-3. A similar behavior is also
observed for wet oxidation of heavily dopedp type silicon and, with
a higher rate, forn type silicon (after Ohmi et al.24).

Figure 2. Linear-logarithmic plot of the experimental oxidation kinetics
of p, p+, n, andn+ type (100) silicon resulting from exposure to wet
air. Data forp type silicon are taken from Mende et al.29 The other
data are taken from Morita et al.30 Lines have been drawn as done in
refs 29 and 30.
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with an Si-O-Si at the interface occurs via a tunnel effect
through a thermally excited state. It is assumed that this
tunneling step is the rate-determining step of the process.
Quantum mechanical tunneling requires that the mass of the
tunneling particle is sufficiently small. In ref 16 it is suggested
that the proton is the tunneling particle. This assumption is
justified by the fact that H2O is a weak Brønsted acid, i.e., a
proton donor. The following microscopic model has been
suggested: 1. The oxide is characterized at each point by its
thickness expressed in terms of the numbern of layers; 2. Water
is adsorbed on the hydrophilic sites at the surface of the SiO2;
3. Because of thermal excitation water partially dissociates as
OH- and H+; 4. In a thermally excited state the proton tunnels
with a transmission coefficientun to a neutral Brønsted basic
site at the interface; 5. Under the action of the Coulombic
attraction the OH- ion migrates to the proton-hosting site at
the interface, eventually forming therein hydroxyl groups; 6.
The migration of the OH- ion restores the surface site, which
becomes available to adsorb another H2O molecule.
Figure 3 displays the oxidation reactions during the first cycle,
and Figure 4 illustrates the proton tunneling from absorbed water
to siloxanic oxygen during the following cycles. Ref 16 provides
qualitative and quantitative arguments in favor of such a
mechanism, based on energetic considerations.

The analysis of this model is resumed in a later publication.17

In this article further evidence is provided suggesting that the
hydroxylation is produced by the hydration of a peroxidic bridge
rather than of a siloxanic bridge. Otherwise the main steps of
the process are assumed to be the same. In Figure 5 we give a
schematic representation of the main reactions involved in the
second mechanism.

For both models preliminary computations have shown that
the experimental data are compatible with tunneling (transpar-
ency) factors of the order of magnitude 10-2, which are rather
large for proton tunneling. This observation has generated a third
version of the model, by assuming that the rate-determining step
is electron tunneling from a negatively charged center at the
Si-SiO2 surface to adsorbed oxygen. The details of this third
mechanism are presented elsewhere.31 Here we give only the
main steps of the process: 1. Water diffuses easily from the
adsorbed state at the SiO2 surface to the Si-SiO2 interface. 2.
Water at the Si-SiO2 interface reacts to form (-O)3Si+ r OH2
-Si ≡ centers. 3. The electron charge on silicon tunnels to
physically adsorbed O2 to form O2

•-. 4. Under the Coulombic
attraction, O2

•- drifts to the positively charged (-O)3Si+ r
OH2 sites, where it initiates a new reaction cycle.
The main steps of this third model are represented in Figure 6.
The overall reaction corresponding to the reaction mechanism
from Figure 6 is

Water is necessary for initiating the multilayer oxidation process
and for allowing it to proceed, but there is no net consumption
of H2O; water behaves as a catalyst and it may activate the
oxidation cycle even in traces.

These three models share an important feature: in all cases
a succession of tunneling processes through the different layers
of silicon oxide is the rate-determining process. Because of this

Figure 3. First model. Sketch of the oxidation-hydroxylation cycle.

Figure 4. First model. Mechanism showing the proton transfer from
adsorbed water to disiloxanic interface oxygen via tunneling through
a grown-in oxide layer.

Figure 5. Second model. The superficial oxidation of silicon (a) in
dry air and (b) in wet air and (c) the oxidation of silicon in wet air at
the Si-SiO2 interface.

