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In this paper we use the energy, the electronic chemical potential, and the molecular hardness together with
a similarity index and a thermodynamic index to rationalize the behavior of various intramolecular
rearrangement reactions in terms of the Hammond postulate (HP) and the principle of maximum hardness
(PMH). The following results have been obtained: (a) in general, Hammond and anti-Hammond reactions
satisfy the PMH in the sense that they present an opposite behavior for the energy and hardness profile along
the reaction coordinate; (b) in Hammond reactions the hardest species among reactants and products corresponds
to the most stable one; and finally, (¢) in anti-Hammond reactions the less stable species among reactants and
products is the hardest one.

1. Introduction where Zpg is the quantum molecular similarity measure

) i (QMSM) between molecules A and B as defined by Cagbo
The Hammond postulatéHP) is a useful tool that interrelates al. 1213

the position of the energy barrier on the potential energy surface
(PES) with the exo- and endothermicity of a given reaction. It _
basically states that if the transition state (TS) is near in energy Z,p(©) = f f PA(r)O(r 1 )pg(rp)dr,dr, 3)

to a certain adjacent stable complex, then it is also similar if‘ O(ry,r,) being a positive definite operator depending on two-
structure to the same complex. In other words, an exothermic gjactron coordinates. Overlap-like QMSM are obtained when
reaction _has a reactan_t-hke TS, whereas prpduct-llke TSs the ©(ry,r) operator is chosen as the Dirac delta function
characterize e_n_dothermlc processes. The HP is supported byé(rl—rg). Use of the operator fij, or 1f%, gives fise to
ab“r!da”t empirical evidence In organic and .ph.ysmal chenfistry, Coulomb-like QMSM and gravitational-like QMSM, respec-
and |t.has been useful for qualitatively pred|ctlng the effects of tively.13 Since the value of the distance given by eq 2 depends
substltugné crr:anges arll(d er:(ternzlal perturé)atlon_s on ft?e TSon the relative spatial orientation of molecules A and B, their
geometries. The HP works when slopes and matrixes of force ;5| orientation must be optimized in order to maximize their

constants associated with reactants and products in an eIemenQMS,vI which is equivalent to minimize tri  value used in
tary process are not very differehitlt applies to most chemical the eva{Iuation of thes parameter '
reactions, although some failures of this postulate have been  A,qiher index thatshas been uéed to quantify the Hammond

-8
also reported. _ _ ~ postulate is the so-called Bsted coefficients, that was
In the quest to quantify the HP character of a given reaction griginally defined by Leffler a&

different methodologies have been develop&d! Among

them, the most employed have been those based on the use of IAE"
guantum molecular similarities. In this case, for a reaction A By = IAE° (4)
— B, the so-called structural proximity parametgg)(defined
by Cioslowski a8 To obtaingy, we use the following equation accounting for the
energy barrier 4E¥):11
Bs= (da1s — dg79)/dag (1) AEY?
_ AE = 5+ 2age 1 BE) (5)
is used s can take any values from1 to 1. If the reactants A 4 2 4K

are closer to the TS than the products B, the valugofs

negative and positive otherwise. Therefore, if one considers anith K > 0 being an intrinsic structural property of the reaction
exothermic A~ B process, a negativé value means that for corresponding to the sum of the curvatures of the potential wells
this reaction the HP holdé. associated to reactants and products,aBei= [E(P) — E(R)]

being the overall reaction energy. To add more precision about

the definition of the parameté, it should be mentioned that

it has been shown that it is proportional to the average of the

1 force constants associated to the potential wells of reactants and
Oag = [Zan T Zgg — 2246l (2) products' It is important to note that eq 5 is structurally
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A possible definition of the distance in eq 1 between the
molecular electronic distributions of A and B is given by
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homogeneous to the Marcus equation originally proposed to HONS— HSNO (R3), HSO— HSOH (R4), HSeO— HSeOH
characterize electron-transfer proces$emd later on used for  (R5), RS, — FSSF (R6), HPO — H,POH (R7), HAsO —
interpretation of different kinds of chemical reactidfs’ The H,AsOH (R8), and ChHSH, — CH3SH (R9). These reactions
interest of using eq 5 for rationalizing our results is that it leads have been chosen because some of them follow the HP, whereas
to a definition of B, that is physically consistent with the others exhibit anti-Hammond behavior. Our main goal is to
Hammond postulate. On the other hand, it is worth mentioning discuss the validity of the HP and the PMH in this series of
that eq 5 can also be used to determine the structural parameteintramolecular rearrangement reactions and to investigate
K if only energetic parameters are available. Moreokeis whether one can safely assume that a reaction that follows the
associated with the Marcus intrinsic activation energy, an HP will also hold the PMH.

