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A theoretical analysis is given of the dynamic consequences of reactor inhomogeneity arising from the
incomplete mixing of a single premixed feedstream into a CSTR, in nonlinear reactive systems with a single
dynamical variable. The coalescergedispersion (CR) model is used to describe the interaction of feeding,
mixing, and chemical reaction, and the corresponding Langevin equation is derived in which the fluctuating
term due to feeding and mixing is a multiplicative colored noise process. From the stationary solution of the
corresponding FokkerPlanck equation, we obtain an analytical expression for the stochastic steady states,
using the white-noise approximation. This leads to an expression for the degree of reactor inhomogeneity
(defined as the variance of concentration in a single representative volume element) as a function of flow
rate, stirring rate, and the difference between the inflow and bulk concentrations. Finally, we derive a linear

scaling law that relates the shift of the stochastic steady state from its deterministic limit to the reactor
inhomogeneity. Analysis of the numerical and experimental results for the arsenousodaeite reaction

obtained in part 1 of this series [preceding paper] confirms the appropriateness of this approach and validates
the CR model for describing the stirring effects in one-variable nonlinear reactions.

1. Introduction While the various mixing models described in the literature
allow one to simulate stirring and mixing effects with varying

1% of the kineti dd © off ; ih PP degrees of success, not much is known about the causal links
ofthe kinetic and dynamic efiects of reactor Inhomogeneities .y yeen the mechanism of a reaction and the stirring and mixing

that arise from the incomplete mixing of reactant feedstreams effects it exhibits. For instance, we do not generally know

in flow reactors (e.g., CSTR) W't.h npnllnear reactions. Th? Io_ng- whether a given reaction responds to decreased stirring with
term goal of these ongoing studies is to understand quantitatively 4o .reased or increased rate or conversion, as the surprisingly
and qualitatively the roles of different types of inhomogeneities opposite stirring responses of the bistability hystereses in the

on the dynamic responses of different classes of nonlinearminima| bromate systeht and in the BelousovZhabotinsky
reactions. The dependence of reaction rates and hence of steady (08 show

state concentrations, bifurcation points, and oscillation attributes
on stirring rate is usually calledstirring effect. Their
dependence on the mixing mode, i.e., the way in which the
reactant streams are injected into the reactor (as a single,
premllz(edtfeedsnt]r_eam o;fa:(sjtseveral, non-premixed feedstreams variable, which requires a single, premixed reactant feedstream.
) . ) e showed that in this class of system decreased stirring always

we refer to as thixing effe We showed that in this cl f system d d stirring alway:

The type of inhomogeneity may be manipulated through the .5 ses the hysteresis loop to contract inside the high-stirring
mixing mode. When reactants enter as separais;premixed |65 To distinguish it from other possible and obseA/&
feedstream¢NPM), they cannot react until they have mixed  regponses, we called this the “stirring effect of the first kind”.
with each other. Th!s process, calleﬁgam m|X|ng'|n|t|a'1IIy In the preceding paper (part)1we studied the stirring effect
enhances the reaction rate as the stirring rate is raised. All ot the pistable arseniteodate system, which shows a stirring
subvolumes have different elementary compositimact thal  effect of the first kind when the reactant streams are premixed,
complicates the modeling of the reactor with NPM feeds. When by experiment and by numerical simulation. We used the
the reactants enter in a singferemixed feedstrearPM), the  q51escenceredispersion (CR) modeland chose reaction
entering parcels all have the same composition and are at their.qnqitions where the system can be described by a single
highest concentration. Hence, the reaction rate is maximal in \ariaple. The CR mixing model was chosen because it describes
the unstirred reactor if the rate law is a simple power law in i, 5 simple but physically realistic manner the interaction of
reactant concentrations, and the rate decreases as the St'”'”ﬁéeding mixing, and chemical reaction and because it provides
rate is raised and as the feedstream is mixed into the alreadygjirectly the probability distribution functidif that characterizes
aged and partly reacted reactor bulk. the reactor inhomogeneity on a more fundamental level than
- - macroscopic averages do.
h* To \t/vhon; correspondence should be addressed. E-mail: menzinger@ The objectives of the present paper are to describe theoreti-
¢ ?B#v‘;r,‘;?ty" 'gfa Toronto. cally the stirring effect of the first kind _and to use the_ resu_lts to

