J. Phys. Chem. A999,103, 70477054 7047

An Extension of the Marcus Equation for Atom Transfer Reactions

Paul Blowers and Richard I. Masel*

Department of Chemical Engineering, Warsity of lllinois at Urbana-Champaign,
Urbana, lllinois 61801-3792

Receied: January 4, 1999; In Final Form: July 2, 1999

The Marcus equation for electron transfer has been widely applied to atom transfer reactions, but the equation
does not seem to work well for very endothermic or very exothermic reactions. In this paper, a modified
model is proposed. The modified model assumes that the potential energy surface can be written as a sum of
the potentials for the individual molecules and an intermolecular potential that keeps the reactants apart. The
activation barrier predicted by the model is within 3 kcal/mol of that predicted by the Marcus electron transfer
equation when—1 < AH/4E°< 1, where AH, is the heat of reaction ang’ is the intrinsic barrier.
However, there are significant deviations wheH/4E° < —1 and whem\H,/4E° > 1. The modified model

predicts that the activation barrier should eqiéd,/4E° in the very endothermic limit, (i.eAH/4E° > 1),

while the Marcus electron transfer equation predicts that the activation erfgrgiould diverge fronAH;.

Data shows thaE, approachedéH,. The modified model predicts that the activation barrier goes to zero for
very exothermic reactions, (i.eAH/E° < —1) while the Marcus electron transfer equation predicts large
barriers. Data shows, though, that the barriers approach zero. We also compare to the Marcus hyperbolic
cosine expression and find that the modified model is within 3 kcal/mol of the Marcus hyperbolic cosine
expression over the entire energy range. The modified model predicts that the barriers to reaction are associated
with Pauli repulsions and not with bond stretching. That prediction agrees with recent ab initio calculations,
and the VB model but not with the intersecting parabola model. Overall, the modified model seems to extend
the original Marcus equation to very endothermic and very exothermic reactions. Also, it gives predictions
similar to the Marcus hyperbolic cosine expression over the entire energy range.

I. Introduction Figure 1. If one assumes parabolic potentials, one can derive
egs 1 and 2. Marcd4? pointed out that this approximation for
atom transfer reactions is probably in error and derived an
alternative equation for atom transfer.

Several years ago, Marcusderived what is now called the
Marcus equation to relate the heat of reactiart, to the
activation barrierE,, for electron transfer reactions:
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Nevertheless, eq 1 is often used for atom transfer reactions.
Guthrié has also proposed a multidimensional extension of
eq 1. The details are different, but the results are qualitatively
AH the same.
Xi =05+ -— 2) Experimentally, though, atom transfer reactions look different
8Ea than electron transfer reactions. It is unusual to observe Marcus
inverted behavior in atom transfer reactions. For example,
Equation 1 has been widely applied to electron transfer Westley® has an extensive table of activation barriers for
reactions and generally fits the data quite well. In electron reactions of interest to combustion. Figure 2 is a plot of the
transfer reactions, one often observes inverted behavior, asactivation barriers versus the heat of reaction for 478 open-
expected from the Marcus equation. Marcus inverted behavior shell radical exchange reactions of the form:
is also often seen in intermolecular energy transfer rates and
other de-excitation processes. R—H+R'—R+H-R' (4)
Given the success of the Marcus equation for electron transfer
and energy transfer reactions, many investigators have tried toThe actual reactions are listed in the Supporting Information.
extend the results to atom transfer reactions. Murdoglgutin The predictions of the Marcus equation are included for
et al,”8 Jenserd,and Albery et al®! derived an analogue of ~ comparison. In the Marcus plot, we used a single valug tf
the Marcus equation based on the curve-crossing model ofbut in reality, the intrinsic barriers as estimated from identity
Polanyi and Evan¥ The idea is that the system goes up a reactions vary from 7 to 12 kcal. We used the average value of

potential energy contour and then down again, as indicated in Es° to generate a single Marcus plot.
The data shows thd, approaches zero whehH; is less

* To whom correspondence should be addressed than —20 kcal/mol, E; approachef\H, when AH; is greater
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where E° is a constant. Murdoéh® and Shaik et . also
showed that the position of the transition stafe,is given by
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Figure 3. Comparison of the position of the transition state predicted
by eq 2 to Lee and Masel's G calculations for a number of
reactions of the form H- CHsR — CH; + R with R = CHjs, CHs,
CH,CF;, CH,CN, CH,C;Hs.

