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A theory that predicts the rate of a dissociative proton-coupled electron-transfer reaction is presented. The
electron and proton transfer is treated as one quantum event that is driven by the coupling of the respective
charges to the solvent’s orientational polarization. The final state, where both electron and proton have
transferred, corresponds to a repulsive surface for the proton motion. Consequently, the reaction products
include a dissociated proton-transferred species. The origin of the repulsive surface is attributed to a combination
of the hydrogen bond’s relative weakness and the role of the solvent’s electronic polarization in aiding the
dissociation. The rate constant depends on the reaction free energy and reorganization energy, the bound
state energies and wave functions in the initial proton surface, and the parameters of the proton final state
repulsive surface. The rate constant can be quite large and should provide a reaction pathway competitive
with consecutive electron and proton transfer.

I. Introduction

Coupled electron and proton transfer is a reaction pathway
of some generality that has stimulated experimental1-17 and
theoretical studies.18-28 Often, it is difficult to decide whether
the process is consecutiveselectron transfer followed by proton
transfer (ET/PT) or vice versa (PT/ET)sor a concerted process,
where the two species transfer together in one quantum
mechanical tunneling event. When the electron and proton are
associated with the same atom, the coupled transfer can be
considered as a hydrogen atom transfer, complicating the
distinction between concerted and consecutive mechanisms. In
this work, we will focus on concerted electron-proton transfer
(ETPT) where the acceptors for the electron and proton are
different species, thus precluding hydrogen atom transfer.
Furthermore, we shall consider reactions where the final state
is dissociative and denote the process as DETPT. As a
consecutiVe process, the reaction may be schematized as

As a concertedprocess, the reaction is

The concerted process involves the simultaneous transfer of an
electron and proton, with the proton final state characterized
by a repulsive potential energy surface (pes).

There is ample evidence of reactions that lead to the overall
conversion to yield the product species as shown in Scheme 1,
though it is not easy to prove that the process is consecutive.
In the realm of biology, a step in the chain of charge transfers
in the photosystem II oxygen evolving complex (PSII/OEC) may
provide an example of DETPT.4,29-33 There is a reaction center
chlorophyll P680 that has been previously oxidized to P680+.

A tyrosine labeled conventionally as YZ is hydrogen bonded to
a nearby histidine residue. This tryrosine is oxidized to a tryrosyl
radical and re-reduces P680+ to P680. The proton in the
tyrosyl-histidine hydrogen bond transfers from the phenol to
the nitrogen of the base, and there is no evidence for a hydrogen
bonded proton at a well-defined distance. Thus, the postulation
of a dissociative step is introduced. An extensive study by
Linschitz and co-workers34,35of the quenching of triplet C60 by
phenols in the presence of substituted pyridines does provide
unambiguous evidence for concerted DETPT. The phenoxy
radical and the protonated base are the observed reaction
products, in addition to C60

•-, demonstrating the concerted
nature of this DETPT reaction. As another example, radiation-
induced electron-transfer reactions of substituted phenols in low-
temperature glasses show the production of the phenol radical
cation that disappears upon warming.36 But, also seen within
the time scale of the initiating pulse is formation ofphenoxy
radicals, indicating a dissociative pathway. And, in polar
solvents, the immediate, exclusive reaction product is the
phenoxy radical. Thus, this is an example where both consecu-
tive and concerted reaction pathways are present with the
ultimate products corresponding to DETPT.