* National Ukrainian Academy of Sciences. analyze the experimental and numerical data obtained in part

This paper continues the investigations in the preceding part

A key issue in studying stirring and mixing effects is to
guantify the reactor inhomogeneity and to relate it to chemical
conversion. As a first step in this direction, we analyzed recently
the generic case of bistable systems with a single dynamical
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1. In section 2, the one-dimensional Langevin equation that
corresponds to the CR model is derived. Its corresponding
Fokker-Planck equation is then solved in section 3, and an
analytical expression for the stochastic steady states is obtained.
The main results of the analysis are an expression (eq 31) that
relates the fluctuation amplitude (reactor inhomogeneity)

the forcing of the reactor by the rates of inflow and stirring and
a scaling relation (eq 33) between the stirring effeitie shift

A of the stochastic steady state from its deterministic fimit
and the amplitude of fluctuations. Finally, the analysis of the
numerical and experimental results of pattcdonfirms the
validity of the assumptions of the CR model and of the analytical
reduction of the model.

2. The Langevin Equation for the CR Model

The CR model regards the CSTR as a collectioMNdfuid
elements or cells that are randomly replaced by fresh reactant

and which collide randomly with each other at the respective Figyre 1. Schematic representation of the deterministic and stochastic
replacement and mixing rates. The numerical algorithm is rate functiongy(X) andgs(x) defined by egs 2 and 28, respectively, to

described in part 1.At any timet the reactor is characterized
by the concentration vecti(t), ..., x(t), ..., xn(t)}, wherex;-
(t) is the concentration in thih cell. Our goal is to obtain

closed-form expressions for the average stationary concentration

in a CSTR and for the intensity of the reactor inhomogeneity,

i.e., for the first and second moments of the stochastic variable

X, the concentration in thigh cell. In the limit of sufficiently

high stirring, one obtains a stochastic representation of the CR

mode? in terms of a one-variable Langevin equation forTo
further analyze this Langevin equation, we follow standard
procedures described elsewh&té! The CR model has previ-
ously been formulated in terms of integrodifferential equations
for the stationary probability distribution of concentratidns.

These equations, however, have no known analytical solutions;where 0x;

hence, Evangelist&t all® and Horsthemke and Hanrdn
performed perturbation expansions of the probability distribution
with respect to the small parametegi/trow t0 Obtain ap-
proximate solutions. To avoid complications related to the

analysis of the integrodifferential equation, we present here an ¢,(t) =

alternative, heuristic analysis of the CR model. It leads to a

closed-form solution for the stochastic steady states that agree

with the results of Hannon and HorstheniRe.
Between feeding and mixing events, each cell evolves
according to its batch kinetics
cbx/dlt = f(x) (1)
In the well-stirred, deterministic limit, the CSTR is governed
by
dx/dlt = g(x) = F(X) + Ko (% — ¥) @)
whereg(x) is given explicitly by eq 6 of part 1 for the arsenite

iodate reaction. Schematically this function is shown in Figure
1 by the solid line.

The stochasticity arises from the random, independent choice

of cells because of mixing and feeding. Mixing is described by
the stochastic process

1 if theith andjth cells are mixed at time
0 otherwise

m®={ ©)

The probability per unit time thag;(t) = 1 iS kmix = L/tmix,

illustrate the bistability of the steady-state solutiongypf) = 0 and
gs(X) = 0 and the origins of the shiftA = x; — X4 of the stochastic
steady statess (open circles) from their deterministic limitg (closed
circles).

and the cumulative probability for the intervat is Atkmix. The
mixing process is characterized by

1ij0%; = —;iOX; (4)

1 N
Oy U= Eszij = Atk
]

(5)

1/2(4(t) — x(t)) is the half the concentration
difference prior to mixing the cells.
Feeding is described by the stochastic process

1 if theith cell is replaced by a new cell
with concentratiorx, at timet

0 otherwise

(6)

SI'he probability per unit time thag = 1 is kiow = 1/Tsiow, and

the cumulative probability for the intervalt is Atkqow.