Marcus? examined the application of the Marcus equation to
atom transfer reactions. They found that the Marcus equation
works When—4Ea° < AH; < 4Ea°, but the assumptions in the
equation fail in cases wheredE° > AH, or 4E° < AH; (i.e.,
very exothermic of very endothermic reactions). Cohen and
Marcus suggested that eq 3 would work much better for atom
transfer reactions. However, eq 3 has not been extensively cited
in the literature.
100 ‘ e " 100 The object of this paper is to find a modified equation that
Heat of Reaction, Kcal/mole extends the Ol’.lgll’lal Marcus equation to very endothermlc or
very exothermic reactions. Our approach will be to build on
Figure 2. Activation barriers for 478 reactions of the form-Rl + some work Polanyi et #-23 did years ago to understand the
o, D 5 icti i . . . . .
R~ R+ H-R. Results of Westly® The predictions of eq 1 with o niia| energy surfaces for chemical reactions which has been
E.° = 9 kcal/mol are included for comparison. . .
a expanded by many subsequent investigators. The method starts

than 50 kcal/mol, ané. varies smoothly in between. In contrast, by writing V(R), the potential energy surface for the reaction A
the Marcus electron transfer equation predicts Bhajrowsto ~ + BC— AB + C as
infinity as AH; approaches-. Further, the Marcus electron-

[4)]
o
)

0

Activation Energy , kcal/mole

transfer equation predicts thig diverges fromAH, whenAH; V(R) = Vg + Vgc +V, (6)
grows to+oo. If we expand our search and consider all of the ) .
reactions in the compendiums of WestlyBensonté and whereV,g is the potential energy surface for an AB molecule

Kondrat'evl? we find that there are no highly exothermic in the absence of C/gc is the potential energy surface for a
reactions listed in these compendia with large activation barriers. BC molecule in the absence of A, a¥(is an interaction energy.
While it is theoretically possible for an exothermic atom transfer Kuntz et ak* proposed that one could simplify eq 6 by averaging
reaction to have a large barrier due to a steric repulsion, thethe potentials over all of the internal coordinates and only
number of examp|es in the literature is Smﬂ_ approaches examining the bonds that break and form. ACCOI’ding to Kuntz
AH; for large endothermic values &H, in all of the data in et al., the potential energy surfasg,for a simple atom transfer
Figure 2 and all of the other data in Westley ettaBensonté reaction can be written as a sum g, the potential for the
and Kondrat'ew> However, eq 1 predicts thEE1 diverges from bond that break&/F the potential for the bonds that form, and
AH; at largeAH;. V,, the intermolecular potential between the reactants.
Equation 3 does go to the correct result in the limit of very
endothermic and very exothermic reactions. However, it has V(rerg) = Ve(re) + Vp(rg) + Vi(rere) (1)
not been extensively used in the literature.
Another weakness is that eq 2 does not correctly predict the In eq 7, the subscript F refers to the bond that forms during the
position of the transition state. For example, Figure 3 comparesreaction (i.e., the RH bond in reaction 4), while the subscript
Lee and Masel®19 ab initio calculations ofy* to those B refers to the bond that breaks during the reaction,raraohd

predicted from eq 2 for a series of reactions of the form rg are the lengths of the bonds that form and break.
In this paper, we use eq 7 to derive a simple approximation
H+CHR—CH,+R (5) for the position and energy of the transition state. Our approach

will follow closely Murdoch’s$~> derivation of the Marcus
Notice that there is little agreement between the predictions of equation. We will fit empirical forms to/g, Vg, andV, and
eg 2 and the ab initio calculations. then use the results to derive an expression for the activation
Such a result is not surprising. The Marcus equation was barrier and the position of the transition state. We will then
originally derived for electron transfer reactions. Cohen and compare the approximation to ab initio calculations of the
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Figure 4. Orbital pictures for H+ H, — H'H + H along the reaction coordinate. The energies and bond lengths are calculated at the CCSD-