In previous work on ETPT we have stressed that an enhanced
pKa of the hydrogen-bonded complex upon electron transfer
favors the concerted mechanism.23 If the proton surface after
ET is sufficiently “tipped” to a downhill direction, then what
was a double well proton potential may now have just a single
minimum corresponding to the proton having transferred. Such
a situation is favored by strong hydrogen bonds or, equivalently,
by small flanking group distances.37 In this regard, recent ab
initio studies of phenol water38 and phenol N239 hydrogen-
bonded complexes have shown that the radical cation complexes
have flanking group distances that are significantly shorter than
the corresponding neutral complexes. This suggests the pos-
sibility of vanishing or small barriers for the cation’s proton-
transfer surface. Furthermore, when additional waters are added
to the cation radical complex the proton-transferred forms
become the stable species.40 For the cation radical of phenol
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hydrogen bonded to ammonia, Bertran and co-workers found
that only the proton-transferred species was stable,41 a conclu-
sion also reached by Yi and Scheiner.42 They also found that
increasing the number of coordinated ammonia molecules makes
the proton-transferred species more stable.42 These works show
that after ET, when a cation is formed, there is a strong tendency
for the proton to transfer too. Of course, this does not necessarily
imply that the proton-transferred species will dissociate. Once
the proton has transferred, dissociation is governed by the
relatively weak, but still bound, [R1O‚‚‚HNR2]•+ hydrogen bond.
With regard to the fast degrees of freedom (with respect to the
transferring charge), the appropriate surface for discussing
proton transfer (and also ETPT) is theelectronicallysolvated
proton pes, which we have referred to as apelssurface.43 The
solvent’s electronic polarization is fast relative to the proton
motion, and the relevant surface is actually an electronic degrees
of freedom solvated potential of mean force. This solvation,
when added to the gas-phase hydrogen-bonded surface, can be
sufficient to produce a repulsive surface. Thus, in view of the
experimental evidence, and the calculations presented below,
there is reason to assert that the proton-transferred species can
dissociate on the basis of a repulsive pes. As such, it is worth
extending our previous ETPT theory to this dissociative case.

In addition to the pels surface, the slow nuclear degrees of
freedom (the solvent’s orientational polarization in dielectric
continuum language44,45), also must be accounted for in a
charge-transfer theory. For ETPT, we previously provided
two approaches to the calculation of a rate constant, termed
the double-adiabatic (DA) and the two-dimensional (2D)
approaches.20-24 In the DA theory,22 ET is coupled to two
modessthe solvent polarization (treated classically) and the
proton displacement in the hydrogen bond interface. For ETPT,
the proton does not undergo a small displacement. Rather, it
actually does transfer. In the 2D approach, the electron and
proton are both considered as quantum objects in a two-
dimensional tunneling space, with one tunnel coordinate for the
electron and one for the proton. That both electron and proton
are tunneling in one quantum event is conceptually clear in this
approach. The condition that tunneling can take place is the
equality of initial and final energies of interaction of the electron
and proton with the solvent. These energies are parametric on
the solvent nuclear configuration, as in conventional ET
theory.44,45 We are therefore making the same separation
between the fast electronic solvent polarization (to construct
the pels surfaces), the intermediate speed transferring charges
(electron and proton), and the slow orientational polarization
of the solvent that is made in the Marcus formulation of electron-
transfer theory.44,45

Due to the mass disparity between the proton and electron,
the 2D tunnel path may be approximated as a “zigzag” path
where the proton displaces adiabatically along its coordinate to
a certain configuration that permits the electron to tunnel (one-
dimensionally) along its coordinate.22 Then, the proton, with
the electron now in its final state, relaxes to its final state. This
restricted tunnel path leads to a rate constant expression
involving an electronic matrix element that connects the electron
in its initial and final states and a series of Franck-Condon
factors for the proton before and after transfer. The resulting
expression is the same as that obtained by using the DA
approach, but the method of derivation clarifies the nature of
ETPT.

The DA approach provides a convenient starting point for a
DETPT theory. The principle modification is the treatment of
the Franck-Condon (FC) factors for the overlap of the proton

initial and final eigenstates, when the final proton state is
characterized by a repulsive pes. Then the sum over final proton
states becomes an integration over a continuum of states, and
bound-unbound FC factors need to be evaluated. The issues
are similar to those that arise in electron-transfer reactions that
involve bond-breaking.46-48 Recent work by German and
Kuznetsov48 suggest several approaches to the evaluation of the
bound-unbound FC factors in the context of bond-breaking
electron-transfer reactions. If the motion along the repulsive
surface for the dissociation can be treated classically, then
simplified expressions can be generated for the rate constant.
We will follow a similar strategy here.

