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The NO'-N; cationic complex is studied using high-level ab initio calculations. The geometry is found to be
a skewed T shape, with two linear stationary points corresponding to tf@"MN—N and N-N-N—-O*
configurations. At the highest level of theory, CCSD(T)/aug-cc-pVQZ//CCSD(T)/aug-cc-pVTZ, the interaction
energy is estimated to be 1950 ch{5.6 kcal mot?), from which aAH2%® interaction enthalpy value of 4.9

kcal mol* was derived. By using the well-established heat of formation of NOwvas possible to derive a
standardAH;?% value of 230.4 kcal mof* for NO™N.. In addition, the enthalpy, entropy, free energy and
equilibrium constants were calculated for the dissociation of the complex, as a function of altitude, for the
earth’s atmosphere.

I. Introduction it is desirable to know the binding energy of N@I, accurately.
Various reports of the binding energy of NEN, have been
reported, both experimentdi® and theoretical 11

Recently, we used MP4 single-point calculations at MP2-
optimized geometries (MP4//MP2) to calculate the binding
energies and ligand-switching enthalpy changes for the 1:1-NO
X complexes (X= H,0, Np, and CQ).12 The main aim of that
work was to generate reliable thermodynamic quantities (en-
thalpies, entropies, and free energies) from the ab initio data,
but to attempt to keep the calculations as inexpensive as possible.

The NO™-N; cationic complex has been inferred as being
the nascent complex formed in the chain of chemical reactions
that lead from NO to the protonated water clusters! ,0)y,
in the ionospheré The sequence of reactions is potentially very
complicated? involving complexes consisting of NOnteract-
ing with one or more atmospheric ligands, such a® HCO,,

N,, O, and O. At some point, the NOcomplex rearranges
and yields a protonated water cluster, plus products. For

example, For the first time, a consistent level of theory was used for the
N three complexes, which allowed the calculation of ther-
NO"-(H,0), + modyamical quantities for the ligand-switching reactions, in
H,0— [NO+-(H20)n+1]* — H+(H20)n + HONO (1) addition to the calculation of the binding energies for the three

complexes.

It is the aim of the present work to calculate the geometry,
binding energy, and thermodynamics of the N, cationic
complex at higher levels of theory than those used in ref 12
and to compare the two sets of data. In addition, the linear
stationary points on the NON, surface are characterized.

For the NO complexes where water is the only ligand, the
critical value ofn has been shown to be 3 from unimolecular
fragmentation studietbut 4 from laser fragmentation studies;
this discrepancy has been discussed very recéntly.

The suggestion that NON; is the first complex ion to form,

despite the fact that the binding energy of N80 is greater [l. Theoretical Methods
than that of NO*N, is due to the greater prevalence of N The equilibrium geometry of the NGN, complex was fully
versus HO in the upper atmospheteTo calculate accurately  gptimized at the MP2/aug-cc-pVDZ, QCISD/aug-cc-pVDZ, and
the equilibrium constant for the process MP2/aug-cc-pVTZ levels of theory where the frozen core
approximation was used in each case. In addition, harmonic
NO*-N2 —NO" + N, 2) vibrational frequencies were calculated. Then, the geometry was

partially optimized at the CCSD(T) level of theory (again using
tVisiting Royal Society Postdoctoral Fellow. E-mail: Pavel.Soldan@ the frozen core approximation), where the N@nd N bond
durxham.ap.uk. lengths were fixed at the experimentalalues of the isolated
E-mail: epl@soton.ac.uk. . . . moieties. At each of the calculated minima, the interaction
§ Present address: School of Chemistry, Physics and Environmental . e
Science, University of Sussex, Falmer, Brighton, U.K. BN1 9QJ. E-mail: €N€rgy was calculated and corrected for basis set superposition

t.g.wright@sussex.ac.uk. error (BSSE), making use of the full counterpoise (CP)
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TABLE 3: Optimized Geometries, Harmonic Vibrational Frequencies, and Interaction Energies for the Linear Saddle Points
on the NO"-N, Potential Energy Hypersurface

rno/A RIA /A wdemt wldemt wiem wlem wsgem!  BSSE/cm?®  AEcdem !
N—O"-N—N (R = intermolecular @-N bond length)
MP2/aug-cc-pVDZ 1.0966  2.8422 1.1314 71.81 855 106.8 2117.5 2160.1 184.7 672.3
QCISD/aug-cc-pvVDZ 1.0767 2.8887 1.1149 65.8 88.6 99.4 2382.3 2389.1 177.6 677.3
MP2/aug-cc-pVTZ 1.0823  2.8441 1.1137 138.9 737.1
CCSD(T)/aug-cc-pVTZ 1.0632 2.8745 1.097% 139.9 784.2
N—N-N—O" (R = intermolecular N--N bond length)
MP2/aug-cc-pVDZ 1.0968 2.9614 1.1314 79.3 879 987 2120.2 2159.6 185.1 838.0
QCISD/aug-cc-pvDZ 1.0773 2.9825 1.1148 81.8 86.0 96.6 2382.1 2384.8 187.3 754.4
MP2/aug-cc-pVTZ 1.0826 2.9688 1.1138 152.9 906.0
CCSD(T)/aug-cc-pVTZ 1.0632 2.9738 1.0977 158.0 874.0

aFixed at the experimental value (ref 17).

TABLE 4: Calculated Thermodynamics for the Process

uncertainty arises from the uncertaintyAid2°4NO™) and the
NO*+N, — NO* + N, as a Function of Altitude

estimated error in the ab initio total energy change.

altli(tude/ K - K_%S/Jl_l AH{'}f AG{Q Ka ch/njgl There have been a number of experimental and theoretical
m pra Mot~ mot” mo o dm determinations of the binding enthalpy of N@,. The values
8 ggg 1812;2 ;g-i gg-g :g-g g-g igg-é all tend to lie in the range45.5 kcal mot?, and so there is
5 256 54050 854 208 -10 086 411 not great uncertainty surrounding this value, a!though it is always
10 223 26500 923 211 05 020 110 desirableto have as accurate a value as possible. As noted above,
15 217 12110 99.0 211 -04 0.15 8.3 the most reliable value akEg here converts to a most reliable
gg gg ggig-g ﬂ?g gﬁ :;-g 8-13 1%-% value forAHg of 4.9 kcal mot™. This value may be compared
30 227 11970 1179 210 -57 025 132 to the best v_alue obtained in ref 12 of _4.5 kcal rﬁorl'_hus, the
35 237 5746 1237 21.0 -84 039 202 value here is only ca. 0.4 kcal mdlhigher. This difference
40 250  287.1 1291 209-114 068 333 appears to be localized in the calculation of the total energy
45 264 149.1 1342 208-146 12 536 change: the value here is expected to be the more reliable,
50 271 79.78 139.2  20.7-17.0 15 66.7 ing to th f hiaher levels of th dl basi
55 261 4253 1447  208-170 10 187 owing to the use of higher levels of theory and larger basis
60 247 21.96 150.6 209-16.3 060 29.8 sets. When compared to previous theoretical and experimental
65 233 10.93 156.8  21.0-155 033 17.1 results, very good agreement is obtained, with Zinn ét al.
70 220 5221 1633 211-148 017 95 obtaining 5.0 kcal molt from RHF/6-34G*//RHF/4-31G
75 208 2.388 1702  21.2—-142 0.089 5.2 lculati dt : tal studi ielding 4.4 keal
80 198 1052 1773 212-139 0048 29 calculations and two experimental studies yielding 4.4 kca
85 189 0.4457  184.7 21.3-13.6 0.026 1.7 mol~1 (ref 8) and 4.2 kcal mott (ref 1). A value of 5+ 1 kcal
86 187 0.3734 186.2 21.3-13.5 0.022 15 mol~! is recommended.
90 187 0.1836 1922 21.3-146 0.022 15 As f th t : d th to be f
95 189 00760 1994 213-164 0026 17 s far as the entropy is concerned, there appear to be four
100 195 0.0320 206.4 21.2-19.0 0039 2.4 available experimental values: 15.7 cal’®mol~? (ref 1), 18.5
110 240 0.00710 2176  21.0-31.3 045 228 cal K1 mol™* (ref 7), 13.3 cal K mol™? (ref 8) and 17.0 cal
120 360 0.00254 2232  20.1-60.3 14.0 4732

K~1 mol~1 (ref 9). Comparing these to the calculated value of
AS8 = 18.9 cal K1 mol™ here (see first row of Table 4)
indicates that the experimental value of Turner et al. (ref 7) is
the most reliable. It also compares reasonably favorably with
the value 0ofASys = —19.6 kcal mot? calculated in ref 12.

aNote thatK, and K. are defined at 101325 Pa, and so are only
varying with temperature. See text.

approximation led to almost identical values for the interaction
energy (1896 cm?) as when all electrons were correlated (1899 We recommend a value &Sys = 18.5+ 1.5 cal K’ mol™*
cmY), at least at the CCSD(T)/aug-cc-pVTZ level of theory; at a pressure of 1 atm.
this is true after using the full CP correction (note that the BSSE = Saddle Points.Table 3 contains the optimized geometries
is significantly smaller when the frozen core approximation is of the two linear saddle points, where the geometry has been
used, as expected). The second method was employing CCSD<onstrained to be linear. As may be seen, again, the geometry
(T)/aug-cc-pVQZ calculations, where all electrons were cor- is rather insensitive to the level of theory, with the vibrational
related: this led to a value 6f1950 cnt?, where the CCSD(T)  frequencies also being rather insensitive. The calculated energies
value was estimated from the CCSD and CCSD(T) values at the CCSD(T)/aug-cc-pVTZ level indicate that there is an
obtained with the aug-cc-pVTZ basis set. This is our best internal rotational barrier of- 1025 cnt* on moving to the
estimate of the binding energy of NEN.. N—N-N—Ot transition state from the minimum, and a barrier
. . . of 1115 cnm! on moving to the N-N-O—N™ transition state

To compare this vaI_ue to experimental values, it is necessary(no zero-point energies have been accounted for). This is rather
to correct the interaction energy to a standard enthai$yg], high and would suggest that the thermodynamics will not be
using standard formulas, under the assumptions of an ideal gasfected by the internal rotation to a large degree, and so the

and a rigid rotor harmonic oscillator (RRHO). The results of 3jues given above, under the RRHO approximation should be
doing this for the forward reaction 2 are shown in Table 2. These (gliable. The lower barrier in the NN-N—O™ orientation is

may be corrected tAH°8 by making use of standamtiH;?%8
values: 0 kcal mal® for N, (by definition), and 235.3 0.2
kcal mol® (ref 18) for NO" (note that the stationary electron

consistent with the lower energy barrier for the Ar atom passing

the N end of NO in the Arr-NO™ cationic complexf Presum-

ably, this is because of the higher charge on the N atom it NO

convention is used in the present work). Thus, our best value (at the MP2/aug-cc-pVTZ and QCISD/aug-cc-pVDZ levels, the

for AHP9NO™Ny) is (230.44 0.5) kcal mot?, where the

charge is distributed as™8—-0"92 with almost zero charge
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on N), which leads to a greater charge-induced dipole interac- Laboratories, which enabled these calculations to be performed.
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