(T)/6-311++G(3df, 3pd) level.

transition state position and energy for a variety of reactions,
and to data for the variation @, with heat of reaction.

Il. The Potential

First, we need to get some approximation¥¢pVg, andV,.
In a recent papéf we have fit equations to our potential energy
surfaces for several reactions of the form in eq 4. We find that
we can fit the ab initio calculations to the model if we assume
that Vk and Vg are the energy to stretch bonds awd is

systems. However, the approach here is to make the assumption
anyway, and see if a useful result is obtained.

An additional ad hoc assumption is thgtandVg are given
by Morse potentials:

Ve = WF{ exp(al(rF,equ_ rF)) o 1}2 - Wk
9)

wherewr andwg are the bond energies of the bonds that form

VB = WB{ exp(az(rB,equ_ rB)) - 1}2

associated with the Pauli repulsions to bring the reactants closeand break during the reaction, andrg are the lengths of these

together.

According to our ab initio calculatio#%%2427 and work of
previous investigator®3437the Pauli repulsions between the
electrons in the reactants play a significant role in the barrier
to reaction. For example, Figure 4 shows a plot of the orbital
distortions that occur during the reaction HH, — H, + H
calculated as described in our recent wbtk? Notice that, as
the reaction occurs, the orbitals on the hydrogen andistort.

bonds g equandre equare the equilibrium bond lengths, and
anda, are constants. Combining eqs-9 yields:
V(rerg) = We{ expEy(reequ— 'e) — 17— we+

We{exp@y(rgequ— re)) — 1% + Vp exp(—agfe — a,fp)
(10)

Next, it is useful to derive an equation for the saddle point

The orbital distortions are associated with the Pauli repulsions energy in eq 10. A detailed derivation is given in the Supporting

that cause diffuse and polarization functions to mix with the
ground state during reaction. According to our ab initio
calculationd®2” and Shaik’'s VB calculation®:34 the Pauli

Information. The result for the special case where= o3 and
02 = ayis

repulsions are the main reason for barriers in the reactions ing* =

Figure 2.

Bernstein and Muckerma&hshow that one can approximate

the Pauli repulsions by

Veaui = Vo €XP(-04e — 0,fp) (8)
where Vy, oz, and oy are constants. We have calculated the
potential for the interaction of a hydrogen atom with an ethane
at the G-2 level. That potential also fits eq 8 at distances
comparable to those in reactions.

In this paper, we will make the ad hoc assumption Wat
Vpauie This assumption is not justified theoretically. In particular,
previous investigato?&38 have found that ionic structures are
often important in transition states for reactions.

One would also expect that the form in eq 8 would not
necessarily be applicable for the interaction of open-shell

. AHT
0 if 0 < -1
4ES
(Wo + 0.5AH)(Vp — 2wy + AH,)* o BAH
((Ve)® — 4(wp)* + (AH,) AR
AH if AR, 1
>
r "aEp
! (11)

where E¥, is the energy of the saddle point relative to the

reactantsE° is intrinsic activation barrier for the reaction,

AH; is the heat of reactiony, is the average bond energy, i.e.,
Wy = (Wg + wg)/2 (12)

and Ve is the strength of the Pauli repulsions at the transition
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state. For future reference, it is also important to note
W, + E.°

_ o
w, — E;

Ve = 20, (13)

Equation 13 allows one to calculat from E ° estimated via
identity reactions.