The plan of the remainder of this paper follows. In section II
the rate constant for DETPT is formulated and manipulated into
an expression suitable for numerical evaluation. Section III
constructs the electronically solvated potential energy surface
that can account for proton dissociation. The rate constant is
numerically evaluated, and its dependence on the relevant
parameters is explored, in section IV. Our conclusions are
summarized in section V.

II. Rate Constant Formulation

To evaluate the rate constant describing the concerted charge
transfer, it is convenient to work in a basis of localized initial
and final electron/proton states that we denote respectively as
1 and 2. All the terms in the Hamiltonian describing the solute
and solvent are diagonal in the localized basis except for the
term proportional to the electronic couplingVel that is respon-
sible for the transfer. IfVel is sufficiently small, then the
transition rate between states 1 and 2 is given by the Golden
rule expression22,49

The energiesEij(εin), vibronic wave functionsΠij (øin) (i ) 1,
2), and Boltzmann factorsP1j ) e-E1j/kBT/Qs(F1n′ ) e-ε1n′/kBT/Q)
are those of the solvent polarization (proton mode), and the
squares of the terms in| | are the corresponding Franck-Condon
factors. As we shall treat the solvent polarization classically
and the proton initial state mode quantum mechanically, it is
convenient to write the energy conservationδ function in the
form50

The use of eq 2.2 in eq 2.1 permits separation of the sums over
the two modes as

The solvent orientational polarization mode has been reexpressed
by writing its energyδ function as a Fourier time integral and
introducing the HamiltoniansH1 (H2) corresponding to the
polarization for the initial (final) electron/proton states.51 The
reaction free energy difference is denoted as∆G°. In the
classical limit, the polarization contribution is49

k )
Vel

2

p2
∑

j′
∑
n′

P1j′F1n′∑
j
∑

n

|〈Π2j|Π1j′〉|2|〈ø2n|ø1n′〉|2 ×

δ(E1j′ - E2j + ε1n′ - ε2n) (2.1)

δ(E1j′ - E2j + ε1n′ - ε2n) )

∫dε δ(E1j′ - E2j - ε) δ(ε + ε1n′ - ε2n) (2.2)

k )
Vel

2

p2
∫dε ∑

n′
F1n′ ∑

n

|〈ø2n|ø1n′〉|2 δ(ε1n′ - ε2n + ε)

∫-∞

+∞
dt ei(ε+∆G°)t/p〈eitH2/p e-itH1/p〉 (2.3)
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where the solvent reorganization energy is denoted asλs.
Introducing a time Fourier representation of theδ(ε1n′ - ε2n +
ε) function lets us express eq 2.3 in the form

where the coordinate (q) space density matrices for the proton,
of the indicated complex temperatures (â ) 1/kBT), are defined
as

The Gaussian integration over the energy variableε is readily
carried out to yield

This expression is convenient for introducing the classical
approximation to the final state surface as

The use of this classical approximation in eq 2.7, with
reexpression of theF2 density matrix in terms of the wave
functions of eq 2.6, and another Gaussian integration, produces
our working result:

If only the ground vibrational state in the initial proton pes were
to contribute to the rate, eq 2.9 would reduce to

This rate constant may be viewed as an effective activation
energy that isq-dependent (the exponential term), averaged over
the probability density of the proton. For realistic parameters,
typically more than one initial proton state will contribute to
the rate constant, so eq 2.9 will have to be evaluated.

The above derivation uses the Golden Rule, nonadiabatic
version of charge-transfer theory.19 If the couplingVel becomes
sufficiently large, on the order of the temperature, then the
adiabatic limit of charge-transfer theory is obtained. In that case,
the coefficientcNA ) Vel

2/p[λskBT]1/2 in eq 2.9 is replaced by

the coefficientcA ) ωs/2π.49,52The frequencyωs characterizes
the rate of the solvent polarization fluctuations and is typically
around 10 ps.43 The activation energy is also somewhat
decreased.49