2 ≡ Si-Si ≡ +O298
H2O

2 ≡ Si-O-Si
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common feature they all lead to the same type of kinetic
equations, even though the physical meaning of the variables
involved is different. In the following we consider the case of
model 2, for which a detailed kinetic analysis has been presented
in the literature.17 In the first place we write an evolution
equation for the generation of the first layer. We introduce the
following notations: f for the fraction of peroxidic sites covered
by water;ν0 for frequency of vibration along the configuration,
which allows H2O and (≡Si)2O to react; andP0, the probability
that this process occurs. In terms of these parameters, the kinetic
equation for the formation of the first layer, can be expressed
as

whereη andθ0 are the fraction of the silicon atoms from the
surface bonded to peroxidic oxygen and disiloxanic oxygen,
respectively. The condition that oxidation follows hydroxylation
almost immediately is

whereê is a constant factor of the order of unity. These two
assumptions lead to the following kinetic equation:

with

The evolution equations for the following layers have a similar
structure

whereθ0(t) is the solution of eq 51,ν is the proton vibration
frequency perpendicular to the surface, andPn is the probability
of proton transfer from thenth layer to the interfacial layer.
Since this process results from the combination of a thermal

excitation, with probability exp(-∆E*/kBT), and proton tun-
neling from the surface to interface, we have

whereun is the barrier transparency from thenth layer to the
surface layer. According to quantum mechanics32 the barrier
transparencyun can be expressed as

whereλ is the average tunneling length per layer andø is a
shape factor depending on the form of the potential barrier.32

We introduce the notations

and

and rewrite eqs 52 in the following form:

Now we make use of the approximation that the completion of
one layer of silicon oxide starts after the preceding layer is
practically completed. Under these circumstances theθ-depend-
ent factor in eq 57 can be approximated by observing that,
during the completion of thenth layer, the (n - 1)th layer is
almost filled up andθn is close to unity. Therefore in eq 57 the
factor (1- θn)θn-1 can be approximated by the difference of
the coverages of the two layers, i.e.,

By using this approximation we can put eq 57 in a form similar
to the general evolution equation (eq 1) for multilayer aggrega-
tion derived in section 1:

wherek(t) is a time-dependent rate coefficient, which can be
evaluated analytically by integrating eq 51. We have

We notice that in the case of multilayer silicon oxidation, the
scaling condition of the Grossman type given by eq 6 has a
simple physical interpretation: it is due to the quantum
mechanical tunneling of multiple layers of silicon oxide. The
scaling factora is the transparency of a layer of oxide, which,
according to eq 56 varies exponentially with the tunneling length
λ. We notice that there is however a difference between the
general model for multilayer aggregation developed in section
1 and the process of silicon oxidation. In section 1 the rate
coefficientk is independent of time whereas for silicon oxidation
it is a function of time given by eq 60. However, since the factor

Figure 6. Third model. Mechanism showing the electron transfer from
Si- centers to adsorbed oxygen O2.

dθ0/dt ) ν0P0fη(1 - θ0) (49)

η(t) ) êθ0(t) (50)

dθ0/dt ) E0θ0(1 - θ0)

E0 ) êν0P0f (51)

dθn/dt ) (1 - θn)θn-1fνPn n ) 1, 2, ...;θ0 ) 1 (52)

Pn ) un exp(-∆E*/kBT) (53)

un ) exp(-øλn) (54)

E* ) êνf exp(-∆E*/kBT) (55)

a ) u1 ) exp(-øλ) (56)

dθn/dt ) E*a
n(1 - θn)θn-1 (57)

(1 - θn)θn-1 ) θn-1 - θn-1θn = θn-1 - θn (58)

dθn/dt ) k(t)an(θn-1 - θn) (59)

k(t) ) êνf exp(-∆E*/kBT) ×

[1 +
1 - θ0(0)

θ0(0)
exp(-êν0P0ft)]-1

(60)
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k(t) enters all equations (eq 57), we can introduce an intrinsic
time scale,τ(t), given by

In terms of the intrinsic time scaleτ(t), eq 57 can be written is
a form which is identical to eq 1

where the timet is replaced byτ(t) and the numbers of particles
from the different layers are replaced by the corresponding
partial coverages.