Later in the paper, we will also need a few other variables.
First, it is useful to also defingf, the dimensionless position
of the transition state for the forward reaction, by

\

i — I
=" (14) -100 50 0 50 100
ng + ng Heat of Reaction, Kcal/mole

. . Figure 7. Variation in the activation energy calculated via eq 15
wheren: and ng are the Pauling bond orders for the forming (points) and eq 11 (lines) far, = 120 kcal/mol,oy = o andae = aa

and breaking bond at the transition state. It is also useful to and various values .
defineEpong the change in the total bond energy of the system _ _ _ _
in moving from the reactants to the transition state. Equations Figure 2. A line for eq 3 is also shown, although the line to eq

for X,ﬁ and Epong are given in the Supporting Information. 3 is indistinguishable from that for eq 11. As in Figure 2, we
assumee,’ =9 kcal andwg = 120 kcal/mol. In reaIityE: and
IV. Qualitative Features of the Model wo will vary over the data set. However, we ignored the

variations to keep everything compatible with Figure 2.
Notice that eq 11 follows the trends in the data much more
closely than the Marcus electron transfer equatiBhvaries
linearly with AH; at largeAH,, andE* is zero at lowAH,. There
is no inverted region in either the data or the model.
Figure 7 compares the model here to a different empirical
approximation.

Figure 5 is a plot ofE* from eq 11 vsAH;, for some typical
values of the parameters. According to the mo&ljs zero
for very exothermic reactions, approached, for very endot-
hermic reactions, and varies smoothly in between. The model
is virtually indistinguishable from the Marcus electron transfer
equation when-36 kcal/mol< AH, < 36 kcal/mol, i.e., when
—1 < AHJ/4E? < 1. However, there are differences for very
exothermic and very endothermic reactions. The Marcus electron for AH/4E° < —1
transfer equation predicts that very endothermic reactions should _, . 2 B a o
have large activation barriers. However, the model here predictsEa ={ES’ (1+ AH/4E)) for —1= AH/4E” =1 (15)
that the barrier should approach zero. Also, the Marcus electron AH, for AH/4E° > 1
transfer equation predicts that grows parabolically withAH,
at largeAH,. However, the model in this paper predicts tRat The lines in the figure are calculated via eq 11, while the points
= AH;, for very endothermic reactions instead. are calculated from eq 15. Equation 15 is not exact, but it does

Figure 5 also compares the predictions of eq 11 to those of fit eq 11 to within 3 kcal/mol under all conditions we have
eq 3, Marcus’ hyperbolic cosine result. Notice that the activation examined. Consequently, it appears that the model here predicts
barriers predicted by our equation are virtually identical to activation barriers that are very similar to those from the Marcus
Marcus’ hyperbolic cosine expression, even though the physicselectron transfer equation wherll < AH/4E° < 1. Still, the
in our expression is different than that used to derive Marcus’ predicted activation barriers are quite different than those
result. This result indicates that the variation in the activation predicted by the Marcus electron transfer equation whelp/
barrier is insensitive to the details of the model, and that makes 4E ° is either less than-1 or greater than 1.
the expressions very useful. Figure 8 shows how the predictions of the model here change

Figure 6 compares the predictions of eq 11 to the data in as we fixE° and varywo. There are six values aofp in the
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Figure 9. Variations in the height of the intrinsic barrier for a series
of identity reactions as the average bond enengychanges. We
assumed thavs is constant and alloweB ° to vary.

figure, but the six plots differ by such a small amount that the
various lines merge. Consequently, even thowglappears in
our model, the predicted activation barriers are almost inde-
pendent ofw, over a wide range.

Variations inwg do, however, change the intrinsic barrier.
Figure 9 shows a plot of the intrinsic activation barrier as a
function ofwg with Vp = 400 kcal/mol,o; = a3, ando, = ay.

