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In this paper, the multiconfigurational molecular dynamics with quantum transitions (MC-MDQT) method is
used to simulate the nonequilibrium real-time quantum dynamics of proton transport along water chains in
the presence of solvating water molecules. The model system consists of a protonated chain of three water
molecules and two additional solvating water molecules hydrogen-bonded to each end of the chain.
Nonequilibrium initial configurations are generated with an extra proton stabilized on one end of the water
chain, and proton transport along the chain is induced by variations in the hydrogen-bonding distances between
the solvating water molecules and the ends of the chain. These simulations indicate that solvation and hydrogen
bonding significantly impact the proton-transport process and that quantum effects such as hydrogen tunneling
and nonadiabatic transitions play an important role. Moreover, this model system exhibits a wide range of
mechanisms, including both concerted and sequential double proton transfer, both strongly and weakly coupled
double proton transfer, and both adiabatic and nonadiabatic pathways. The MC-MDQT approach provides a
clear physical framework for interpreting and analyzing these different types of mechanisms.

I. Introduction

Hydrogen-bonded chains of water molecules have been
observed experimentally in a number of proteins, including
photosynthetic reaction centers1 and cytochromef.2 These water
chains are thought to play an important role in the translocation
of protons over large distances in proteins. The postulated
mechanism for these “proton wires” is that a proton is deposited
on one end of the water chain and is transported to the other
end of the chain through a series of proton-transfer steps.3

Proton transport in water has been simulated with a wide
range of methodology.4-20 In terms of proton wires, Pome`s and
Roux have used Feynman path integral quantum dynamical
methods to study the equilibrium properties of isolated proto-
nated water chains4,5 and more recently have used classical
molecular dynamics methods to generate free energy profiles
for protonated water chains in the presence of solvent droplets.6

While these simulations have provided great insight into the
proton transport process, this methodology does not provide real-
time dynamical information.

The multiconfigurational molecular dynamics with quantum
transitions (MC-MDQT) method was developed for the non-
equilibrium real-time quantum dynamical simulation of multiple
proton transfer reactions.21,22 Recently, MC-MDQT was used
to study proton transport along protonated chains of three and
four water molecules.23 In these simulations, nonequilibrium
starting configurations were generated by applying an external
electric field that stabilized the extra proton on one end of the
chain, and the proton transport process was induced by
increasing the electric field linearly in time until the extra proton
was stabilized on the other end of the chain. These conditions
were designed to mimic the mechanism described above for
proton wires in proteins. In these simulations, the ramping speed
of the electric field completely determined the rate of proton
transfer, and under these rigidly controlled conditions, the proton
transfer reactions were always sequential and only weakly
coupled.

In this paper, we apply MC-MDQT to a model system
consisting of a protonated chain of three water molecules and
two additional solvating water molecules hydrogen-bonded to
each end of the chain. Instead of applying an external electric
field, we apply restraints on the solvating water molecules to
generate nonequilibrium starting configurations in which the
extra proton is stabilized on one end of the chain. Specifically,
we restrain the solvating water molecules on one end of the
chain to relatively short hydrogen-bonding distances with the
chain. The proton transport process is induced by releasing these
restraints. (As discussed in ref 17, hydrogen-bonding distances
greatly impact the stabilization of H3O+.) This approach is
motivated by the situation in a protein environment in which
the water chain forms hydrogen bonds to the protein24 or, in
some cases, the ends of the water chain are in contact with the
external solvent.25 In contrast to our simulations with strong
external electric fields, we observe a wide range of dynamical
mechanisms, including both concerted and sequential double
proton transfer, both strongly and weakly coupled double proton
transfer, and both adiabatic and nonadiabatic pathways. This
application illustrates the power of the MC-MDQT approach
in providing a clear physical framework for interpreting and
analyzing different types of dynamical mechanisms.

An outline of this paper is as follows. Section II describes
the MC-MDQT methodology, the model system, the simulation
details, and the procedure used to generate the nonequilibrium
starting configurations. Section III presents statistical results
obtained from a large number of trajectories and detailed
analyses of five different types of trajectories. Conclusions are
discussed in section IV.

