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A high dimensional model representation (HDMR) technique is introduced to capture the input-output behavior
of chemical kinetic models. The HDMR expresses the output chemical species concentrations as a rapidly
convergent hierarchical correlated function expansion in the input variables. In this paper, the input variables
are taken as the species concentrations at timeti and the output is the concentrations at timeti + δ, whereδ
can be much larger than conventional integration time steps. A specially designed set of model runs is performed
to determine the correlated functions making up the HDMR. The resultant HDMR can be used to (i) identify
the key input variables acting independently or cooperatively on the output, and (ii) create a high speed fully
equivalent operational model (FEOM) serving to replace the original kinetic model and its differential equation
solver. A demonstration of the HDMR technique is presented for stratospheric chemical kinetics. The FEOM
proved to give accurate and stable chemical concentrations out to long times of many years. In addition, the
FEOM was found to be orders of magnitude faster than a conventional stiff equation solver. This computational
acceleration should have significance in many chemical kinetic applications.

1. Introduction

Chemical kinetics models are important for analysis and
design in many areas of chemistry and for industrial processes.
Two goals for model development are improving prediction
quality and reducing run times. These goals are typically linked
in an inverse manner such that increased model prediction
quality leads to slower models, and conversely, to reduce model
run times, quality is sometimes sacrificed. This paper presents
a new analysis tool that uses a high dimensional model
representation (HDMR) to (i) identify key model input variables
(and sets of cooperating variables) that have significant influence
on the model output and should be the focus of future research
to improve the model and (ii) produce an extremely fast and
accurate fully equivalent operational model (FEOM) serving
as an efficient chemical kinetic solver. The FEOM can directly
replace the original chemical kinetic equation integrator to
significantly reduce computational costs for following the
chemical evolution. This paper applies the HDMR technique
to a stratospheric chemistry model for analysis and illustrates
the capability of creating a fast FEOM chemical kinetics solver.

The first focus of the paper is on the identification of key
model variables. Previous attempts at identifying key physical
variables in kinetic systems have generally relied on traditional
sensitivity analysis to provide insights into chemical mecha-
nisms. Sensitivity analysis quantifies the effects that single
parameter variations have on the model output.1-5 These
investigations have generally been local around an operating
point in the variable space. Global analyses have traditionally
focused on output uncertainties and not key parameter
identification.6-9 In this paper, we will show that the HDMR
procedure can give global coverage for identifying key input
variables and their cooperative effects on the model output.

The second focus of this paper is on introducing a new
representation as a basis for creating an alternative to traditional
chemical kinetic ordinary differential equation solvers. This
representation does not solve the chemical equations directly;
rather, it relies on a special precalculated database capturing
the chemical model’s input-output relationships. From these
quantitative input-output relationships, a fully equivalent
operational model (FEOM) can be constructed to directly
calculate species concentrations and related chemical properties
from the inputs of the initial photochemical state. For example,
the equivalent representation can take species concentrations
at timet1 and directly calculate concentrations at timet2 based
on knowledge of the functional input-output relationships. This
evaluation can be extremely fast because often only a limited
set of additions and multiplications is involved. In contrast, a
traditional approach would numerically integrate the set of
coupled kinetic differential equations, often taking many
operationally complex steps to march forward fromt1 to t2.

Several approaches have been taken to create model repre-
sentations to act as a kinetic equation solver. Output quality
from different representation approaches can vary greatly
depending on (i) the type of representation and (ii) the
representation construction methods. Spivakovsky et al.10 used
a curve fitting method to express the input-output chemical
model response, Tura´nyi11 extended the approach of Spivak-
ovsky et al. by expressing the model input-output relation as
an expansion in orthogonal polynomials, and Tatung3 and
Georgopoulos12 use a direct decoupled method to represent the
model with the focus on uncertainty analyses. The HDMR
approach used here employs anexact finite order hierarchical
function expansion to capture the model input-output relation-
ships. The functions in the expansion are optimal for the
particular kinetic model, and the encapsulated input-output† Present address: TASC, 55 Walkers Brook Drive, Reading, MA 01867.
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information is used to generate the FEOM. All of the repre-
sentation approaches above share the common feature of first
performing a set of model runs to capture the temporal input-
output behavior over some window in time; the differences
reside in how this task is done and how the information is used.
In addition to representation approaches, there are numerous
efforts to directly speed up chemical integrators.13,14

The structure of the paper is as follows. Section 2 describes
the HDMR technique. An illustration of HDMR applied to a
stratospheric chemistry mechanism is presented in section 3.
The key input variables of the chemical mechanism are
determined and a fast chemical solver is created. Some brief
conclusions are given in section 4.