We derive now an equation for the concentration chakge
= Xi(t+At) — x(t) in theith cell due to feeding, mixing, and
chemical reaction during the intervAt. In this representation,
mixing and feeding events take place only at discrete times
+ At, t + 2At, ..., while during the intervalAt, x; evolves
according to the batch kinetics equation (1). Because ai cell
cannot undergo feeding and mixing events at the same time,
we allow for mixing only at the beginning and for feeding at
the end of the interval, but the opposite choice is equally valid
and leads to the same result. If tile cell is mixed with cell
at timet (i.e., x;(t) = 1), then the concentration in thth cell
at timet + At is given by

(1) + x(t) Mo+mﬂ
> +

0

X(t+ At) =

= X() + 0%, + Atf(x+0%)) (7)
If no mixing event takes place &fi.e., if y;(t) = 0),
X(t+AD) = X(1) + AL(x(D)) (8)
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Hence, when mixing takes place with probabili(t)
X(tHAD) = [1 — 2O (1) + Atf(x(D)] +
1 ODX(R) + 0%; + Atfoq®)+0%)] (9)

If the ith cell is replaced by a new cell at+ At (i.e., ¢i(t+At)

X(t+ A =X, (10)

When both random processes occur concurrently, the con-

centration in thdth cell is given by
X(t + At) = ¢i(t+A)Xy + [1 — S(tHAYK[L — x;(B)] x
[Xi(t) + AOGEO)] + x (D) + 0% + At () +0%;)1}
(11)
and its change in the interval by

AX, = X(t+AD — X ()

= Atf(x(1)) + Aty (DFq(0)+0x; — AtF(x(8))x; (1) +
Hi(tHAD{ X — X(t) + Aty (OF((L)) — x;(DOX; +
X OFO() + 0%;) — A1)} + x;(D0x; (12)
In the limit of high stirringdx;i(t) < x(t), the last term may

be neglected. Performing a Taylor expansior méarx;(t) and
keeping only terms that are linear éx;, one obtains

Ax = Atf(x(t)) + Aty (00x;f " (x(1) +
Hi(tHAY{ Xy — X(t) — x;(D)Ox; — Aty (1)0x;f (% (1)) —
Atf(x(1)} (13)

The stochastic feeding process is now replaced by a constant

proces¥ whose value is equal to its time averagg(t+At)
— kuowAt. Thus,

Ax; = A T(1)) + Kiow(Xo — X(1)) +
(F' () — ko) OIOX]} + O?

= A{g((1) + g () (OL0x]} + O (14)

where px;] is the average value afx; when the flow occurs
as just described, ar@d(2) denotes terms containing)?.

In the limit At — 0, eq 14 reduces to the Langevin equation
for the evolution of the concentration in a representativeicell
(i.e., a “local” variable)

dx/dt = g(x) + g'(x)&(1) (15)

where the index has been dropped agf) is a random process
defined by

&(t) = x;[0%]

To analyze the Langevin equation (15), we first characterize
the properties of procesit). When this is done, it is sufficient