II. Methods

A. MC-MDQT. A number of mixed quantum/classical
molecular dynamics methods have been applied to proton
transfer reactions in solution.26-48 Typically, the transferring
hydrogen atom(s) are treated quantum mechanically, while the
remaining nuclei are treated classically. In this paper, we utilize
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the MC-MDQT method,21,22 which combines an MC-SCF
calculation of the vibrational wave function with the MDQT
surface hopping method. In this section we present only a brief
outline of MC-MDQT since it is discussed in detail else-
where.49,50

The fundamental principle of MDQT is that an ensemble of
trajectories is propagated, and each trajectory moves classically
on a single adiabatic surface except for instantaneous transitions
among the adiabatic states. The instantaneous adiabatic states
Φn(r ;R) are calculated at each classical molecular dynamics time
step by solving the time-independent Schro¨dinger equation

wherer andR indicate the quantum and classical coordinates,
respectively, andHq is the sum of the kinetic energy of the
quantum coordinates and the total potential energy. The classical
nuclei evolve according to standard classical equations of motion
with the effective potential

whereΦk is the occupied adiabatic state. The time-dependent
wave function describing the quantum subsystem is expanded
in a basis of the instantaneous adiabatic states:

and the quantum amplitudesCn(t) are calculated by integrating
the time-dependent Schro¨dinger equation simultaneously with
the classical equations of motion. At each time step, Tully’s
“fewest switches” algorithm41,51 is invoked to determine if a
quantum transition to another adiabatic state should occur. This
algorithm correctly apportions trajectories among the adiabatic
states according to the quantum probabilities|Cn(t)|2 with the
minimum required number of quantum transitions (neglecting
difficulties with classically forbidden transitions).52

The simulation of multiple proton transfer reactions requires
the quantum mechanical treatment of multiple hydrogen atoms,
which leads to multidimensional proton vibrational wave
functions Φn(r ;R). We designed an MC-SCF formulation to
calculate these proton vibrational wave functions (i.e., to solve
eq 1).21,22 This method incorporates the significant correlation
among the quantum protons in a computationally efficient
manner. In this formulation, the adiabatic states for a system
of N quantum protons are approximated by a normalized linear
combination of single configurations:

where the single configurational wave functionsêJ(r ; R) are
products of the orthonormal one-particle statesφjk

(k):

Here J ) (j1, j2, ..., jN) and Q is the total number of
configurations. Each one-particle stateφj

(k)(rk;R) can be ex-
panded in an appropriate fundamental basis set. In this paper,
each quantum proton moves in only one dimension and the
fundamental basis functions are chosen to be real. Application
of the variational principle to the total energy leads to a set of

matrix equations that must be solved self-consistently to obtain
the one-particle states and the configuration interaction coef-
ficients dnJ.

At each MDQT time step, a physically reasonable initial wave
function is chosen by invoking the effective one-particle
Hamiltonians proposed in ref 21. In this approach, the one-
particle wave functions are calculated by solving the set ofN
eigenvalue equations

where

Here,tk is the kinetic energy of quantum modek, V(r ,R) is the
total potential energy of the system, andn indicates the occupied
multiconfigurational adiabatic state. Note that, for single
configurational wave functions (Q ) 1), the self-consistent
solution of eqs 6 and 7 produces a variational wave function.

The MC-MDQT methodology can be summarized as follows.
At each classical time step the MC-SCF formulation is utilized
to obtain the instantaneous adiabatic proton vibrational states.
The classical nuclei evolve according to an effective potential
derived from the occupied multiconfigurational adiabatic state.
The time-dependent Schro¨dinger equation is integrated simul-
taneously with the classical equations of motion to obtain the
quantum probabilities for the adiabatic states. Instantaneous
transitions are incorporated among the adiabatic states in a way
that ensures that, for an ensemble of trajectories, the fraction in
any state at any time is the quantum probability for that state.

The MC-MDQT method has been tested thoroughly. Refer-
ences 54 and 55 illustrate that the MDQT method accurately
reproduces fully quantum dynamical calculations for one-
dimensional model systems representing both single and double
proton transfer. Moreover, ref 22 shows that the MC-SCF
method accurately reproduces the forces and the four lowest
energy states obtained from full configuration interaction
calculations for a protonated chain of three water molecules.
Thus, we expect that the main source of error in our simulations
is the model used to represent the water chains rather than the
MC-MDQT methodology.