Notice that the intrinsic barrier to reaction increases, reaches a

maximum, and then decreases again with increasinglhe
implication of Figure 9 is that, under some circumstances, it
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Figure 10. Variations innj, the bond order for the bond that breaks
for the case in Figure 8.

with eq 11. Equation 11 does not fit exactly because the
X'CRsX~ potential has a couloumbic attraction that is absent
from eq 11. Still the qualitative trends from eq 11 are that there
is a maximum in activation energy at intermediate bond
strengths in agreement with Glukhovtsev’s ab initio calculations
for the reactions of the form in eq 16.

The decrease iiE° with increasing bond energy occurs
because the transition state gets tightewgascreases. Figure
10 shows hown;, the bond order of the breaking bond at the
transition state, changes asg increases. Notice that, whew
is small, the transition state is very extended (i.e., loose) so
that bonds have to stretch significantly before the reaction
occurs. However, as/p increases, the bond in the transition
state shortens. It works out that more bond order is conserved
at the transition state whemy is large rather than when it is
small. The extra bond order causes the intrinsic activation energy
to decrease in Figure 10.

Physically, the size of the transition state is determined by
the ratio of the strength of the Pauli repulsion to the strength of
the bond that breaks. As the Pauli repulsions increase, the
transition state gets larger. Ag increases, it gets harder to
stretch the bonds so the transition state distance decreases.
According to the model here, the size of the transition state is
determined by a balance between the bond energy and the Pauli
repulsions. Strong bonds make the transition state tighter, which
causes the drop iE° at largewg seen in Figure 9.

So far, we have assumed the is a constant. In most
chemical reactions, when you change the strength of the bonds,

costs less energy to break a strong bond than to break a weak/ou also change the Pauli repulsions. StW, can vary

bond. This trend is entirely different from the curve-crossing
model. In the curve crossing mod&l, increases linearly with
Wo.

Figure 9 also shows the results of Glukhovtsev et &%%
ab initio calculations of the central barrier for the identity
reactions:

X' + CHX — XCH, + X' for

X=F,ClI",Br,andl (16)

independently of the bond strength by careful substitutions in
the reaction molecule. For example, if one replaces one of the
methyl hydrogens in reaction 5 withtert-butyl group, the Pauli
repulsions will go up even thoughy goes down. Therefore,
one can sensibly discuss the idea that the Pauli repulsions can
be varied independently of the bond strength.

Figure 11 is a plot of the intrinsic activation barri&;, as
a function ofV,, the strength of the Pauli repulsions, with=
o3, a2 = a4, andwp = 120 kcal/mol. The intrinsic activation
energy starts at 0 kcal/mol whafy = 0. It stays at zero until

Notice that the central barrier for reaction 16 increases before Ve = 240 kcal/mol and then rises nonlinearly. The intrinsic
decreasing with increasing bond energy, in qualitative agreementactivation barrier wheiv, = 600 is 51.4 kcal/mol.
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. . the case in Figure 11.
The V, = 0 case may seem a little strange, but if there are

no Pauli repulsions, then there will be nothing to keep the
reactants apart. In that case, the reactants can form a stable
complex. In this case there is no barrier to reaction.

One does not start to see an intrinsic barrier until the Pauli
repulsion is stronger than the bond energy:

2.0

Equation 21

1.5 Conservation of

Ve = 20y (7 Bond Order

so that no stable complex forms. At that point, there is a barrier
to the reaction and the intrinsic activation barrier increases
monotonically but nonlinearly ag, increases.

Physically, increases il correspond to increases in the steric
repulsions. Consider the homologous series of reactions:

1.0

CH;NO,+OH™ — H,0 + (CH,NO,)~ (18) N _
] 100 200 300 400 500 600
Pauli Repulsion, V,, kcal/mole

(CH3),CHNO, + OH — H,0 + ((CHy),CNO,) (20) Figure 13. Variations inny, the total bond order of the system for the
case in Figure 11.

Total Bond Order at the Transition State

CH,CH,NO, + OH™ — H,0 + (CH,CHNG,)  (19)

where a proton is being transferred from nitromethane to a
hydroxyl. As methyl groups are added to the carbon center, theis that the bonds are lengthening as the Pauli repulsions increase.
steric repulsions increasés also increases. We have calculated Physically, as you increase the Pauli repulsions, the reactants
the activation energy for reactions 480 using a group are forced apart and the transition state becomes looser.
additivity postulate and found that the activation barrier for eq  Another implication of the model is that the Pauling bond
20 will be higher than the barrier for reaction 18, even though order is not conserved during the reaction. If bond order was
reaction 20 is more exothermic than reaction 18. Experimen- conserved, then the total bond ordetw;, should be 1.0
tally,3? reaction 20 has a higher barrier than (18) even though €verywhere along the intrinsic reaction pathway, where
(CH3)CHNO; is a stronger acid than GNO,.

In the literature, people have considered reactions 218 Ny =ng+np (21)
anomalous because the rate decreases as the reaction becomes
more exothermic; that is, the Brensted slopes are neg&tive. Figure 13 shows a plot ofr versusV,. Notice that when/, =
The model here predicts negative Brgnsted slopes, in agreemend, a stable complex forms amg* = np* = 1 orn¥ = 2.0. As
with the experimental data. Another feature of the model here we increase the Pauli repulsions, the reactants are forced apart
is that it predicts a nonlinear Brgnsted plot. andn* decreases. It happens that whér= we + wg the forces

The nonlinearity in Figure 11 occurs because the bonds stretchbalance so that bond order is conserved (he+ 1) over the
to reduce the Pauli repulsions. Figure 12 shows how the Paulingreaction coordinate. However, the activation barrier is zero in
bond order at the transition state changegAacreases. Notice  such a case. Whe¥, > wr + wg, the total bond order at the
that the Pauling bond order at the transition state decreases agransition state is less than 1 and Pauling bond order is not
the Pauli repulsions increase. According to the definition of the conserved. Here, there is also a finite barrier to reaction.
Pauling bond order, a decrease in the Pauling bond order at the One might think that the barrier arises because the total bond
transition state corresponds to a lengthening of the various bondsorder at the transition state is less than 1.0. However, Figure
in the transition state. Therefore, the implication of Figure 12 14 shows how the total bond energy at the transition sEatgs
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negative over the entire range in the figure. A negative value
of Epongimplies that the system gains more energy in partially - — —
forming a modified bond than it loses in partially breaking the
original bond. As a result, bond extension does not produce a
net barrier. According to the model here, the barriers to reaction
arise because there are Pauli repulsions in getting the reactants
close enough to react. Bond stretching lowers these barriers, >
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which is the opposite effect compared to the intersecting £
parabola model. ‘é_/
. . & No Inverted region
V. Comparison to the Intersecting Parabola Model 1
. R > R > R -
It is useful to compare the results here to those from the AB AB AB

intersecting parabola modef:* The intersecting parabola model Figure 15. (a) Curve-crossing model in the inverted region. (b) The
predicts Marcus-like behavior with an inverted region and a corresponding situation based on the model here.
parabolic rise in energy with increasingd. The data in Figure
2 does not show that trend. Instead, there is no inverted regionreactions of the form
and a linear variation oEa with AH at largeAH.
Physically, the intersecting parabola model predicts an H+ CH;OH — products (22)

inverted region because the model assumes that the size of the -
transition state is fixed. If you have a very exothermic reaction, Figure 16 shows how the activation energy correlates to the

you get a curve-crossing before the minimum in the reaction, Pond stretching energy and the Pauli repulsion energy. Notice
as shown in Figure 15b, and that causes Marcus inverteq that activation barriers cprrelate much better to the Pauli energy

than to the bond stretching energy. Thus, the model here agrees
with Blowers and Masel’s ab initio calculations.

The model also agrees in principle with Shaik’s valence bond
model33-38 although there are some differences in detail.
Overall, the model agrees quite well with data as can be seen
jin Figure 6.

behavior.