(16)
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analyzing eq 16. For this purpose one should rewrite it at times
t andt + At, multiply the results, and perform the averaging.
This is done explicitly in Appendix 1. Finally, we obtain
diE(B)E(t) Ut = —ky [E(BE()D (18)
which implies that the proces&(t) is characterized by an
exponentially decaying correlation function:
EOS()C= Ae (19)
The value of the initial amplitud@\ is given by the initial
condition of eq 18. It may be estimated as follows. The main
source of fluctuations in the CSTR is its forcing by the feeding
process. This is characterized by the frequéggy of replacing
a cell by a new one with concentratigg Therefore, the change
of concentration due to this perturbation is approximaxehy
Xo, Wherexs is the steady-state concentration. The fraction of
these cells is proportional tkyiow. Using the assumption that
the concentration of all other cells lies near the steady state
(i.e.,0xj < Xs), the fraction of the rest of the cells is proportional

to the chemical relaxation time, given byg'(xs). In Appendix
2 we show that the initial perturbation may be estimated as

— _ krow
g'(x)

The simplest way of analyzing eq 15 is to go to the limit of
white noise-a good approximation for weakly colored noide.
This is achieved by formally substituting exg{mixt) — L/Kmixo-

(t), giving the correlation function

(X — %)’ (20)

EME)= Dot — t) (21)
where
B Tix (%~ %)
b= Tmix B Tﬂow g' (Xs) (22)

In the well-stirred limit tmix, D — 0, one recovers the
deterministic rate law (eq 2). As expected, fluctuations diverge
as the bifurcatiomy'(xs) — 0 is approached. Our analysis treats
only steady states sufficiently far from the bifurcation points.
However, this restriction is of little practical importance because
noise-induced transition®ccur long before the bifurcation
points are reached.

2.1. Analysis of the Langevin EquationWe further analyze
eq 15 by introducing the density distributi®(x,t|xo,to) = P(x,t)
for the conditional probability of finding the system at a point
X at timet, provided that it was atp at timeto. The evolution
of this probability density is governed by a Fokkdtlanck
equation that can be obtained from eq 15 by the standard
technique¥1!

aP(H) = —3,g()P(x)) + D(Id{g () P(x1)) (23)

to obtain the expression for the mean value of the process and

its correlation functiori&(t)&(t")CJwherelIsymbolizes averaging

over an ensemble of systems. It follows from the antisymmetry

of yii(t), given by eq 4, that
EM=0 17)

An estimate of the autocorrelation function follows from

where the Stratonovich interpretati8nof the white-noise
approximation of eq 15 is used. The stationary solution of eq
23 isl?

N
QU

T

(24)
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whereN is a normalizing factor ant(x) is given by

g(x) dx

V09 = /0090 #)

For a bistable system, the probability distribution has two

J. Phys. Chem. A, Vol. 103, No. 50, 19980869

26, as illustrated by Figure 1. Substituting and performing a
Taylor expansion to first order i\ leads to

Aol 9" (xg) o2

4 1
g(%) — 309" ()

(32

maxima which correspond to the stochastic steady states. They

are obtained from the stationary conditioR(g)/dx = O:

g(x) — D(xJg'(x)g"(x) =0 (26)
or, using eq 22
m@+$W&ﬂW¢w=o (27)

The roots of eq 27 give the position of the stochastic steady
statess. By analogy with the definition of deterministic steady
statesg(x) = 0, we introduce thetochastic rate function

93 = 9(x) — DX¥)g'(¥)g"(¥) (28)
which is schematically drawn in Figure 1 together witx).
Both functions intercept the abscissa at different points, reflect-

ing the effect of stirring on the steady states.
The variance ok is given by°

—-2D
DX = — e
U (x9)
= LDQZ using egs 20 and 26
1—-2D(g"/d")
‘L' .
= 2™, — )’ L (29)
flow mix 20 11 [\ 2
1+ (%~ %) (@"/g)
flow

At sufficiently high stirring, €mix/Tiow)(Xs — X0)A(g"'/g')? < 1
and eq 29 reduces to

Trmix 2
(0~ %) (30)
flow

DX [= 2

Because this is the variance of the concentration in a single

representative cell, we refer to it also as theal variance g;?
to distinguish it from theglobal variancegy? of the concentra-

tion, averaged over the whole reactor. The relation of these two

quantities and their measurement is discussed elseWere.
The degree of spatial inhomogeneity the reactor

2

Tix 2
(X~ %o) (31)

Ol ==
Ttiow

is a consequence of the stochastic proéégsspecified by eqs
19 and 20; i.e., it results from the forcing of the reactor by the
inflow. We will show that this equation correctly reproduces
both the CR model and the experiments.