2. Technique

2.1. High Dimensional Model Representation (HDMR).
The HDMR technique addresses the perceived difficult problem
of mapping the input-output relationship behavior of complex
systems. A traditional approach to mapping the behavior of a
system withn input variablesx1, ...,xn would consist of sampling
each variable ats points to assemble an interpolated lookup
table of computational effort scaling as∼sn. Realistically, one
may expects to be approximately 10-20 andn to be 10-102

or larger (e.g.,n ) 46 in the model in section 3.1). Viewed
from this perspective, attempts at creating a lookup table would
be prohibitive. Furthermore, the evaluation of a new point by
interpolation in ann-dimensional space would be exceedingly
difficult. However, this analysis implicitly assumes that alln
variables are important and, most significantly, that there are
correlations among variables to all orders (i.e., independently,
in pairs, ..., up to alln variables acting in a tightly correlated
fashion).

The fundamental principle underlying the HDMR is that, from
the perspective of the output, the order of the correlations
between the independent variables will die off rapidly. This
assertion does not eliminate strong variable dependence or even
the possibility that all the variables are important. Various
sources of information support this point of there being limited
high-order correlations. First, the variables in most physical
models are chosen to enter as independent entities. This
kinematic simplicity tends to survive in the output, although
often scrambled in a complex fashion. Second, traditional
statistical analyses of model behavior has revealed that a
variance and covariance analysis of the output in relation to
the input variables often adequately describes the physics (i.e.,
only low-order correlations describe the dynamics). These
general observations lead to a dramatically reduced computa-
tional scaling when one seeks to map input-output relationships
of complex systems. Considering this analysis, one may now
show that the labor involved to learn the input-output behavior
scales as only∼(sn)l/l! for l , n. Here,l is the highest order of
significant variable correlation, and typically,l e 3 has been
found to be quite adequate. Such polynomial effort poses a far
more tractable algorithm than the often-accepted view of
exponential growth,∼sn, indicated above with traditional
algorithms.

Evaluating the input-output response of the model generates
a HDMR. This is achieved by expressing each model output
variable as a hierarchical, correlated function expansion of a
special mathematical structure and evaluating each term of the
expansion independently. One may show that a model output
that is a function of the input variables,g(x) ≡ g(x1, x2, ..., xn),
can be decomposed into summands of different dimensions:

wheref0 is a constant, the functionfi(xi) describes the indepen-
dent action of the variablexi upon the output, whilefij(xi, xj)
gives the pair correlated impact ofxi and xj upon the output,
etc. Finally, the last termf1,2,3,...,n(x1, x2, x3, ..., xn) contains any
residual correlated behavior over all of the system variables.15-17

It is important to note that this expansion is of finite order and
is always an exact representation of the model output.

The expansion is evaluated relative to a nominal pointxj )
(xj1, xj2, ..., xjn) in the overall input variable phase space. Thef0
term is the model output evaluated at the nominal point. The
higher order terms are evaluated as cuts in the input variable
phase space through the nominal point. Each first-order function
fi(xi) is evaluated along its variable axis through the nominal
point. Each second-order functionfij(xi, xj) is evaluated in a plane
defined by each binary set of input variables through the nominal
point, etc. The functions are prescribed as

where the terminology ofxji means that all the variables are at
the nominal value exceptxi, etc. The process of subtracting off
the lower order functions removes their dependence to ensure
a unique contribution from the new expansion function. As a
result, the expansion functions only contain the information of
the specified level of interaction, and they satisfy the null point
criteria:

This criterion ensures that the functions in eq 1 are orthogonal
using a special inner product defined with respect to the nominal
point.17 Application of the property in eq 3 tog(xi, ...,xn) in eq
1 will yield the relations in eq 2. The functions in eqs 1 and 2
yield exact information aboutg(xi, ..., xn) along the cut lines,
surfaces, subvolumes, etc. through the nominal point. The
function g(x) evaluated at a pointx off of these cuts can be
obtained by low-order interpolation of the functions on the right-
hand side of eq 1. Any residual sensitivity to the choice ofxj
will rapidly disappear as sufficient terms for convergence are
utilized.

The physical content and compact form of the HDMR
expansion can be especially valuable in systems with large
numbers of variables (n . 10) when convergence is achieved
at low order. A benefit of this HDMR structure is that each
expansion function uniquely describes the physical cooperation
between the input model variables (either individually or
collectively) upon the model output of interest. Thus, through
an analysis of the magnitude and behavior of the expansion
functions, one can determine (i) the input variables that have
the largest impact on the model output, (ii) the nonlinear extent
of the input-output relationships, and (iii) the input variables
that are working cooperatively.

The individual functions are calculated separately by running
the model a number of times with a series of judiciously chosen
input variable sets that are consistent with eq 2 and the null
point criteria in eq 3. Special care is taken to ensure that the

g(x1, x2, ...,xn) ) f0 + ∑
i)1

n

fi(xi) + ∑
1ei<jen

fij(xi, xj) + ... +

f1,2,3,...,n(x1, x2, ...,xn) (1)

f0 ) g(xj)

fi(xi) ) g(xji, xi) - f0

fij(xi, xj) ) g(xji,j, xi, xj) - fi(xi) - fj(xj) - f0 (2)

fij ...l(xi, xj, ...,xl)|xp)xjp
) 0 for p ∈ (i, j, ..., l) (3)
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relevant portion of the model input phase space (i.e., as indicated
from a typical full year simulation with the original model) is
covered when generating the HDMR. The HDMR generation
process is shown schematically in Figure 1. Importantly, no
regression is employed and no constraining forms are applied
to the expansion functions; they are each numerically repre-
sented as an interpolated look-up table. Other attempts at casting
analogous model look-up table replacements largely have not
been successful, as they have either (1) run up against the
exponential growth problem∼sn, (2) relied on fitting high-order
functions, or (3) employed complete sets of mathematical
functions. The HDMR procedure introduces the critical concept
of hierarchical variable correlations in natural compatibility with
system behavior and then admits arbitrary correlated behavior.

The HDMR is generated to produce output at a particular
time. Importantly, the number of full model runs performed to
determine the HDMR expansion functions only depends on the
number of input variables and not on the number of output
species. The expansion functions are calculated in sequence from
the zeroth order to the highest desired order utilizing the
formulation in eq 2. Thef0 term is determined with a single
model run with all input variables set to their nominal values.

A first-order function,fi(xi), is calculated fromg(xji, xi) by
setting all the input variables exceptxi to their nominal input
values and then performing a series of model runs with the input
value of xi varied over a specified range. Thef0 term is
subtracted off from each model output to produce the function
fi(xi) as shown in eq 2. The points sampling the function can be
picked as appropriate for the variation ofg(xji, xi). Here we
assume thats values are used for each input variable. Thuss -
1 model runs specify each first-order expansion function on a
well-resolved grid. The model run at the nominal point is not
required since the value of the first-order function is zero at
that point by virtue of eq 3. If there aren input variables in the
model, then there aren first-order expansion functions. Thus,
determination of all the first-order functions requiresn(s - 1)
model runs.

A second-order function,fij(xi, xj), is calculated by setting all
the input variables, exceptxi and xj, to their nominal values
and performing a series of runs with the values ofxi and xj

varied to cover the binary surface input phase space. Each
variable is represented withs points, thus the binary input
surface requires (s - 1)2 model runs. The points along the two
nominal cutsxi ) xji andxj ) xjj of the surface are zero (viz. eq
3) and need not be recalculated. There aren(n - 1)/2 s-order
expansion functions, and they are evaluated withn(s - 1)2(n
- 1)/2 model runs. The higher order expansion functions would
be calculated in an analogous manner, with the expectation of
rapid convergence of the correlated function expansion at
relatively low order. In practice, a large number of expansion
functions at any order may be insignificant. These can be
identified and eliminated by selectively sampling each function

to determine its magnitude. After the overhead for determining
the expansion functions is paid, the accurate and rapidly
evaluated HDMR expression may be used for all subsequent
model numerical analyses.

An inherent property of a closed chemical system is conser-
vation of mass. Although the chemical species can change in
quantity, the total amount of each element must remain constant.
This fact places a very strong demand on chemical kinetics
solvers, and the requirement is automatically fulfilled by each
expansion function of the chemical kinetic HDMR. Hence, the
HDMR-based FEOM replacement of the original model is
guaranteed to conserve mass regardless of the order of truncation
of the expansion. This result implies that the HDMR at any
level of truncation corresponds to a physically acceptable
mechanism, even if it differs somewhat from the original model
mechanism (e.g., it might be missing a small high-order
correlation term).

Satisfaction of the mass conservation property can be
understood conceptually from the fact that each HDMR expan-
sion function describes the impact on the output through a set
of coupled kinetic interactions (i.e., unimolecular interactions,
bimolecular interactions, etc.) over a fixed number of model
variables. Thus, if an interaction produces a chemical species,
then that same interaction must also appropriately destroy the
species with the elements that form the new species. For
example, an increase in NO concentration, in the illustration
below, will increase the ClONO2 concentration and also decrease
the ClO concentration. This maintains the mass balance of the
Cl atoms, and this property is preserved by the HDMR
expansion.

2.2. Fully Equivalent Operational Model. The FEOM is a
specific use of the HDMR where the model representation is
encapsulated and used to directly calculate equivalent model
output from model input sets. The benefit of the FEOM
approach is that the equivalent model output is calculated in a
fraction of the time required by the original model. The
generation of a FEOM for evaluating chemical species concen-
tration evolution starts by defining the input as the species
concentrations and any other auxiliary variables (e.g., the
temperature and photochemical rate functions in the illustration
in section 3). The output is then the species concentrations at a
time δ later. The latter output concentrations, along with an
upgrade of the auxiliary variables, are then used as input again
(see Figure 2). The high-speed operation of the FEOM rests on
two factors: (1) the interpolation of the modest number of low
dimensional functions in eq 1 is very rapid, and (2) the time
step δ can be taken as much larger than the standard stiff
integration time step. In the illustration below, the FEOM time
step was 1 day (δ ) 1 day) while the Gear solver required up
to ∼2000 time steps for the integration over 1 day. Note that
even though the FEOM takes one-day time steps, it still produces
a response consistent with the full diurnal chemistry model.

Figure 1. Schematic for evaluating HDMR expansion functions. A
series of specially designed input sets are generated and run through
the model. The resulting input-output information is transformed into
a HDMR using eq 1. The HDMR is then encapsulated into the FEOM.

Figure 2. Schematic of chemistry FEOM implementation.
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3. Illustration

3.1. Chemical Mechanism.The HDMR technique was
applied to a 0-D stratospheric chemical kinetics model for an
air parcel at 45° N latitude and 20 km altitude. The heteroge-
neous chemistry model has been adapted from the NASA GSFC
2-D atmospheric chemistry model18,19to run in 0-D. The model
contains 39 species and 106 reactions. The chemical species
and reactions are shown in Tables 1 and 2, respectively. The
diurnal cycle was approximated with a square wave, and the
seasonally dependent number of daylight hours was calculated
based on the 45° N latitude. For a given 24-hour day, the
photolysis rates (during the day light period) and the temperature
are held constant. However, the photolysis rates and temperature
vary on a seasonal basis. The seasonally varying photolysis rates
for the 26 photolysis reactions were taken from the NASA GSFC
2-D model. The photolysis reactions were separated into five
groups based on their seasonally varying rate’s functional form
(not shown here). This allowed five seasonally varying pho-
tolysis rate functions to prescribe all 26 photolysis rates at any
time of the year. The photolysis reactions in each of the groups
A, B, C, D, and E are identified in Table 2. The seasonally
varying temperature was also taken from the NASA 2-D model.
The temperature and photolysis rate functions are treated as
HDMR variables discretized over their respective range of
values. The total number of input variables is 46. This includes
39 chemical species, 5 photolysis rate functions, number of
daylight hours, and temperature. The model produces a periodic
annual seasonal cycle for most species. Chemical species without
chemical sources (such as N2O and CH4) decay away and
species without loss channels (such as HNO3) build up. It must
be noted that since this model does not include transport
processes, the results differ from those of the NASA 2-D model.
The extent of the input variable phase space was based on the
extreme minimum and maximum values calculated in a mul-
tiyear simulation of the original model.

This model is utilized here to illustrate the HDMR technique.
The HDMR will be evaluated for a simulation time step of 1
day. The model time step of 24 h is initialized at the day/night
solar terminator and ends at the same point the next day. This
allowed the evaluation of the chemical mechanism on a realistic
time scale in which long-term atmospheric dynamics would not

likely have a significant impact. Additionally, upon conversion
of the HDMR into a FEOM, the 1 day time step would be ideal
for incorporation into an integrated chemistry-transport climate
model where seasonal variations and multiyear simulations are
important. For investigations of local effects on short time scales
(several hours to days) in the stratosphere or for investigations
of tropospheric chemistry, shorter time steps would be required
(viz., 15 min to 1 h). Although this has not been done, a similar
procedure for generating a HDMR and subsequent FEOM could
be followed. We expect that significant computational savings
would also be achieved.

3.2. Identification of Key Species Variables.The strato-
spheric chemistry model described in section 3.1 was analyzed
using the HDMR approach. Each of the first- and second-order
expansion functions of eq 1 as evaluated for each output species
to identify the key input variables and sets of variables that
drive the chemistry and determine the model output concentra-
tions. Although all 39 species were expressed in terms of their
own HDMR expansions, for this illustration we will focus on
analyzing O3. A one-day time step was used for the HDMR as
described in Section 3.1, and the results below are particular to
the latter constraint.

There are 46 first-order expansion functions for each output
species and two typical first-order expansion functions are
shown in Figure 3. The functions describe the impact on O3

due to NO2 input and the impact on CH2O due to the number
of daylight hours. The vast majority of the expansion functions
have modest curvature. This is consistent with the results of
Chen, et al.2 and Dubey et al.5 There are some expansion
functions with significant curvature, and this variation of
behavior exemplifies the importance of the HDMR allowing
for arbitrary nonlinearities, as well as the benefit of numerically
representing the functions. However, in the present case, a low-
order set of polynomials would suffice to represent and
interpolate these functions and provide even further computa-
tional savings in the chemical solver described in the next
subsection. The discrete values of the functions were found to
all form smooth curves, except for some involving very small
values. The noise in the latter cases was due to lack of sufficient
precision from the Gear solver used to generate the functions.

The absolute magnitude of each of the first-order expansion
functions was evaluated to identify which variables dominate
the model output response of the O3 concentration. The input
variables are rank ordered in Table 3 by the absolute magnitude
of the first-order expansion functions. Also shown in Table 3
is the rank ordering of the expansion functions for each of the
input species that are important for predicting O3 (i.e., chemical
species listed in the first column of Table 3). Although the
magnitude of some of the expansion functions suggests ignoring
them, the small daily variation of some species can make these
apparently small terms significant. The key species for deter-
mining the temporal evolution of O3 in order of significance
are O3, NO2, H2O, ClONO2, NO, BrO, N2O5, and HNO3.
Additionally, the photolysis rate functions A and B of Table 2
are important.

The input variables that operate cooperatively to impact the
output are described by the second-order functions. The four
largest magnitude functions that represent pairwise synergistic
impact on the output O3 concentrations are (1) the number of
daylight hours coupled with the photolysis rate function A, (2)
O3 coupled with the photolysis rate function B, (3) O3 coupled
with number of daylight hours, and (4) the number of daylight
hours coupled with the photolysis rate functionB. As an
illustration, the surface representing the impact on the O3 output

TABLE 1: Table of the Species Included in the Chemical
Mechanism, and the Number of First- and Second-Order
Terms That Were Retained for Calculating Each Species

species
no. of 1st

order terms
no. of 2nd
order terms species

no. of 1st
order terms

no. of 2nd
order terms

O 5 5 CH3O 9 6
O(1D) 2 1 CH2O 15 15
O2 0 0 HCO 13 17
O3 18 12 HOCl 26 74
NO 23 52 CH3OOH 25 75
NO2 21 54 Cl 16 34
NO3 17 13 ClO 24 76
N2O5 16 24 HCl 20 30
HNO3 23 52 ClONO2 26 74
N2O 5 5 HO2NO2 23 52
H 19 21 CO2 2 1
OH 13 7 BrO 22 38
HO2 14 6 Br 22 38
H2O 15 15 HBr 20 40
H2O2 25 50 BrONO2 22 28
H2 15 25 BrCl 25 50
CH4 7 3 Cl2O2 20 55
CO 30 170 N2 0 0
CH3 20 55 OClO 10 55
CH3O2 30 170
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due to the input O3 concentration coupled with the photolysis
rate functionB is shown in Figure 4.

3.3. FEOM: A Fast Chemistry Solver. The expansion
functions calculated to identify the key input species have been
assembled in eq 1 for each model output chemical species. The
input variables to the chemistry FEOM are the 39 species
concentrations, the number of daylight hours, temperature, and
the five photolysis rate functions. The assemblage forms a
FEOM chemical kinetics solver with a 1 day time step. The
FEOM took species concentrations at timeti and calculated the
concentration of all species atti+1 ) ti + 1 day. Then the FEOM
was reapplied using the concentrations calculated forti+1 to
obtain values forti+2 ) ti + 2 days, etc. By repeated application
of the FEOM with updating of the ancillary parameters defined
in section 2.2, the chemical evolution over the course of 30
years was evaluated (10 800 sequential FEOM applications).
Implementation of the FEOM solver is shown schematically in
Figure 2.

The FEOM output consists of 39 expansions, one for each
output species. Each expansion in eq 1 was truncated after
second order, as this was found to give quantitative results.
Substantial numbers of the first- and second-order functions in
the expansions were small in magnitude relative tof0. This is
due to the lack of importance of particular input variables, acting
individually or cooperatively upon the final output. Since these
functions would not significantly contribute to the final results,
they were removed from the FEOM expansion. Their removal
leads to an overall increase in the FEOM prediction speed, since
fewer function operations are required. The number of first-
and second-order terms retained for each output species is shown

in Table 1. Generally, the variables significant at first order were
also associated with the important second-order terms, but some
exceptions did occur.

The quality and stability of the FEOM was assessed,
respectively, by comparing its output with the original Gear-
based model over 6 years and calculating a longtime FEOM
simulation covering 30 model years. The 1-year temporal
evolution of six of the 39 output species concentrations,
calculated with 360 sequential FEOM operations and with a
Gear-based solution, is shown in Figure 5. The species were
chosen since they are important to the chemistry and also have
a range of photochemical lifetimes. The quality of the results
is typical of all the species. The agreement between the FEOM
solver and the Gear integrator is very good. Both long- and
short-time-scale species were accurately calculated. The agree-
ment between the FEOM solver and Gear integrator for the rest
of the 6 years is similar to the 1-year results. The ability of the
FEOM solver to track small perturbations in the atmosphere
(such as aircraft emissions or lightning-generated NOx) was also
investigated. It was found that both the FEOM solver and the
Gear-based solver responded similarly to a test run in which a
small constant flux of NO2 added to the box model.

The temporal evolution of NO2, O3, and N2O concentrations
for 5 years is shown in Figure 6. This involved reapplying the
FEOM 1800 times. The figure shows that the solution continues
to be smooth and stable. The FEOM was continued to 30 years
of simulation time, and the same degree of stability was found.

The computational savings with the FEOM was determined
by observing the execution time of 1000 simulations, each for
1 day in length, and comparing the timing of the FEOM and

TABLE 2: Reactions Included in the Chemical Mechanisma

(1) O2 f O + O A (35) NO+ O3 f NO2 + O2 (72) CH4 + O(1D) f CH3 + OH
(2) H2O f H + OH A (36) NO2 + O3 f NO3 + O2 (73) CH3 + O2 + M f CH3O2 + M
(3) CO2 f CO + O A (37) H + O3 f OH + O2 (74) CH2O + OH f H2O + HCO
(4) N2O f N2 + O A (38) OH+ OH + M f H2O2 + M (75) HCO+ O2 f CO + HO2

(5) HCl f H + Cl A (39) OH + ClONO2 f HOCl + NO3 (76) Cl + HO2 f HCl + O2

(6) HO2 f O + OH A (40) CH4 + OH f CH3 + H2O (77) OH+ HO2NO2 f H2O + O2 + NO2

(41) CH3O2 + NO f CH3O + NO2 (78) CH4 + O(1D) f H2 + CH2O
(7) O3 f O2 + O(1D) B (42) CH3O + O2 f CH2O + HO2 (79) OH+ CH3OOH f H2O + CH3O2

(8) HNO3 f NO2 + OH B (43) OH+ NO2 + M f HNO3 + M (80) OH + OH f H2O + O
(9) HO2NO2 f OH + NO3 B (44) HO2 + HO2 f H2O2 + O2 (81) ClO+ OH f Cl + HO2

(10) HO2NO2 f HO2 + NO2 B (45) CH2O + O f HCO + OH (82) HOCl+ OH f H2O + ClO
(46) CH3O2 + HO2 f CH3OOH + O2 (83) Cl + CH2O f HCl + HCO

(11) NO3 f NO2 + O C (47) Cl+ H2 f HCl + H (84) HO2 + HO2 + M f H2O2 + O2 + M
(12) NO3 f NO + O2 C (48) Cl+ O3 f ClO + O2 (85) Cl + HO2 f OH + ClO

(49) ClO+ O f Cl + O2 (86) HO2NO2 + M f HO2 + NO2 + M
(13) H2O2 f OH + OH D (50) Cl+ CH4 f HCl + CH3 (87) H + HO2 f H2 + O2

(14) N2O5 f NO2 + NO3 D (51) HCl + OH f Cl + H2O (88) H+ HO2 f H2O + O
(15) CH2O f HCO + H D (52) ClO+ NO f Cl + NO2 (89) H + HO2 f OH + OH
(16) CH2O f CO + H2 D (53) OH+ H2O2 f H2O + HO2 (90) NO+ NO3 f NO2 + NO2

(17) CH3OOH f CH3O + OH D (54) H2 + OH f H2O + H (91) NO+ O + M f NO2 + M
(18) ClONO2 f Cl + NO3 D (55) N2O5 + M f NO2 + NO3 + M (92) N2O + O(1D) f N2 + O2

(19) HOClf OH + Cl D (56) ClO+ NO2 + M f ClONO2 + M (93) N2O5 f HNO3 + HNO3

(20) BrOf Br + O D (57) O+ H2O2 f OH + HO2 (94) O(1D) + N2 + M f N2O + M
(21) BrONO2 f Br + NO3 D (58) HO2 + NO2 + M f HO2NO2 + M (95) O(1D) f O
(22) Cl2O2 f Cl + OClO D (59) O+ ClONO2 f ClO + NO3 (96) O+ O + M f O2 + M
(23) BrCl f Br + Cl D (60) CO+ OH f CO2 + H (97) Br + O3 f BrO + O2

(24) O3 f O2 + O E (61) HNO3 + OH f NO3 + H2O (98) Br+ HO2 f HBr + O2

(25) NO2 f NO + O E (62) NO+ HO2 f OH + NO2 (99) BrO+ ClO f Br + Cl + O2

(26) OClOf Cl + O2 E (63) H2O + O(1D) f OH + OH (100) BrO+ BrO f Br + Br + O2

(27) O+ O2 + M f O3 + M (64) OH + HO2 f H2O + O2 (101) OH+ HBr f H2O + Br
(28) O+ O3 f O2 + O2 (65) OH+ O f H + O2 (102) BrO+ NO2 + M f BrONO2 + M
(29) H + O2 + M f HO2 + M (66) HO2 + O f OH + O2 (103) ClO+ ClO + M f Cl2O2 + M
(30) OH+ O3 f HO2 + O2 (67) NO2 + O f NO + O2 (104) BrO+ ClO f Br + OClO
(31) HO2 + O3 f OH + O2 + O2 (68) NO2 + O + M f NO3 + M (105) BrO+ ClO f BrCl + O2

(32) ClO+ HO2 f HOCl + O2 (69) N2O + O(1D) f NO + NO (106) Cl2O2 + M f ClO + ClO
(33) Cl + H2O2 f HCl + HO2 (70) NO2 + NO3 + M f N2O5 + M
(34) O(1D) + M f O + M (71) H2 + O(1D) f OH + H

a The photolysis rate functions are identified as A-E.
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Gear solvers. The analysis was performed with random initial
conditions on a PentiumPro based workstation. The Gear solver
required 4.5 s/simulation, while the FEOM required 5× 10-4

s/simulation. The 4.5 s/simulation with the Gear solver reflects
the need for the FEOM to be generated with good quality input
data. This acceleration is at the expense of some nominal one-
time computational overhead to calculate the FEOM. The latter
overhead is minimal if the chemistry FEOM was incorporated
as part of a full chemistry-transport package.

At first glance, the computational scaling above suggests a
FEOM savings of∼104 per run after generating the FEOM.
However, there are several caveats that must be appreciated
when models that calculate the same output using different

methods are compared. First is the selection of parameters for
running the models. The Gear integrator has a number of
tolerance parameters for output accuracy, and by varying the
parameters, one can trade accuracy for speed. A tight tolerance
in the Gear solver was used to generate the FEOM. This forced
Gear to take∼2000 time steps to integrate the kinetics for 1
day. By diminishing the tolerances on Gear to the edge of safe
and stable integration, the number of time steps was reduced to
∼400 and the run time was reduced by a factor of 4. Even under
these conditions, the FEOM was still∼2 × 103 times faster
than the Gear integrator. Note that 60% of the Gear time steps
were taken to calculate the chemical evolution at the solar
terminators (i.e., transition from light to dark and dark to light).
Even if the number of steps in a modified Gear solver could be
reduced to 20, which is not probable for safe numerical
integration, and assuming that the run time scales with the
number of steps, then the FEOM would still maintain a
computational savings of∼102.