It follows that the general theory developed in section 1 can
be easily applied to silicon oxidation. In particular the loga-
rithmic law observed experimentally for large times as well as
the logarithmic oscillations which modulate it are derived as
straightforward consequences of our approach. Strictly speaking,
from our theory we derive these dependencies in terms of the
intrinsic time scaleτ(t) rather than in terms of the real timet.
However, the difference between the two time scales is
important only for short times. From eq 61 we notice that the
relationship between the two time scales is nonlinear only for
short times; for times larger than 1/(êν0P0f), the dependence
between the two time scales becomes linear

In the particular case of silicon oxidation, the period of
logarithmic oscillations,Θ ) ln(1/a), is proportional to the
tunneling lengthλ. From eq 56 we have

Equation 64 illustrates the physical origin of logarithmic
oscillations in the case of silicon oxidation: the oscillations are
generated by a succession of tunneling events across successive
layers of silicon oxide.

The main problem connected to the application of the
renormalization group approach to the study of silicon oxidation
is related to the approximation (eq 58), which is physically
reasonable. The approximation is very good if the scaling factor
is small, i.e., less thana < 10-1. In order to check the validity
of our theoretical approach we have solved numerically the
nonlinear evolution equations (eq 57) expressed in terms of the
intrinsic time scaleτ

and computed the total production of silicon oxide per site,
Rnonlinear(τ) as a function of the intrinsic timeτ. We have
compared the result with the analytic expression for the average
size of an aggregate,R(τ) ) R(t ) k/τ), expressed as a function
of the intrinsic time, which in the case of our general approach
from sections 2-4 is simply equal toτ ) kt. Figure 7 displays
the dependence of the difference between these two functions

as a function of the periodΘ ) ln(1/a) of logarithmic

oscillations and of the logarithm of dimensionless timex ) ln
τ. We notice that our approximation is excellent for large values
of Θ andx, but is very bad for low values of these two variables,
where huge oscillations occur. For a period of logarithmic
oscillations bigger than three,Θ > 3, which corresponds toa
< 10-1, the approximation is very good even for moderately
large values of the dimensionless time.

In order to compare the theory with experiment it is necessary
to compute the experimental observable, which is usually the
oxide thicknessz(t) grown at timet. In its present form, our
theory is able to give the amount of oxideW(t) per unit area of
oxidized silicon

where Ns and NSi
ox are the numbers, per unit area, of silicon

atoms in silicon and SiO2, respectively, andκ ) NSi
ox/Ns. For

the (100) surface of silicon one hasNs ) 6.8 × 1014 cm-2,
whereasNSi

ox depends on the structure of silicon oxide. The
order of magnitude ofNSi

ox can be evaluated fromNSi
ox ) (s

FSi
ox)2/3 whereFSi

ox ands are the density and the packing fraction
of silicon oxide, respectively. Assuming fors a value between
that of the diamond cubic lattice and that of the face-centered
cubic lattice we haves ) 0.7-0.8. We consider that only a
fraction 1- â of this surface can be described by the model
presented here and that the remaining fractionâ is already
covered att < 1/(êν0P0f) by h layers of silicon oxide. Under
these circumstances eq 67 becomes

whereλ0 ) Ns/FSi
ox ) 3.1 Å.

Equation 68 depends on seven independent parameters: the
effective rate coefficient of the first oxidation-hydroxylation
process,

Figure 7. Surface representation of the difference∆R(x,Θ) between
the aggregate size per unit site obtained from the numerical integration
of the nonlinear model and the approximate analytic expression obtained
by applying the renormalization group theory. The figure shows a
surface plot of the difference∆R(x,Θ) as a function of the period of
logarithmicΘ ) ln(1/a) oscillations and the logarithm of dimensionless
time, x ) ln(τ).

W(t) ) Nsη + NSi
ox∑

m)0

∞

θm(t) ) Ns[(1 + κ)θ0(t) + κ∑
m)1

∞

θm(t)]

(67)

z(t) ) W(t)/FSi
ox ) λ0[(1 - â)((1 + κ)θ0(t) +

κ∑
m)1

∞

θm(t)) + âh] (68)

R0 ) êν0P0f (69)

τ(t) ) ∫0

t
k(t)dt ) êνf exp(-∆E*/kBT) ×

{t +
ln[θ0(0) + (1 - θ0(0)) exp(-êν0P0ft)]

êν0P0f } (61)

dθn/dτ ) an(θn-1 - θn) (62)

τ(t) =
ν exp(-∆E*/kBT)

ν0P0f
t for t . 1/(êν0P0f) (63)

Θ ) ln(1/a) ) øλ (64)

dθn/dτ ) an(1 - θn)θn-1 (65)

∆R(x,Θ) ) Rnonlinear(τ ) exp(x)) - R(τ ) exp(x)) (66)
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the transparency of a layer of silicon oxide,a; the effective rate
coefficient

which describes the oxidation of the following layers; the
fractionθ0(0), which describes the initial oxidation state of the
surface; the fractionκ, which depends on the oxide structure,
and â and h, which describe the effect of other oxidation
processes. Suitable choices for these parameters which provide
a satisfactory description of the experimental data presented in
the literature are given in Table 1, for the particular case ofp,
p+, n, and n+ type (100) silicon. The physical basis for the
choice of these parameters is going to be presented in another
paper. Figures 8-11 give a comparison of the experimental data
presented in the literature with the theoretical prediction of the
model. We notice a satisfactory agreement between theory and
experiment. The logarithmic oscillations show up clearly in the
stepped behavior of the oxidation curves for thep+, n, andn+

type (100)silicon, presented in Figures 9, 10, and 11.

6. Conclusions

In this article we have suggested a simple kinetic model of
layer-by-layer aggregation. We have proved that for a self-
similar system, obeying a scaling condition of the Grossmann
type, in the long run the total size of the aggregate obeys a
growth law of the logarithmic type, modulated by oscillations
on a logarithmic time scale. We have shown that our model is
capable of describing the main features of the chemical process
of the wet oxidation of the (100) face of a single crystal of
silicon, where the logarithmic oscillations show up in the stepped

behavior of the kinetic curves. We have suggested that for the
wet oxidation of silicon, the Grossmann scaling condition is
due to a process of quantum tunneling across multiple layers
of silicon oxide. We have shown that the model provides a

Figure 8. Comparison between experimental data (dots) and the
theoretical expression (line) for the oxide thickness for the oxidation
of p type silicon.

TABLE 1: Kinetic Parameters Characterizing the
Multilayer Growth of Silicon Oxide on Different Substrates
(for definitions of the parameters see eqs 49-64)

p-Si n-Si p+-Si n+-Si

κ 0.7 0.7 0.85 0.7
R0(s-1) 4.2× 10-4 5.6× 10-5 5.6× 10-5 5.6× 10-5

R(s-1) 6.0× 10-5 6.0× 10-5 6.0× 10-5

a 2.0× 10-2 2.0× 10-2 2.0× 10-2

θ0(0) 0.29 0.37 0.40 0.37
â 0 0 0 0.2
h 7

Rn ) νf exp(-∆E*/(kBT)) (70)

Figure 9. Comparison between experimental data (dots) and the
theoretical expression (line) for the oxide thickness for the oxidation
of n type silicon.

Figure 10. Comparison between experimental data (dots) and the
theoretical expression (line) for the oxide thickness for the oxidation
of p+ type silicon.

Figure 11. Comparison between experimental data (dots) and the
theoretical expression (line) for the oxide thickness for the oxidation
of n+ type silicon.
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satisfactory description of the experimental data presented in
the literature.

Our research is an interdisciplinary study of interest both for
nonlinear chemical kinetics and the statistical physics of fractal
systems. In nonlinear kinetics the study of oscillations has a
long history. In this article we have reported the existence of a
new type of chemical oscillations for which the oscillatory
process takes place on a logarithmic time scale rather than in
real time. The oscillations reported here are not conventional
oscillations in the sense that the kinetic curves are not going
up and down but rather present a stepped behavior. Nevertheless,
the kinetic process has a periodic component which is respon-
sible for the stepped behavior and which is described by a
periodic function of the logarithm of real time.

In the statistical physics of fractal systems the study of
aggregation processes is a subject of topical interest: these
processes provide a lot of interesting examples of statistical and
geometrical fractals. In this field the logarithmic oscillations
are well known theoretically, they enter the solutions of the
equations of the renormalization group. However, for most
systems they are considered to be only a mathematical artifact
and are usually discarded in the description of real physical or
chemical processes. There are only few examples for which there
is no doubt that the logarithmic oscillations of the renormal-
ization group exist in the real world. In this paper we have
enriched this small collection with a new example, the wet
oxidation of silicon.

From the point of view of fractal physics our model is rather
unusual because our law of growth has a main logarithmic trend
rather than a power law trend. However, there is no doubt that
for our model the mathematical origin of logarithmic oscillations
is in the renormalization group equations. Our kinetic equations
for the rate of growth are hyperbolic and modulated by
logarithmic oscillations, which corresponds to a fractal exponent
equal to-1, a value which is unusual in fractal statistics; this
special value of the fractal exponent generates the main
logarithmic trend in the integral kinetic equations. A slight
modification of the model of aggregation presented in this article
leads to “true” statistical fractal kinetics with logarithmic
oscillations with fractal exponents smaller than-1. This
generalized model also displays some interesting new kinetics
features, such as the existence of logarithmic oscillations
occurring on a double iterated logarithmic time scale, ln lnt.
Work on this problem is in progress and the results will be
presented elsewhere.

Acknowledgment. The authors thank Prof. Igor Schreiber
for helpful discussions. This research has been supported in part
by the National Science Foundation.

References and Notes

(1) Luo, Y.; Epstein, I.AdV. Chem. Phys.1990, 79, 269.
(2) Gray, P.; Scott, S. K.Chemical Oscillations and Instabilities;

Clarendon Press: Oxford, 1990.

(3) Stemwedel, J.; Ross, J.; Schreiber, J.AdV. Chem. Phys.1995, 89,
327.

(4) Chu, X. L.; Ross, J.J. Chem. Phys.1990, 93, 1613. Hjellmfelt,
A.; Ross, J.J. Chem. Phys.1991, 94, 5999.

(5) Novikov, E. A.SoV. Phys. Dok.1965, 11, 497.
(6) Iona-Lasinio, G.; Nuovo, C.1975, 26B, 99. Cassandro, M.; Iona-

Lasinio, G.AdV. Phys.1978, 27, 913.
(7) Shlesinger, M. F.; Hughes, B. D.Physica 1981, 109A, 597.

Montroll, E. W.; Shlesinger, F.Proc. Natl. Acad. Sci. U.S.A.1982, 79,
338; J. Stat. Phys.1983, 32,209.

(8) Montroll, E. W.; Shlesinger, M. F. InNonequilibrium Phenomena
II, From Stochastics to Hydrodynamics; Lebowitz, J. L., Montroll, E. W.,
Eds.; North-Holland: Amsterdam, 1984; pp 3-117.

(9) Schrekenberg, M.Z. Phys.1985, B60, 483.
(10) Giacometti, A.; Maritan, A.; Stella, A.Int. J. Mod. Phys.1991,

5B, 709.
(11) Anselmet, F.; Gagne, Y.; Hopfinger, E.; Antonia, R.J. Fluid Mech.

1984, 140, 331.
(12) Smith, L. A.; Fournier, J. D.; Spiegel, E. A.Phys. Lett.1986, 114A,

465.
(13) West, B. J.; Bhargava, B.; Goldberger, A. L.J. Appl. Physiol.1986,

60, 1089.
(14) Nelson, T. R.; West, B. J.; Goldberger, A. L.Experientia1990,

46, 251.
(15) Shlesinger, M. F.; West, B. J.Phys. ReV. Lett. 1991, 67, 2106.

West, B. J.; Deering, W.Phys. Rep.1994, 246, 100.
(16) Cerofolini, G. F.J. Colloid Interface Sci.1994, 167, 453.
(17) Cerofolini, G. F.; La Bruna, G.; Meda, L.Appl. Surf. Sci.1996,

93, 255.
(18) Grossmann, S.; Wegner, P.; Hoffmann, K. H.J. Phys. (Paris) Lett.

1985, 46, L575. Hoffmann, K. H.; Grossmann, S.; Wegner, F.Z. Phys.
1985, B60, 401. Engel, A.; Grossmann, S.; Mikhailov, A. S.1988, B70,
101.

(19) Vlad, M. O.J. Phys. A: Math. Gen.1992, 25, 749; Int. J. Mod.
Phys.1992, B6, 417. Vlad, M. O.; Ross, J.; Mackey, M.J. Math. Phys.
1996, 37, 803. Vlad, M. O.; Scho¨nfisch, B.; Mackey, M. C.Physica1996,
A229, 343. Vlad, M. O.; Metzler, R.; Nonnenmacher, T. F.; Mackey, M.
C. J. Math. Phys.1996, 37, 2279.

(20) Vlad, M. O.Phys. ReV. 1992, A45, 3596;A45, 3600. Vlad, M. O.;
Mackey, M. C.Phys. ReV. 1995, E51, 3104;E51, 3120.

(21) Vlad, M. O. Phys. ReV. 1993, E48, 3406; J. Math. Phys.1994,
35,796;Phys. Scr.1994, 49, 389;J. Phys. A: Math. Gen.1994, 27, 1791;
Int. J. Mod. Phys.1994, B6, 2489;Physica1994, A207, 483.

(22) Vlad, M. O. Phys. Scr.1993, 47, 743; J. Phys. A.: Math. Gen.
1993, 26, 4183;Phys. Lett.1994, 189, 299.

(23) Vlad, M. O.Physica1993, 197, 182; Vlad, M. O.; Mackey, M. C.
Phys. Scr.1994, 50, 615.

(24) Ohmi, T.; Isagawa, T.; Kogure, M.; Imaoka, T.J. Electrochem.
Soc.1993, 140, 804.

(25) Vicsek, T.Fractal Growth Phenomena; World Scientific: Sin-
gapore, 1990.

(26) Cerofolini, G. F.Z. Phys. Chem. (Leipzig)1978, 259, 1020; In
Colloid Science; Evrett, D. H., Ed.; The Chemical Society: London, 1983;
Vol IV, p 59.

(27) Titchmarsh, E. C.Introduction to the Theory of Fourier Integrals,
2nd ed.; Clarendon: Oxford, 1948; pp 60, 62.

(28) Chandrasekhar, S.; Mu¨nch, G.Astrophys. J.1950, 112, 393. Hardy,
G. H.; Wright, E. M.An Introduction to the Theory of Numbers; Clarendon
Press: Oxford, 1945; p 275.

(29) Mende, G.; Finster, J.; Flamm, D.; Schulze, D.Surf. Sci.1983,
128, 169.

(30) Morita, M.; Ohmi, T.; Hasegawa, E.; Kawakami, M.; Ohwada, M.
J. Appl. Phys.1990, 68, 1272.

(31) Cerofolini, G. F. InSilicon for the Chemical Industry III; Øye, H.
A., Rong, H. M., Ceccaroli, B., Nygaard, L., Tuset, J. Kr., Eds.; Tapir:
Trondheim, Norway, 1996; p 117.

(32) Bohm, D.Quantum Theory; Prentice Hall: New York, 1951.

Logarithmic Oscillations in Multilayer Aggregation J. Phys. Chem. A, Vol. 103, No. 25, 19994807