Finally, the stirring effect on the steady states is defined as
the shiftA = xs — Xq Of the stochastic steady statefrom its
deterministic, high stirring limitg. The latter are the roots of
g(xg) = 0, and the stochastic steady statgare the roots of eq

Sufficiently far from the transition points, this expression for
the shift of the steady stateeduces to

19"'(%) ,
A _—=_
4G

In the range of validity of this key result (i.e., at sufficiently
high stirring and far from the transition), the observed shift
of the stochastic steady state is proportional to the reactor
inhomogeneitys2. For fixed control parameters (varying only
the stirring rate), the relationship is linear and the direction of
the shift is determined by the sign gf(xq), becausey (xq) is
always negative ag is a stable state. We show below that eq
33 allows one to make general conclusions regarding the stirring
effect on bistability hystereses in one-variable systems.

(33)

3. Data Analysis

The purpose of partllwas to test the agreement between
the experimentally measured stirring effect in the bistable
arsenous acidiodate reaction and the numerical simulations
based on the coalescence redispersion model. That comparison
involved the average signalg(S) (stochastic steady states or
first moment of the fluctuating signal), as well as the noise
intensity (or second moment of the fluctuating signal) and the
probability distribution functions (pdf's), all as functions of
stirring or mixing rate. In the present section the analytical
results of the previous section are compared with experimental
and numerical results, obtained in part 1.

To verify eq 31, the dependences of the experimental and
calculated noise intensitieg® were tested for both steady states
as functions of all arguments in the equation. Figures 2 and 3
show g2 as functions of the inverse stirring rateSifor the
experiments and of the mixing time,x for the simulated data,
respectively. Best straight lines through the origin connect the
data points. Unconstrained least-squares fits miss the origin by
amounts that are insignificant, given the scatter of data points.
There appears to be a slight deviation from linearity near the
origin, i.e., in the limit of high stirring. Its origin is unclear
because there are no limitations on the theory in this limit.

The dependence @f? on the feed concentration was also
studied at constant mixing and feeding rates. Only the simulation
data are given in Figure 4, because the experimental data are
very similar. The straight line fits the data points extremely well
over the full range. The slopes of the fitted lines are sufficiently
close to the theoretical value to confirm the validity of eq 31.
The linear dependence of the stirring efféd?) (eq 32) was
tested, and the results are summarized in Figures 5 and 6 by
plotting the measured (Figure 5) and calculated shifts (in Figure
6) as functions of the fluctuation intensity, where stirring rate
S and tmix, respectively, were the independent variables. The
straight lines through the data points and the origin agree well
with the predictions of eqs 31 and 32 over the full range of
stability of the competing steady states.

The response diagram (Figure 7) illustrates abaime
pronounced stirring effect on SS1 and the relative insensitivity
of SS2. Its purpose is to compare the stochastic steady states
calculated from eq 26, given here by the dashed curves, with
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26 for the stochastic steady state. The inflow is taken to represent
¢ a constant perturbation, leading to the colored noise with
20 SS1 correlation function equation 19. This perturbation is small
enough that only a small fraction of cellsyfx/tron << 1) is
replaced by reagents. Both conditions are well met in typical
CSTR experiments. The forcing of the reactor is balanced by
chemical reaction which tends to increase the concentration in
. . each cell. As a result, the system finds itself in a stochastic
steady state at any finite value of the mixing rate. Near the
critical points, the transitions are in reality noise-induced
4 p transitions between stochastic steady states.

S (107 rpm ™) The noise intensity (eq 20) is determined by forcing through
the inflow and by imperfect mixing. The perturbation caused
47 by the inflow decays with a finite relaxation time. According
S82 to eq 32, the reactor inhomogeneity is thus the “cause” of
1 . the stirring effectA(kmix), and both are linearly related.