4. Conclusions

This paper describes the new high-dimensional model rep-
resentation (HDMR) technique that (i) learns the model’s
nonlinear input-output relationships, (ii) identifies the key
model input variables, and (iii) encapsulates the input-output
relationship into an ultrafast fully equivalent operational model
(FEOM) that can directly replace the original model. All of these
capabilities result from expressing the HDMR as a rapidly
convergent expansion in input variable cooperativity.

Figure 3. First-order expansion functions for (a) output O3 with respect
to input NO2 and (b) output CH2O with respect to input number of
daylight hours.

Figure 4. Second-order expansion functions describing the impact on
output O3 due to photolysis rate functionB and initial O3 concentration.

Figure 5. Comparison of six species in a 1-year chemistry calculation
with a Gear-based solver (line) and a FEOM solver (+). The FEOM
was constructed with first- and second-order expansion functions. The
evident discrete aspects of some of the curves arise from switching
between photolysis rates during the year. The FEOM calculation used
360 sequential 1-day calculations to make up the year simulation. Since
the FEOM is implicitly mass conserving, the slight deviations did not
cause the system to diverge over longer periods of time. This is
demonstrated in Figure 5 with a 5-year simulation.
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The HDMR technique was demonstrated using a stratospheric
chemistry box model. The input-output model relationships
were revealed, and they quantitatively determined the key
species driving the ozone concentrations on a 24 h basis. Also
identified were the input variables that have important coopera-
tive behavior to impact on the model output.

A fast fully equivalent operational model (FEOM) chemical
kinetics solver was developed using the identified nonlinear
independent and cooperative input-output model responses.
This FEOM calculated chemical output concentrations compa-
rable to a Gear integrator, but at least∼102 times faster for a
stratospheric kinetics model. The FEOM solver was demon-
strated to have sufficient sensitivity to accurately calculate the
output effects when the chemical system is slightly perturbed
(viz., aircraft exhaust in the atmosphere). Due to the unique
mathematical structure of the underlying HDMR theory, the

FEOM is implicitly mass conserving. This contributes to making
FEOM chemical kinetic solvers inherently stable. The accelera-
tion in the model run times attainable by a FEOM are dramatic
and of considerable significance for kinetic modeling. Although
the logic behind the kinetic FEOM is generic, its full scope of
applicability needs further testing, including for demanding
unstable and chaotic systems.

This work demonstrates the potential power of the HDMR
technique for identifying key variables (and cooperating sets
of variables) in large complex chemical mechanisms and for
producing fast chemical kinetics solvers. It is also noted that
the technique is generic in its capabilities and it can be applied
to many types of models.
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TABLE 3: First-Order Functions for O 3 and the Species That Contribute to O3 Rank Ordered by the Largest Absolute
Magnitudea

O3 NO2 ClONO2 NO BrO N2O5 HNO3

0.7486 O3 0.3373 O3 0.5847 ClONO2 1.1394 O3 0.4495 BrO 0.4251 N2O5 0.7145 HNO3

0.0010 A 0.3063 NO2 0.3266 O3 0.3379 NO2 0.2841 BrONO2 0.3049 O3 0.0127 N2O5

0.0004 NO2 0.2592 NO 0.1008 ClO 0.2859 NO 0.1541 NO2 0.2307 T 0.0115 NO2
0.0003 H2O 0.1528 N2O5 0.0434 NO2 0.1673 N2O5 0.1307 O3 0.2005 NO2 0.0110 O3

0.0003 B 0.0852 H2O 0.0406 CH4 0.0966 H2O 0.1296 NO 0.1701 NO 0.0098 NO
0.0002 ClONO2 0.0471 ClONO2 0.0403 HCl 0.0497 B 0.0771 N2O5 0.1208 D 0.0076 H2O
0.0002 NO 0.0445 HNO3 0.0351 NO 0.0482 ClO 0.0398 H2O 0.0362 ClONO2 0.0033 CH4

0.0001 BrO 0.0418 B 0.0293 HOCl 0.0464 HNO3 0.0243 ClONO2 0.0278 Day 0.0026 B
0.0001 N2O5 0.0397 T 0.0225 O2 0.0441 T 0.0238 D 0.0187 ClO 0.0025 T
0.0001 HNO3 0.0389 D 0.0192 N2O5 0.0419 E 0.0213 HNO3 0.0087 BrO 0 .0020 ClONO2
a The numbers in the columns are the relative magnitude of the first-order functions to the zeroth-order function.

Figure 6. FEOM output concentrations for O3, NO2, and N2O. The
solid line is from the original solver, and the FEOM results are denoted
by +.
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