B. Simulation Procedure. In this paper, we use the PM6
dissociable and polarizable water model developed by Stillinger
and co-workers.56-58 This model is appropriate for the study of
proton transport since it allows bonds to break and form.
Moreover, this model gives a qualitatively (but not quantita-
tively) accurate picture of proton transfer, with increasing barrier
heights corresponding to increasing distances between the donor
and acceptor oxygen atoms. We are in the process of imple-
menting a more accurate multistate empirical valence bond
potential for water recently developed by Schmitt and Voth.8

In our simulations, only the two protons that form hydrogen
bonds within the water chain are treated quantum mechanically.
All oxygen atoms and the remaining hydrogen atoms are treated
classically. The classical protons are constrained to a fixed O-H
bond length in order to avoid nonphysical vibrational coupling
between the quantum and classical protons. The angle within
each water molecule is not constrained, however, and the water
molecules are allowed to bend and rotate freely. Note that
reorientations of the water molecules are not allowed, but such
reorientations are not expected to occur on the fast time scale
of the proton transport process studied in this paper. The
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classical equations of motion are integrated using the RATTLE
method for constrained molecular dynamics,59 which is based
on the velocity Verlet algorithm, using a time step of∆t )
0.0625 fs. The quantum protons are restricted to move in one
dimension along the oxygen-oxygen axes; i.e., the quantum
proton wave functions are represented on one-dimensional grids
along the O-O axes. These grids span 3 Å and are centered
around the midpoint of the relevant oxygen-oxygen axis for
each quantum proton. We use 51 grid points per one-dimen-
sional grid, and for each quantum proton we use 18 one-par-
ticle basis functions consisting of 3 sets of 6 basis functions
centered roughly around the positions of the potential minima
for a double well potential and a single well potential, re-
spectively. The basis functions are chosen as Hermite polynomi-
als (represented on a grid) with the characteristic frequency
of ω ) 2000 cm-1. We include nine configurations in our
expansion of the MC-SCF adiabatic wave functions, and the
MC-MDQT calculations include the three adiabatic states lowest
in energy.

The generation of the nonequilibrium initial configurations
for our MC-MDQT simulations entails three distinct stages. The
first stage involves the classical equilibration of a chain of three
water molecules at 300 K using a Nose´ heat bath.60,61(To keep
the chain linear it is placed in a channel as described in ref 22.)
After initial equilibration, a configuration is stored every
picosecond for input into the second stage. The second stage
involves the classical dynamical preparation of protonated water
chains with two solvating water molecules at each end of the
chain. For each configuration from the first stage, an extra proton
is added to one end of the chain. Subsequently, two solvating
water molecules are placed at an O-O distance of 2.6 Å at the
protonated end of the chain, and two solvating water molecules
are placed at an O-O distance of 2.87 Å (which is ap-
proximately the average O-O distance in a neutral water chain
for this model) at the other end of the chain. This positioning
of the solvating water molecules stabilizes the H3O+ on one
end of the chain. Strong harmonic restraints (with force constants
k ) 1000 kcal/mol Å-2) are placed on all oxygen atoms to
maintain this type of configuration. Classical molecular dynam-
ics simulations at 300 K are performed on these systems with
a Noséheat bath. The third stage involves the quantum dynam-
ical relaxation of the configurations generated from the second
stage. At this stage, MC-MDQT simulations are performed for
6.25 fs, and all configurations that result in proton transfer or
nonadiabatic transitions during this short quantum simulation
are discarded. (In our simulations, 107 out of 500 configurations
were discarded in this third stage.) The remaining configurations
are used for the MC-MDQT simulations described in section
III. Figure 1a depicts a sample starting configuration in which
the solvating waters on the left are closer to the chain than are
the solvating waters on the right. As a result, the “extra” proton
is stabilized on the left end of the chain.

These nonequilibrium starting configurations represent the
situation in a protein environment where an extra proton is
deposited at one end of the chain. The proton transport process
is induced by releasing the restraints on the oxygen atoms of
the two solvating water molecules that stabilize the extra proton
(i.e., on the left end of the chain in Figure 1). The restraints on
the oxygen atoms of the other two solvating molecules are kept
the same (with a large force constant ofk ) 1000 kcal/mol
Å-2) to maintain typical O-O distances with the chain. The
restraints on the oxygen atoms of the chain water molecules,
however, are decreased (with a force constant ofk ) 100 kcal/
mol Å-2) to allow them to fluctuate slightly as in a protein

channel environment. The nonequilibrium MC-MDQT simula-
tions are performed without the Nose´ heat bath. Snapshots from
a real-time MC-MDQT simulation are depicted in Figure 1. Note
that at the beginning the left solvating water molecules are closer
to the chain, while at the end the right solvating water molecules
are closer to the chain.