III. Construction of the Repulsive Surface

The rate constant formalism presented above assumes a bound
initial and a repulsive final proton potential energy surface. The
appropriate surfaces are a sum of the gas-phase and electroni-
cally solvated surfaces. We refer to a proton potential surface
solvated by the electronic polarization of the solvent as a pels
(proton electronically solvated) surface. The origin of this
electronic solvation is the time scale separation between the
(slow) proton and the (fast) electronic degrees of freedom of
the solvent (its electronic polarization). The solvent’s electronic
degrees of freedom instantaneously adjust to the solute config-
uration. In essence, the pels surface can be viewed as a potential
of mean force for the solute’s hydrogen-bonded-proton position,
in a zero temperature (ground-state) electronic degree of freedom
solvent.43 Of course, the rate constant also depends on the slow
(with respect to all the other degrees of freedom) orientational
polarization of the solvent, as embodied in the reorganization
and free energy terms that contribute to eq 2.9.

For the proton surface when the electron is in its initial state,
the effect of electronic solvation can be important numerically.
However, it is not critical in the sense that the surface will still
be of a double well form and, for the proton initial state, give
bound state energy levels. For the electron final state, and when
the proton has transferred, the relevant coordinate is the [R1O‚‚‚
HNR2]•+ hydrogen bond stretch. For cation radicals of this type,
the dissociation energy for the hydrogen bond stretch is around
4 kcal/mol.39 Such energies are typical of hydrogen bond
dissociation energies.37 The binding energy is sufficiently weak
that the increasing electronic solvation of the solute as the
hydrogen bond stretches is capable of converting the bound
surface to a repulsive surface. The enhanced solvation with the
bond stretch arises from the increasing charge separation as the
hydrogen-bonded cation radical is dissociated. To motivate this
point, consider the usual treatment of solvation for obtaining
reorganization energies in electron-transfer theory.45,53 The
dependence of the reorganization energy on the separationRAD

of two ions of radiiaA andaD is

where∆e is the charge transferred in the reaction. There is an
increase in solvation energy of magnitude (∆e)2(1/dAD) as the
solute is separated from the contact distancedAD to infinity
(dissociation for the reaction considered here)

The pels surface can be thought of as arising from the
following effective Hamiltonian

where Hs is the gas-phase Hamiltonian of the solute.54 The
solvent properties enter throughD, the instantaneous electric
displacement when the solute is in a given configurationshere
characterized by the proton coordinateqsandε∞ is the solvent’s
high-frequency dielectric constant. In accord with the solvation
being purely electronic, the high-frequency dielectric constant
of the solvent appears, as opposed to the static dielectric constant
that would be appropriate to equilibrium (Born) solvation. The

λs ∼ (∆e)2[ 1
2aD

+ 1
2aA

- 1
RAD] (3.1)

Hs
eff ) Hs - 1

8π(1 - 1
ε∞)∫dr D2 (3.2)

∫-∞

+∞
dt ei(ε+∆G°)t/p〈eitH2/p e-itH1/p〉 )

[p2/λskBT]1/2 exp[-(ε + λs + ∆G°)2/4λskBT] (2.4)

k ) 1
2πp

Vel
2

[λskBT]
1
Q∫dε ∫-∞

+∞ dt
p
∫dq∫dq′ F1(q,q′|â - it)

F2(q,q′|it) exp[-(λs + ∆G° + ε)2/4λskBT] (2.5)

F1(q,q′|â - it) ) ∑
n′

ø1n′(q) ø1n′(q) e-(â-it/p)ε1n′

F2(q,q′|it) ) ∑
n

ø2n(q) ø2n(q′) e-(it/p)ε1n (2.6)

k )
Vel

2

π1/2p

1
Q∫-∞

+∞ dt
p
∫dq∫dq′ F1(q,q′|â - it)

F2(q,q′|it) e-it(λs+∆G°)/pe-(t2/p2)λskBT (2.7)

F2(q,q′|it) ) e-(it/p)V2(q) δ(q - q′) (2.8)

k )
Vel

2

p[λskBT]1/2
∑
n′)0

F1n′ ∫dq |ø1n′(q)|2

exp[-(λs + ∆G° + V2(q) - ε1n′)
2/4λskBT] (2.9)

k )
Vel

2

p[λskBT]1/2∫dq
F1(q,q)

Q

exp[-(λs + ∆G° + V2(q) - ε10)
2/4λskBT] (2.10)
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D field depends parametrically on the solute configuration. The
second term of eq 3.2 provides a general expression, within
the context of a dielectric formalism, for obtaining the depen-
dence of the electronic solvation on the proton coordinate. The
pels surface is obtained by adding this factor to the gas-phase
pes inHs. As a simple model for this solvation, we may treat
R1O‚‚‚H+NR2 as a dipole, from the R1O moiety, and a charge,
from the H+NR2 moiety. The solvation contribution to eq 3.2
can then be worked out as a function of the O‚‚‚H distanceq.
The result for the interaction energy between the dipole of
magnitudeµ and the chargee (the analog of the 1/RAD term in
eq 3.1) that gives the excess over the individual solvation parts
(the analog of the 1/aA and 1/aD terms in eq 3.1) can be worked
out by methods similar to those used for two ions52 or obtained
on the basis of more general methodologies.55 The result is

Usinge ) 1 andµ ) 5 D as representative values, the scale of
excess solvation is around 28(7) kcal/mol for a contact distance
of 2.5(5) Å.

The gas-phase surface will be based on a Lippincott-
Schroeder form (LS):56

as it is a reasonable description of, e.g., an OHN hydrogen-
bonded system, at least if some if its parameters are adjusted to
fit ab initio data.57 RON denotes the heavy atom framework
separation. The parameters we use are as follows:b ) 2.4 ×
1013 kcal/mol;a ) 9.8 Å-1; De ) 110 kcal/mol;dO ) 0.95 Å;
dN ) 0.97 Å; C ) 0.85;nO ) 9.18 Å-1; nN ) 13.3 Å-1. With
these choices of parameters, the LS surface can be used to
represent the stretching and breaking of the hydrogen bond for
the final state where the electron and proton have transferred.
The surface is plotted in Figure 1. The addition of the electronic
solvation component from eq 3.3 (with a cutoff at contact) to
the LS surface provides the pels surface,Vf

pels(q) ) Vg(q) +
Vf

els(q), shown in Figure 1. The distance 2.5 Å that we use for
the contact distance essentially corresponds to the ON distance
in the hydrogen-bonded cation radical. The resulting pels surface

is repulsive in character. We fit it to an exponential form for
convenience in the evaluation of the rate constant values:

The valuesDr ) 1.8 eV andκ ) 10 Å-1 fit the pels surface in
Figure 1 quite well.

Clearly, the particulars of the surface in Figure 1 can only
be viewed as illustrative. In this regard, studies of pure proton-
transfer reactions also rely on the construction of proton surfaces,
and such studies could provide alternatives to the methods used
here.58-69 For example, in a previous calculation, we used
molecular dynamics to obtain a pels surface43 for studying a
proton-transfer rate constant. This scheme proceeds by using
inducible dipoles on each solvent molecule. For each position
of the hydrogen-bonded proton, the electronic solvation energy
is obtained by solving for the induced dipoles, parametric on
the solvent’s and solute’s nuclear configuration. An average over
a representative equilibrium sample of nuclear solvent configu-
rations is taken, for a fixed proton position. This procedure is
repeated for a succession of proton positions to map out an
averaged (over the solvent nuclear configurations) pels surface.
The result is quite similar to the dielectric evaluation carried
out above.

IV. Evaluation of the DETPT Rate Constant

The expression for the rate constant given in eq 2.9 is readily
evaluated. While the bound state eigenfunctions and eigenvalues
should be those of the left localized states in the double well
initial proton pes, for simplicity we have used an oscillator
approximation for these quantities. Only for states close to the
double well barrier could this cause a significant error. The
Boltzmann factors for these states renders their contribution to
the sum in eq 2.9 sufficiently small that the changes to the rate
constant from a more careful treatment are quite small. The rates
will be slightly underestimated by our procedure, as the softer
surface would produce somewhat more barrier penetration of
the proton initial state probability than is obtained for a harmonic
approximation, and the energy levels would be somewhat lower.