The model in section Il does not allow this inverted behavior
to occur. Instead, the transition state expands to give the situation
in Figure 15b. There is no barrier to reaction under this situation.

A similar effect occurs for very endothermic reactions. When
the reaction is very endothermic, the intersecting parabola mode
predicts that the intersection of the two curves will be past the

product. However, the model here suggests that the transition” - SUmMmary

will expand again to compensate these effects. In this ¢ase, In summary then, the model here shows many of the trends
= AH;, and notEx > AH,, as predicted by the intersecting one expects. If there are no Pauli repulsions, then there are no
parabola model. barriers to reactions. As one turns on the Pauli repulsions, the

Generally, unlike the intersecting parabola model, the model barriers increase. However, there is a nonlinear effect because
here predicts that the bonds can be extended if the bondthe transition states become looser as the Pauli repulsions
extension lowers the barriers to reaction. The intersecting increase, and the transition states become tighter as the bond
parabola model does not allow bonds to stretch, and so theenergy of the reactants increases. The tightening of the transition
intersecting parabola model gives the wrong behavior for ligand state produces an unexpected effect. In some cases, it is easier
transfer reactions with large barriers. to break a strong bond than it is to break a weak bond. One can

In a more fundamental way, the model here differs from the also get negative Brgnsted coefficients in cases with reactivity
intersecting parabola model in that it identifies the barriers to where reaction 20 is slower than reaction 18, even though)(CH
reaction with the Pauli repulsions between the reactants andCHNGQO; is a stronger acid than GNO,,
not the energy to stretch bonds. In recent pages,Blowers The model is virtually indistinguishable from the original
and Masel examined the activation barriers for another set of Marcus equation wher-1 < AHr/4Ea° < 1. However, the
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Figure 16. Activation energies for reactions of the form in eq 22 as a function of the Pauli energy and the bond stretching energy. Results of
Blowers and Maset!26

model predicts that the activation barrier goes to zero for very ~ (9) Jensen, FJ. Comput. Chenil994 15, 1199.
exothermic reaction, approachesH, for very endothermic (10) Albery, W. J.; Kreevey, H. MAdv. Phys. Org. Chem1978§ 16,

reaction, an,d varies 'nonllnearly n betv,ve,e.n' That trgnd seems .(11) Albery, W. J Electrode KineticsClarendon Press: Oxford, 1975.
to agree with experimental data, ab initio calculations, and  (12) Evans, M. G.; Polanyi, MTrans. Faraday Soc193§ 34, 11.
Marcus’ hyperbolic cosine equation. The model also predicts  (13) Cohen, A. O.; Marcus, R. Al. Phys. Chem1968 72, 4249.

complex behavior with changing bond energy. Again, such a 83 \(;luthtrlie. J#'FJbIAm% ghem. 501395 élg 1C151-t < for Chermical
H initi : estley, F.lable O ecommende ate Cconstants 1or emica
trend seems to agree with both data and ab initio calculatlons.Reactions Oceurring in Combustip). S. Department of Commerce:

In a larger way, the model suggests that the barriers to atomwashington, DC, 1980.
transfer reactions are mainly associated with the Pauli repulsions. (16) Benson, SKinetic Data on Gas-Phase Molecular Reactiphs

In our previous ab initio calculations, we found that the barriers S- National Sur?au of Sta”dardgcwasmngfo”f DGC, 19;0- ,
to reaction are negligible in the absence of Pauli repulsions andwggi)ngﬁgﬂ rgtcevl’g;/z' N.Rate Constants of Gas-Phase Reactions
_the magnitude of the barrier increases as the Pauli repulsions (1g) Lee, W. T.: Masel, R. 1J. Phys. Chem1998 102, 2332.
increase. In a larger way, the model seems to extend Marcus’ (19) Lee, W. T.; Masel, R. I3. Phys. Chem1996 100, 10945.
original equation to very endothermic and very exothermic  (20) Polanyi, J. C.; Wong, W. Hl. Chem. Phys1969 51, 1439.
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