electronic term that contains structural information of reactants

and products. 2. Computational Details

From egs 4 and 5 we determifig: The geometries of all molecular systems studied in this work

1 AE° have been fully optimized without symmetry constraints at the
Bp= > + K (6) Hartree-Fock (HF) level with the 6-31G* basis $éthrough
use of the Gaussian 94 pack&j&.he algorithm of Gonzalez
and Schlegéf was used for the computation of the intrinsic

The Brinsted coefficient can be interpreted as a measure of the : P . i
degree of resemblance of the TS to the product(s) and takesreactlon path (IRP) at the HF/6-31G* level of theory, with mass

values typically aroung, ~ 1/2. For endothermic reactions weighted coordinates in order to get a physically meaningful
o ypically aroung, ~ y path. Further, the energies of reactants, TSs, and products of
(AE° > 0) the TS will be located closer to the produgfs ¢ : .
) . . . . each rearrangement reaction, and their HOMO and LUMO
1/2); for exothermic reaction\g° < 0) the TS will be closer bital . hemical ial d hard h b
0 the reactants, < 1/2), thus guantifying the HP orbital energies, chemical potential, and hardness, have been
Note that fp, a therm,od namic coefficient tha{t depends recalculated at the B3LYP/6-31G* level?® using the HF/6-
: b ) y . PENAS 31 Gx optimized geometries (B3LYP/6-31G*//HF/6-31G*).
basically on the reaction energy, is useful to locate the TS with

. . . The definition ofu andy were given by Parr and Pearsd#®

respect to reactants and products in reactions where the HP is . o L

L . . L and a three-points finite difference approximation leads to the
satisfied, but it cannot be used to characterize deviations fromfollowing working definitions of these quantities:
the Hammond behavior. On the other hand, the similarity index '
Ps is basically a structural parameter in the sense that it can 1 1
help to characterize the reactant-like or product-like character u=—5(P+EA; n=5(P—EA) (7)
of the TS from a structural point of view. Therefore, these two
indexes are different in nature but they can be complementary P and EA are the first vertical ionization potential and electron
to each other. affinity of the neutral molecule, respectively. The Koopmans’

On the other hand, Density Functional Theory (D¥THas theorem (IP~ —ey and EA~ —¢) allows one to writex and
provided the theoretical basis for concepts that are implicated 5 in terms of the energy of frontier HOMQe{) and LUMO
in the reactivity of chemical species. The electronic chemical () molecular orbitals:
potentialu characterizes the escaping tendency of electrons from
the equilibrium system and the molecular hardngssan be
seen as a resistance to charge transfer. Both are global properties

of the system and the characterization of their profiles along a
y P g Chemical potential and hardness are very well-established

reaction coordinate has been shown to be useful to study new " A A
aspects of the progress of chemical reactins. quantities that have evoked considerable research activity in the

One major focus of attention in DFT is the principle of Past few yeard®2! It is worth mentioning that although the

maximum hardness (PMM)that asserts that molecular systems numerical values may differ, the overall trends remain unaltered
at equilibrium tend to the state of highest hardness: TSs are'When« ands are calculated using eqs 7 of8in this work, u
expected to present a minimum valuerpfit has been shown ~ and 7 have been calculated using both egs 7 and*8. For the
that consistency between the PMH and the HP may lead to acalculation of IP and EA values at t_he .B3LYP/6-’.8G.//HF/
better characterization of T$520A formal proof of the PMH ~ ©-31G* level, the energy of the cationic and anionic doublet

was given by Parr and Chattaajinder the constraints that species has been computed within the unrestricted methodology,
and the external potential(r) must remain constant upon while the neutral singlet molecules have been calculated within

distortion of the molecular structure. However, relaxation of the restricted formalism. In all cases, the HF/6-31G* optimized

these constraints seems to be permissible, and in particular, it9€ometries of the neutral molecules have been used.

has been found that the PMH still holds even though the The meth‘?d(_"ogy employed for the calculation of the quantum
electronic chemical potential strongly varies along the reaction Melecular similarity measures has been the same as in our
coordinaté'L1° It is important to mention that for a given Previous worlé In particular, Coulomb-like QMSM have been

chemical reaction connecting the change of energy with the COMmputed from fitted densitiéSusing the Messem prograff.

change in chemical potential and hardness allows one to discuss '€ Bransted coefficient has been determined using eq 6

thermodynamic and kinetic aspects involved in the process. Pr€VI0us _calculatlon of the pa_ramt_etélfrom the knowledge of
However, a proper thermodynamic discussion should be ad- the reaction and energy barriers in eq 5.

dressed in terms of free energies at finite temperature. Since
for macroscopic systems at temperattliy¢he equilibrium state

is analogous to the ground state at 0 K, finite temperature Figure 1 depicts the geometries of reactants, TSs, and products
definitions ofu andy are implicit in the following discussiot?. of the nine rearrangement reactions analyzed. Table 1 lists the

In what follows we shall analyze the validity of the HP and reaction parameters in which we are interested in this work. As

the PMH in the following series of simple chemical rearrange- one can see in this table, the energy barriers of all reactions
ment reactiong2 HNC — HCN (R1), HCIO— HOCI (R2), computed at the B3LYP/6-31G*//HF/6-31G* are positive,

u= %(EL tey); n= %(GL — &) 8)

3. Results and Discussion
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Figure 2. The IRP in mass-weighted coordinates of the rearrangement
reaction HNC— HCN reaction computed at the HF/6-31G* level.

In contrast tqsy, different results are obtained when analyzing
the f3s values. We find this to be true in five casfs < O,
indicating that these reactions are of Hammond type. However,
reactions R4, R5, R7, and R8 present positive valugs ahd
therefore, following thess criterium, these reactions are of anti-
Hammond type. Note thgls has been defined in terms of the
measures of electron-density similarities and therefore one
should expect this index to be adequate to characterize the early
or late character of TSs structures.

In principle, one could argue that the length of the IRP should
be a useful parameter to distinguish the Hammond or anti-
Hammond character of a reaction. Larger lengths of the mass-
weighted IRP in the way from TS to products than from TS to
reactants should be indicative of Hammond behavior in exo-
thermic reactions. As one can see in Table 1 this is true for
most reactions. The Hammond type reactions have laRger
distances from the TS to products, while the anti-Hammond
type reactions present larg@ distances from the TS to
reactants, with the exception of R1, R2, and R8. We have
analyzed the particular case of the HNEHCN reaction (R1).

Itis clearly seen in the picture of the IRP for R1 (Figure 2) that
despite the larger path from TS to reactant than to product, the
TS is structurally closer to reactants than to products. Figure 1
for R1 shows that despite the fact that the H transfer is quite
advanced in the TSI(N—H) = 1.454 A andd(C—H) = 1.155

A), the C—N bond length is closer to the reactant than to the

Figure 1. HF/6-31G* optimized geometries for the reactants, transition product. This indicates that the length of the IRP is not a suitable
states, and products of the nine rearrangement reactions analyzed. Bongarameter to characterize the Hammond character of a reaction.

lengths are given in angstroms and angles in degrees.

Let us start the discussion on the electronic chemical potential
and molecular hardness behavior for the reactions studied by

except that of reaction R2. At the HF level the energy barrier analyzing the: andy values obtained from eq 8. It is interesting

for the R2 reaction is 14.2 kcal mdl Given that the HF barriers

to note that the anti-Hammond reactions following the

are usually too high and the B3LYP ones are somewhat criterium preseny (TS) values that are closer toin products,

underestimated it is not completely unexpected that the
B3LYP/6-31+G*//HF/6-31G* energy barrier for reaction R2

turns out to be negative.

in contrast to the Hammond type reactions whereth@S)
are closer to the values gffor the reactant, with the exception
of R3 where the TS is the hardest species. Further, in all

In all reactions studied, reactants and products are definedHammond reactions analyzed the products are harder than
in such a way that the reaction results to be exothermic. This is reactants, whereas the reverse is true for anti-Hammond

the reason in all cases the Bigied coefficient is lower than

reactions. In all cases, except R2 and R3, the TSs are softer

0.5 (see eq 6), indicating that under this criterium the TSs are than either the reactants or products, in agreement with the PMH.

reactant-like, as expected from the HP.

Although the PMH do not require the most stable species among
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TABLE 1: B3LYP/6-31+G*//HF/6-31G* Total Energies (in hartrees), Relative Energies Referred to the Less Stable Isomer for
Each Rearrangement Reaction (in kcal mot?), Orbital Energies (in hartrees), Chemical Potential (in hartrees), Hardness (in
hartrees), Length of the IRP from the TS Ry, in umal2 bohr), the Structural Proximity Parameter (fs), and the Bronsted
Parameter (By)

R1 HNC TS HCN R1 HNC TS HCN
E —93.403603 —93.351094 —93.426979 »*  0.1640 (0.2476)  0.1344(0.2443) 0.1878 (0.2857)
AE 0.0 32.9 ~14.7 R« —4.35 0.00 3.27
vomo  —0.3258 -0.3523 —0.3762 Bs —0.1447
€Lumo 0.0023 —0.0835 —0.0006 b 0.4540
e —0.1618 (-0.2000) —0.2179 (-0.2297) —0.1884 (-0.2313)
R2 HCIO TS HOCI R2 HCIO TS HOCI
E —535.824123 —535.829309 —535.935721 »*  0.0598 (0.1576)  0.0616 (0.1617) 0.0783 (0.1887)
AE 0.0 3.3 —70.0 Rx —4.31 0.00 3.72
évovo  —0.2957 —0.3124 ~0.3190 Bs ~0.1956
aumo  —0.1761 —0.1891 —0.1625 Bo 0.2932
e —0.2359 (-0.2396)  —0.2508 (-0.2537)  —0.2408 (-0.2482)
R3 HONS TS HSNO R3 HONS TS HSNO
E —528.669819 —528.626530 —528.679810 »*  0.0665(0.1628)  0.0827 (0.1805) 0.0774 (0.1741)
AE 0.0 27.2 -6.3 Rq —2.42 0.00 3.32
eovo  —0.2604 ~0.2929 —0.2619 Bs ~0.080
aumo  —0.1275 -0.1275 -0.1072 ) 0.4740
e —0.1939 (-0.2008)  —0.2102 (-0.2173)  —0.1846 (-0.1899)
R4 H,SO TS HSOH R4 HSO TS HSOH
E —474.537267 —474.474832 —474.576606 »*  0.1170(0.1988) 0.0858 (0.1796) 0.1050 (0.1961)
AE 0.0 39.2 —24.7 R« —2.69 0.00 2.19
eomo  —0.2606 —0.2492 —0.2552 Bs 0.7840
aumo  —0.0266 ~0.0776 ~0.0452 X 0.4392
e —0.1436 (-0.1692)  —0.1634 (-0.1739)  —0.1502 (-0.1708)
R5 HSeO TS HSeOH R5 HSeO TS HSeOH
E —2475.744805 —2475.684827 —2475.788618 »*  0.1119 (0.1883) 0.0780 (0.1665) 0.0924 (0.1805)
AE 0.0 37.6 275 R« —3.03 0.00 2.39
eomo  —0.2501 —0.2443 —0.2437 Bs 0.7091
€Lumo —0.0352 —0.0883 —0.0588 Bo 0.4318
e —0.1471¢0.1712)  —0.1663 (-0.1748)  —0.1512 (-0.1708)
R6 RS, TS FSSF R6 BS> TS FSSF
E —996.020360 —995.954279 —996.028429 »*  0.0991(0.1903)  0.0524 (0.1441) 0.1155 (0.2048)
AE 0.0 415 5.1 R« —7.38 0.00 9.68
eomo  —0.2901 -0.2828 -0.3023 Bs —0.1476
aumo  —0.0918 -0.1781 -0.0712 Bo 0.4855
2 —0.1910 (0.1962)  —0.2304 (-0.2309)  —0.1868 (-0.1934)
R7 HPO TS H,POH R7 HPO TS H,POH
E —418.364892 —418.265188 —418.370949 »*  0.1381(0.2175) 0.0853(0.1727) 0.1139 (0.1959)
AE 0.0 62.6 -3.8 R« —4.58 0.00 2.56
evomo  —0.2986 —0.2389 —0.2588 Bs 0.0025
auo  —0.0224 —0.0682 —0.0311 Bo 0.4926
e —0.1605 (-0.1881)  —0.1536 (-0.1653)  —0.1450 (-0.1679)
R8 HASO TS H,ASOH R8 HASO TS H,ASOH
E —2310.741481 —2310.659745 —2310.788363 »*  0.1192(0.1892) 0.0802 (0.1637) 0.1141 (0.1928)
AE 0.0 51.3 —29.4 R« —3.11 0.00 3.14
como  —0.2776 —0.2376 —0.2669 Bs 0.0400
€Lumo —0.0391 -0.0772 —0.0387 Bo 0.4436
e —0.1584 (-0.1826)  —0.1574(-0.1662)  —0.1528 (-0.1758)
R9 CH:SH, TSt CHsSH R9 CHSH, TS CHsSH
E —438.585667 —438.544995 —438.700460 »*  0.0841(0.1583)  0.0717 (0.1496) 0.1171 (0.1955)
AE 0.0 255 —-72.0 R« —5.68 0.00 5.98
eomo  —0.1907 —0.2364 -0.2411 Bs —0.2367
auvo  —0.0225 ~0.0930 —0.0070 0.3285
e —0.1066 (-0.1241)  —0.1647 (-0.1830)  —0.1241 (-0.1509)

a|n parentheses values calculated using e®The HF/6-31G* value for this energy barrier is 14.2 kcal mof Value computed at the HF/
6-31G* level (the B3LYP/6-33+G*//HF/6-31G* result is not available because of the negative valugEfobtained at this level of theory).

reactant and product be the hardest, it is interesting to comparehardest species is the most stable one, whereas the anti-
their values ofy. We note that in the Hammond reactions the Hammond reactions seem to be characterized by a larger
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