In summary, the conditions of validity of the present
2 considerations are (1) the system behaves effectively as one-
dimensional, (2) experiments involve a single, premixed reactant
* flow, and (3) the stirring rate is sufficiently high. In the reactor
. described in ref 1, deviations from the linear predictions become
0 i : . : . appreciable belov® < 30—50 rpm.

] 2 4 6 When these conditions are fulfilled, the system can exhibit
s (103 rpm 1) only a stirring effect of the first kind. It arises as the system
responds chemically to the perturbations due to feeding and

Figure 2. Dependence of the experimentally measured noise intensity ; i ; ; ;
(second moment of the fluctuating electrode potentiat)n the inverse incomplete mlflng' T.hls response is governed by the sign of
stirring rate. [ 7Jo= 1 x 107> M for SS1. | 7Jo = 1.5 x 107> M for the curvaturey”(x). Figure 1 illustrates that the curvature of
SS2. The remaining experimental parameters are the same as those if€ rate function is always negative at SS1 and positive at SS2.
part 1. Consequently, the upper branch shifts down and the lower

y branch shifts up as the noise intensity increases (Figures 6 and
6.0x10 5 7).

ss1
Analysis of Figure 1 and of eq 32 also gives the correct
4.0x10711 1 direction of shift of the critical points. The stochastic steady
g states correspond to the intersections of the stochastic rate
ST function g(xs), defined by eq 26 with the axis. Assume that
o decreasing the control parameter shifts the funagioih down.
This is equivalent to moving the axis up and keeping(x)
005 o1 o2 03 fixed. Below a critical valueC; of the control parameter, SS1
T (s) disappears and the axis intersectsg(x) only once. The
- corresponding stochastic critical val@ where thex axis is
tangent to the stochastic rate functipx) lies at a higher value
of the control parameter. Hence, in the presence of noise, the
left critical point shifts to the right, and by the same argument
~ the right critical point moves to the left. This agrees with Figure

o~

0 ; , . . .
0 2 4 6

3.0x10734 ss2

= " 7, even if the magnitude of the shift of the right critical value

= 1.5x1034 is too small to be resolved by our experiment. So, eq 32 gives

% qualitatively correctly the direction of the shifts of the steady
ool states and of the critical points: as the reactor inhomogeneity
0.0 0.1 02 03 is made to grow, the hysteresis shrinks along both coordinates

of the response diagram.

Figure 3. Dependence of the noise intensifyon mixing time. Data The quantitative expression for this geperic behavior is givgn
points were simulated by the CR model. The line was constrained to bY €d 26, the expression for the stochastic steady states. It gives
go through the origin to demonstrate the validity of eq 83w = 1.6 the stochastic steady states as the roots of a polynomial in the
s; [I “Jo =4 x 10°° M for both steady states. same way as the solutionsg() = O represent the deterministic
. ) . . steady states. In the limit of ideal mixing.{x — 0), the second

the numerical results obtained from simulations of the CR tarm 'in eq 26 vanishes and the equation reduces to the
quel, as described in ref 1. The latter are given by the data geterministic limit. Therefore, the second term in eq 26
points. represents the stochastic effects. From the expression for this
stochastic term, it follows that the stirring effect increases as
the stirring rate decreases, the flow rate increases, and the

The reduction of the CR model to the Langevin equation (15) difference between the inflow and bulk concentration grows.
is based on the assumption that the intensity of noise is The stirring effect is most pronounced whgt{x)/g'(x) is large.
sufficiently small. Further assumptions were made to obtain eq This rate reflects the influence of chemical relaxation.

T mix (s)

4. Discussion
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6.0x107*
4.0x10% -
—
A —
C1
be
2.0x104 |
CZ
SS2
0.0 ) I 1 ] ) !
0.0 3.0x10% 6.0x1075 9.0x10°8
X, (M)

Figure 4. