ADDITIONS AND CORRECTIONS

1998, Volume 102A

L. Chaix, H. van den Bergh, and M. J. Rossi*: Real-Time Kinetic Measurements of the Condensation and Evaporation of D_2O Molecules on Ice at 140K < T < 220 K

Page 10308. The following is a corrected version of Table

TABLE 7: Temperature Dependence of the Model Rate Constants (see Scheme 2) in the System $D_2^{18}O$ vapor/ $D_2^{16}O$ Ice for Three Temperatures

T(K)	single crystal ice				condensed ice				bulk ice (B)			
	$\overline{k_1}^b$	k_2^c	k_3^c	$k_4{}^b$	$\overline{k_1}^b$	k_2^c	k_3^c	$k_4{}^b$	$\overline{k_1}^b$	k_2^c	k_3^c	k_4^b
140	19	0.5	153	0.005	26	0.6	120	0.005	38	0.3	80	0.02
170	19	5	230	5	26	6.0	180	0.700	38	2.5	130	2.5
200	19	29	310	29.0	26	35.0	243	27	38	25	160	54
$E_{\rm i}$ (kcal/mol)	0	4.0	0.6	7.4	0	3.8	0.67	8	0	3.9	0.64	8.2
ΔH_{sub}^a (kcal/mol)		10.8				11.1				11.5		

 $[^]a\Delta H_{\text{sub}} = E_1 - E_2 + E_3 - E_4$. The rate constants take into account the surface-to-volume ratio of the flow reactor used in the present work. bk is expressed in units of 10^{16} molecule⁻¹ s⁻¹. ck is expressed in units of s⁻¹.

10.1021/jp990433s Published on Web 03/19/99