“Marcus” plotssthe rate constant as a function of∆G°sare
presented in Figures 2 and 3 for several values ofλs, the
reorganization energy, and for two values ofκ, the decay
constant of the repulsive proton surface. We have usedVel ) 1
cm-1 throughout as an electronic coupling matrix element value.
The striking feature of these results is that the magnitude of
the maximum rates are all quite close to each other, though,
naturally, the maxima occur at differing values of∆G°. The
similar rate maxima come about because the continuum of final

Figure 1. Lippincott-Schroeder gas-phase surfaceVg(q) (solid line)
and electronically solvated pels surfaceVf

pels(q) ) Vg(q) + Vf
els(q)

(bold line) as a function of the oxygen-hydrogen distance,q. The
electron has transferred, and the coordinate describes the breaking of
the O‚‚‚H hydrogen bond. The pels surface is repulsive. The parameters
of the gas-phase surface are given following eq 3.4, those for the
electronic solvation following eq 3.3, and those for the fit to the pels
surface following eq 3.5.

Vf
els(q) ≈ (1 - 1

ε∞)µe

q2
(3.3)

Vg(q,RON) ) be-aRON + De[1 - e-nO(q-dO)2/2q] +

CDe[1 - e-nN(RON-q-dN)2/2(RON-q)] (3.4)

Figure 2. DETPT rate constantk as a function of∆G° for λs ) 0.125,
0.25, 0.5, and 1.0 eV. Asλs increases, the curves shift their respective
maxima to more negative∆G° values. The decay parameter of the
repulsive surface isκ ) 10 Å-1.

Vf
pels(q) ) Dre

-κq (3.5)
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proton states provides many opportunities for the quantum
transition. This is in marked contrast to ETPT where both initial
and final electron/proton states are bound, and the rate constant
values depend quite sensitively on the number and energies of
the final bound states.23 Another view of the rate can be obtained
by plotting it as a function ofκ for fixed values ofλs and∆G°.
In Figure 4 we do so forκ values spanning 5-10 Å-1, where
it is seen that the dependence is dramatic.

The qualitative dependence ofk on the free energy of the
reaction is easy to understand. As∆G° decreases and, in terms
of this criterion, becomes exothermic,∆G° < 0, the (positive)
reorganization energy is increasingly canceled. This tends to
increase the rate constant. Further increase in exothermicity will
then decrease the rate constant. As evident in Figures 2 and 3,
increasingλs will shift the maximum in the corresponding
Marcus plot to greater exothermicity. The complicating factors
are the presence of the energy levelsε1n and the final state
surfaceV2(q) in the activation energy, and the equilibrium-
weighted proton probabilities. The rate maximum, and the
slower decrease in rate with more negative∆G° values past
the rate maximum, is similar to what is found for ET rates based
on coupling the electron to two nuclear modes, one treated
classically (the solvent) and the other quantum mechanically
(a bond displaced in the ET reaction).4

With regard to the effect of the final state surface, the greatest
sensitivity is toκ, the decay parameter of the repulsive potential.
Figures 2 and 3 show that decreasingκ to 5 Å-1 leads to rate
maxima for the Marcus plots at perhaps unrealistically large
(negative)∆G° values. This important dependence ofk on κ

can be analyzed by reformulating the expression for the rate
constant in eq 2.1. Expressing the energy conservationδ function
as a Fourier time integral, noting the independence of the solvent
and proton modes, and representing the solvent part in terms

of a trace over the solvent degrees of freedom lets us write eq
2.1 as

Taking the classical limit of the solvent contribution, with
coordinates that we shall denote collectively asx,

and expressing the proton Franck-Condon factor in terms of
the density matrices as defined in eq 2.6, provides the expression

Now using the classical approximation toF2 given in eq 2.8
and reexpressingF1 in terms of Franck-Condon factors then
yield