III. Results

We generated 393 nonequilibrium starting configurations
from the procedure described above, and 89 of the resulting
MC-MDQT trajectories exhibited double proton transfer in less
than 87.5 fs. (Double proton transfer is defined to occur when
each proton has formed a bond with its acceptor and the system
is in the ground vibrational state. Here an OH bond is defined
to be formed when the distance between the oxygen and the
expectation value of the proton coordinate is less than
1.175 Å.) Typically, the trajectories that did not exhibit double
proton transfer in the allotted time resulted in stable configura-
tions where the extra proton was localized in a single well

Figure 1. Snapshots of representative configurations during a sample
trajectory of a protonated chain of three water molecules with two
solvating water molecules at each end of the chain. Dashed lines indicate
hydrogen bonds with corresponding oxygen-oxygen distances given.
The quantum protons H1 and H2 are placed at the expectation values
of their coordinates and are highlighted in each configuration. Snap-
shots are depicted at (a)t ) 0.000 fs, (b)t ) 15.688 fs, and (c)t )
60.938 fs.

Solvation and Hydrogen-Bonding Effects J. Phys. Chem. A, Vol. 103, No. 15, 19992893



between the middle and right water molecules of the chain.
These trajectories were not included in our analysis since the
proton-transport process was not complete.

The 89 double proton transfer trajectories exhibited a wide
range of different dynamical behavior. We observed both
concerted and sequential double proton transfer. Trajectories
were labeledconcertedwhen the two proton-transfer reactions
occurred within 0.5 fs (i.e., when the time between the first
proton breaking the bond with its donor and the second proton
forming the bond with its acceptor was less than 0.5 fs). All
other trajectories were labeledsequential. In addition, we
observed both strongly and weakly coupled double proton
transfer. Trajectories were labeledstrongly coupledwhen the
second proton was at least half transferred within 0.5 fs of the
completion of the first proton transfer (i.e., when the time
between the first proton forming the bond with its acceptor and
the second proton becoming delocalized over both wells was
less than 0.5 fs). All other trajectories were labeledweakly
coupled. (Note that according to these definitions all concerted
trajectories are strongly coupled.) Furthermore, we observed
both adiabatic and nonadiabatic trajectories. Trajectories were
labeled adiabatic if the system remained in the ground
vibrational state throughout the trajectory and were labeled
nonadiabaticif the system experienced nonadiabatic transitions
among the vibrational states.

Table 1 lists the fraction of each type of trajectory that was
observed in our ensemble of 89 trajectories. The trajectories
were categorized by analyzing the expectation values of the two
quantum proton coordinates as a function of time. (In this paper,
all expectation values are calculated for the occupied adiabatic
state.) We calculated the average time for double proton transfer
(i.e., the time between the first proton breaking the bond with
its donor and the second proton forming the bond with its
acceptor) to be 0.4, 29.0, and 50.8 fs for concerted, strongly
coupled sequential, and weakly coupled sequential trajectories,
respectively. These numbers indicate that the entire process
becomes faster as the coupling between the two reactions
becomes stronger. Table 2 lists the various O-O distances for
the model system at the beginning of the double proton transfer
process (i.e., at the time the first proton breaks the bond with
its donor) for strongly and weakly coupled trajectories. (As
mentioned above, all concerted trajectories are considered
strongly coupled, while sequential trajectories can be either

strongly or weakly coupled.) Note that for all types of
trajectories typically the first proton transfer reaction is initiated
when the left and right solvating water molecules are ap-
proximately equal distances (∼2.8 Å) from the chain. Also note
that the O-O distances are similar for strongly and weakly
coupled trajectories, except for the distance between the H1
donor and acceptor; this distance is slightly longer for strongly
coupled than for weakly coupled trajectories. This observation
suggests that strong coupling between the two proton transfer
reactions may result from destabilization of the extra proton on
the middle water molecule of the chain caused by a longer O-O
distance within the chain. We emphasize, however, that the
statistical significance of these results is limited due to the small
number of trajectories and that these results are not directly
relevant to proton wires in proteins due to the simplicity of the
model system.