The final step is to carry out the time integral to obtain

where in the factorP1n′(q), q is the set of values that satisfy the
δ function energy conservation condition in eq 4.5 for a
particular proton initial energyε1n′ and J(q) is the Jacobian
transforming the energyδ function to the coordinate one to carry
out thex integration. The formulation in eq 4.5 shows that the
rate constant can be viewed as arising in part from a set of
activation energy factors,P1n′(q), evaluated at a set ofq values
that is determined by the line of intersection of the initial and
final state energies in aq-x two-dimensional space. If the
transition were completely classical, that is, if we also treated
the proton initial state as a classical degree of freedom, then
the activation energy contribution to the rate constant would
be determined by the minimum energy point along the line of
intersection in the two-dimensionalq-x space.70 In the present
case, there is a range ofq values that will contribute to the
effective activation energy. The range of contributingq values
is determined by the overlaps of the equilibrium-weighted proton
probability factors for each level and theP1n′(q) activation
energy factors. This viewpoint shows that increasing theκ value
to give a more repulsive surface serves to increaseP1n′(q) for a
given value ofq. In effect, the activation energy is reduced and
this corresponds to an increase of the exothermicity toward the
activationless point. Thus, as in more conventional charge-
transfer reactions, the rate constant is again most sensitive to
changes in the reaction exothermicity.

Figure 3. DETPT rate constantk as a function of∆G° for λs ) 0.125,
0.25, 0.5, and 1.0 eV. Asλs increases, the curves shift their respective
maxima to more negative∆G° values. The decay parameter of the
repulsive surface isκ ) 5 Å-1.

Figure 4. DEPT rate constantk as a function ofκ: (bold line) λs )
0.125 eV and∆G° ) -0.125 eV; (solid line)λs ) 0.5 eV and∆G° )
-0.5 eV.

k )
Vel

2

p
∑
n′

∑
n
∫dt

p

F1n′|〈ø2n|ø1n′〉|2 e-i(ε1n′-ε2n)t/pTrP1e
iH2

st/pe-iH1
st/p (4.1)

TrP1e
iH2

st/pe-iH1
st/p98

classical ∫dx P1(x) ei(V2(x)-V1(x))t/p (4.2)

k )
Vel

2

p
∫-∞

+∞dt
p
∫dq∫dq′ F1(q,q′|â - it) F2(q,q′|it) ∫dx

P1(x) ei(V2(x)-V1(x))t/p (4.3)

k )
Vel

2

p
∑
n′)0

F1n′ ∫dq |ø1n′(q)|2 ∫-∞

+∞dt

p
∫dx P1(x)

exp[i(V2(x) - V1(x) - (ε1n′ - V2(q))t/p] (4.4)

k )
2πVel

2

p
∑
n′)0

F1n′ ∫dq |ø1n′(q)|2 ∫dx P1(x)

δ(V2(x) - V1(x) - (ε1n′ - V2(q))

)
2πVel

2

p
∑
n′)0

F1n′ ∫dq |ø1n′(q)|2 P1n′(q) J(q) (4.5)
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It is of interest to replace the proton with a deuteron. That
will mainly influence the states in the initial proton surface,
because this motion corresponds to the proton/deuteron stretch.
For the final state surface, it is the heavy atom framework that
is moving and there is only a negligible reduced mass effect. A
Marcus plot comparing proton and deuteron rate constants is
given in Figure 5. The proton/deuteron rate ratio is no more
than a factor of 2. The deuteron rate constant should decrease
relative to the proton rate constant, because the deuteron
probability densities are considerably narrower than those for
the proton. However, the lower energies that the deuteron states
occupy in the initial proton well with their associated larger
thermal probabilities serve to partly compensate for their
narrower wave functions. Thus, the predicted isotope effect is
relatively modest.

V. Concluding Remarks

In this article we extended the theory of concerted ETPT to
DETPT, dissociative ETPT, where the final proton surface is a
repulsive surface. The main ingredients that lead to the rate
expression given in eq 2.9 are the repulsive nature of the final
state proton surface and a classical treatment of the density
matrix that describes this surface. The repulsive surface was
constructed by electronically solvating the surface for breaking
the hydrogen bond as the cation radical dissociates. Use was
made of the separation between the fast electronic solvent
polarization and the slow, relative to this polarization, proton
motion to define the pels surface as a potential of mean force.
In contrast, the energetic interaction between the solvent and
the transferring charges is evaluated parametrically on the
solvent configurations, because the solvent’s orientational
polarization is slow compared with the proton and electron time
scales, as in electron-transfer theory. Thus, both the fast
electronic polarization and the slow orientational polarization
effects enter the ETPT rate expression. These features lead to
an activation energy expression that is specific to each initial
proton state, because the proton is treated quantum mechanically.
For the proton final state, its continuum of energies on the
repulsive surface leads to an integration over the final state
coordinate or, equivalently, final state energies. This “averaging”
over final state energies leads to rate constant values that can
be large for suitable values of the solvent reorganization energy
and the reaction exothermicity.

The use of a classical approximation to the final proton state
density matrix (eq 2.8) will break down for sufficiently steep
repulsive surfaces. An estimate of the validity of the classical
approximation is the condition thatΛκ < 1, whereΛ is the
thermal deBroglie wavelength andκ is the repulsive surface

decay constant. For a reduced mass of 100 amu, as an estimate
of the final proton state fragment mass,Λκ ∼ 1 whenκ ) 10
Å-1. Thus, for such a steeply repulsive pes the classical
approximation becomes questionable. However, the alternative
of using semiclassical approximations to the Franck-Condon
factors between the bound initial and unbound final proton
surfaces that enter eq 2.3 would introduce uncertainties that are
difficult to quantitate. It is also the case that the validity of the
classical approximation depends on the characteristics of the
bound state proton surface. To this end, we are examining
semiclassical approximations to the Franck-Condon factors in
eq 2.3 that can be compared with exact quantum mechanical
results to assess their validity.71

We explored the dependence of the rate on the parameters
and found that the shape of the plots ofk versus∆G° are
reminiscent of those found for a Marcus one classical (solvent)
and one quantum (bond) mode ET theory. The rate values
depend sensitively on the decay parameter of the repulsive
proton surface because, as shown in eq 4.5, the repulsive surface
may be viewed as providing a (q-dependent) contribution to
the reaction exothermicity. With regard to the magnitude of the
rate constant, the choice ofVel ) 1 cm-1 produces maximum
rates in the 106-107 ps-1 range. In the adiabatic limit, where
the rate prefactor is given bycA ) ωs/2π, the rate increases by
about 3 orders of magnitude over the nonadiabatic value to
around 1010 ps-1. Therefore, DETPT can lead to rate constants
that are quite large. However, DETPT, at least by the mechanism
presented above, will not produce rates in the 1012 ps-1 range,
as has been found for some ET and PT reactions. As we have
discussed previously,22 in contrasting the consecutive reaction
pathway, ET/PT, with the concerted pathway, ETPT, the
limitation on overall conversion for ET/PT is that of a rate
limiting step, while, for ETPT, the longer tunneling path required
to quantum mechanically transfer the electron and proton limits
the rate constant’s magnitude. For DETPT there is the same
limitation as for ETPT; nevertheless, the rate constants can be
quite large. Thus, DETPT may be a dominant channel for
coupled electron and proton transfer.

In the coupled proton electron transfer for the photosystem
II oxygen evolving complex (PSII/OEC) that we discussed in
the Introduction, rates on the order of 106-107 s-1 are
observed.72 Furthermore, recent experiments have examined the
isotope effect on the rate and found a roughly 2-fold rate
decrease upon deuteration.33 Both these observations are
consistent with the DETPT rate mechanism proposed here.
Unfortunately, in the work of Linschitz and co-workers,35 the
quenching of the proton-transfer complex by C60 is a bimolecular
process, so we cannot compare our (unimolecular) rate constants
with their rate constants. However, they also investigated the
isotope effect and found a roughly 2-fold decrease of the
quenching rate upon deuteration.
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