One of the advantages of the MC-MDQT method is that it
provides a clear physical framework for interpreting and ana-
lyzing the detailed proton transport dynamics. We have found

TABLE 1: Fraction of 89 Trajectories That Exhibit Each
Type of Mechanism

concerted
(strongly
coupled)

sequential
(strongly
coupled)

sequential
(weakly
coupled)

adiabatic 0.10 0.19 0.57
nonadiabatic 0.00 0.05 0.09

TABLE 2: Distances between Pairs of Oxygen Atoms in the
Model System at the Beginning of the Double Proton
Transfer Reaction for Strongly and Weakly Coupled
Trajectoriesa

O-O pair strongly coupled weakly coupled

left solvent-H1 donor 2.81 (.02) 2.83 (.01)
right solvent-H2 acceptor 2.80 (.01) 2.80 (.004)
H1 donor-H1 acceptor 3.05 (.02) 2.95 (.01)
H2 donor-H2 acceptor 2.96 (.02) 2.98 (.02)

a The notation for the O-O pairs refers to Figure 1. The left solvent-
H1 donor and right solvent-H2 acceptor distances are averaged over
the two solvating water molecules on the left and right, respectively.
The numbers in parentheses indicate rms deviations. All distances are
given in angstroms.

Figure 2. Time evolution of the expectation values of the coordinates
of the quantum protons H1 and H2 (as labeled in Figure 1) for an
adiabatic concerted trajectory. Each proton coordinate is measured
relative to the midpoint between its donor and acceptor oxygen atoms.
Expectation values are calculated for the occupied adiabatic state.

Figure 3. Effective potentials for protons H1 and H2 as a function of
the proton coordinates at the times (a) and (b) labeled in Figure 2 for
an adiabatic concerted trajectory. The ground vibrational state is
indicated by a solid line, and the first excited vibrational state is
indicated by a dashed line. For each proton, the occupied state is given
in parentheses at the top, where (gs) denotes ground state and (es)
denotes the first excited state.
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that in proton transfer processes the wave functions are pre-
dominantly single configurational and multiconfigurational
mixing is required only to convert from one single configura-
tional wave function to another. As discussed in section II.A, a
variational single configurational wave function can be calcu-
lated by the self-consistent solution of eqs 6 and 7 (with
Q ) 1). These equations indicate that, for single configurational
wave functions, each proton can be viewed as occupying a single
adiabatic state that can be calculated from a one-dimensional
potential (which is derived from the classical configuration and
the occupied adiabatic states of the other protons). Thus, we
can elucidate the detailed motion of the individual protons and
the correlation between them by plotting the effective potentials
defined in eq 7 and calculating the corresponding adiabatic states

by solving eq 6 for times along the trajectory when the wave
function is primarily single configurational. The remainder of
this section focuses on this type of analysis for five trajectories
that represent the different types of processes observed.

First we analyze an adiabatic concerted trajectory. Figure 2
depicts the time evolution of the expectation values of the
coordinates of the two quantum protons (labeled H1 and H2).
Each quantum proton coordinate is measured relative to the
midpoint between the donor and acceptor oxygen atoms, so a
negative value indicates that the corresponding quantum proton
is closer to its donor and a positive value indicates that the
corresponding quantum proton is closer to its acceptor. Figure
2 indicates that for this trajectory both protons transfer at the
same time. Figure 3 depicts the effective one-dimensional
potentials for protons H1 and H2 at timest ) 0.000 fs andt )

Figure 4. Time evolution of the expectation values of the coordinates
of the quantum protons H1 and H2 for an adiabatic strongly coupled
sequential trajectory.

Figure 5. Effective potentials for protons H1 and H2 at the times (a),
(b), and (c) labeled in Figure 4 for an adiabatic strongly coupled
sequential trajectory.

Figure 6. Time evolution of the expectation values of the coordinates
of the quantum protons H1 and H2 for an adiabatic weakly coupled
sequential trajectory. (This trajectory and the labeled times correspond
to the snapshots depicted in Figure 1.)

Figure 7. Effective potentials for protons H1 and H2 at the times (a),
(b), and (c) labeled in Figure 6 for an adiabatic weakly coupled
sequential trajectory.
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14.375 fs, corresponding to the points labeled (a) and (b),
respectively, in Figure 2. For each effective potential, the ground
vibrational state is indicated by a solid line and the excited
vibrational state is indicated by a dashed line. The label in
parentheses at the top of each effective potential identifies the
occupied one-particle adiabatic state for the corresponding quan-
tum proton (where (gs) denotes ground state and (es) denotes
the first excited state). Note that the barriers are relatively high
for the trajectories presented in this paper due to the harmonic
restraints on the oxygen atoms of the chain water molecules.
At time (a) neither quantum proton has transferred, as indicated
by the negative expectation values of the proton coordinates in
Figure 2 and the localization of the occupied ground state in
the reactant wells in Figure 3a. At time (b) both protons have
transferred, as indicated by the positive expectation values of
the proton coordinates and the localization of the occupied
ground state in the product wells. Both quantum protons
transferred due to ground state tunneling that occurred when
both double wells were symmetrized simultaneously.

Figures 4 and 5 depict the analysis of an adiabatic strongly
coupled sequential trajectory. At time (a) (t ) 0.000 fs), neither
proton has transferred. At time (b), (t ) 5.625 fs) H1 has already
transferred, as indicated by the positive expectation value for
the H1 coordinate and the localization of the occupied ground
state in the product well for H1. In contrast, at this same time
(b) the double well potential for H2 is approximately symmetric
and the occupied ground state is delocalized over both wells
(which is also indicated by the expectation value of zero for
the H2 coordinate). This symmetric configuration for H2
remains for almost 10 fs, until finally at time (c) (t ) 16.250
fs) H2 is also transferred. Although both H1 and H2 transfer
through ground state tunneling, the tunneling for H2 occurs over
a much longer time scale than that for H1. Figure 5 also shows
that both the distance between the minima and the barrier height
decrease significantly for H2 throughout the trajectory, indicat-
ing that the donor and acceptor oxygen atoms for H2 move
closer together (although the barrier is still substantially higher
than the zero-point energy). This trajectory is labeledsequential
because H1 is transferred by time (b), while H2 is not transferred
until the later time (c). Moreover, this trajectory is labeled
strongly coupledbecause when H1 is transferred at time (b)
H2 is delocalized between its donor and acceptor.

Figures 6 and 7 depict the analysis of an adiabatic weakly
coupled sequential trajectory. As in the previous cases, at time
(a) (t ) 0.000 fs) neither proton has transferred. At time (b) (t
) 36.250 fs) H1 has transferred, as indicated by the positive
expectation value of the H1 coordinate and the localization of
the occupied ground state in the product well for H1. (Note
that before transferring H1 spends more than 10 fs in a

symmetric potential with the wave function delocalized over
both wells, as indicated by the expectation value of zero for
the H1 coordinate between (a) and (b).) In contrast, at time (b)
H2 has not even started to transfer, as indicated by the negative
expectation value of the H2 coordinate and the localization of
the occupied ground state in the reactant well for H2. Although
the energy of the product well for H2 has significantly decreased
from time (a) to time (b), H2 does not transfer until more than
30 fs later at time (c) (t ) 75.000 fs). Again both H1 and H2
transfer through ground-state tunneling, although in this case
the tunneling for H1 occurs on a longer time scale than that for

Figure 8. Time evolution of the expectation values of the coordinates
of the quantum protons H1 and H2 for a nonadiabatic strongly coupled
sequential trajectory.

Figure 9. Effective potentials for protons H1 and H2 at the times (a),
(b), (c), (d), and (e) labeled in Figure 8 for a nonadiabatic strongly
coupled sequential trajectory.
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H2. This trajectory is labeledsequential because H1 is
transferred at time (b) while H2 is transferred more than 30 fs
later at time (c), and this trajectory is labeledweakly coupled
because the two protons move almost independently.

Figures 8 and 9 depict the analysis of a nonadiabatic strongly
coupled sequential proton transfer. At time (a) (t ) 0.000 fs)
both protons are in the ground state and are localized in the
reactant wells. At time (b) (t ) 2.500 fs) H1 occupies the excited
state, which is localized in the reactant well. The spike between
(a) and (b) in Figure 8 indicates that H1 is instantaneously
localized near the product well immediately prior to the
nonadiabatic transition, which occurs when the double well
potential for H1 is nearly symmetric. (Note that the first proton
is not considered to be transferred at this spike because the OH
bond is not fully formed.) By time (c) (t ) 3.625 fs), H1 has
switched back down to the ground state and is fully transferred.
At this same time (c), the double well potential for H2 has
become approximately symmetric, so the occupied ground state
is delocalized over both wells and the expectation value for the
H2 coordinate is zero. At time (d) (t ) 51.460 fs), H2 is
localized on the reactant side again, and by time (e) (t ) 66.300
fs) H2 is finally transferred. This trajectory is labeledsequential
since H1 is transferred by time (c) while H2 is not transferred
until time (e). Moreover, this trajectory is labeledstrongly
coupled because when H1 is transferred at time (c) H2 is
delocalized between its donor and acceptor.

Figures 10 and 11 depict the analysis of a nonadiabatic weakly
coupled sequential trajectory. At time (a) (t ) 0.000 fs) both
protons are in the ground state and are localized in the reactant
wells. At time (b) (t ) 11.250 fs) H1 has transferred, as indicated
by the positive expectation value for the H1 coordinate and the
localization of the occupied ground state in the product well
for H1. At this time (b) H2 has not yet transferred and is still
localized in the reactant well. In the time between (b) and (c),
the wave function for H1 becomes delocalized again (as
indicated by the expectation value for the H1 coordinate
returning to zero for approximately 20 fs). At time (c) (t )
46.500 fs) H1 is transferred again. Also at time (c) the double
well potential for H2 is symmetrized so the wave function is
delocalized over both wells, and H2 occupies the excited state
(i.e., H2 has experienced a nonadiabatic transition). At time (d)
(t ) 48.625 fs) H2 is still in this symmetrized configuration
but occupies the ground state, and by time (e) (t ) 64.375 fs)
H2 has transferred. Note that both the distance between the
minima and the barrier height decrease significantly for H2
throughout the trajectory, indicating that the donor and acceptor
oxygen atoms for H2 move much closer together. This trajectory
is labeledsequentialbecause H1 is first transferred at time (b)
while H2 is not transferred until time (e). Moreover, this

trajectory is labeledweakly coupledbecause when H1 is first
transferred at time (b) H2 has not even started to transfer. (We
emphasize, however, that this labeling is somewhat misleading
for this trajectory since after time (b) H1 becomes delocalized
and transfers again at time (d) with strong coupling to H2.)

IV. Conclusions

We have utilized the MC-MDQT method to perform non-
equilibrium real-time quantum dynamical simulations of proton
transport along water chains in the presence of solvating water

Figure 10. Time evolution of the expectation values of the coordinates
of the quantum protons H1 and H2 for a nonadiabatic weakly coupled
sequential trajectory.

Figure 11. Effective potentials for protons H1 and H2 at the times
(a), (b), (c), (d), and (e) labeled in Figure 10 for a nonadiabatic weakly
coupled sequential trajectory.
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molecules. Our model system consists of a protonated chain of
three water molecules with two solvating water molecules
hydrogen-bonded to each end of the chain. Our simulations
indicate that solvation and hydrogen bonding significantly
impact the proton transport process and that quantum effects
such as hydrogen tunneling and nonadiabatic transitions play
an important role. Moreover, we found that this model system
exhibits a wide range of mechanisms, including both concerted
and sequential double proton transfer, both strongly and weakly
coupled double proton transfer, and both adiabatic and non-
adiabatic pathways. The MC-MDQT approach provides a clear
physical framework for interpreting and analyzing these different
types of mechanisms. We found that the proton vibrational wave
functions are predominantly single configurational and that
multiconfigurational mixing is required only to switch from one
single configuration to another. For single configurational wave
functions, each proton can be viewed as occupying a single
adiabatic state that can be calculated from an effective one-
dimensional potential (which is derived from the classical
configuration and the occupied adiabatic state). These effective
one-dimensional potentials and the corresponding one-particle
adiabatic states can be calculated along a trajectory to elucidate
both the detailed quantum dynamical motion of the individual
protons and the correlation among the multiple proton transfer
reactions.

The motivation for these simulations was to enhance our
understanding of solvation and hydrogen-bonding effects for
the process of proton transport along water chains in proteins.
Clearly the model systems studied in this paper do not
adequately represent water chains in protein environments.
Nevertheless, these model systems have allowed us to investigate
a number of possible dynamical mechanisms and to develop
an analysis scheme that will be useful for future studies in more
realistic protein environments.
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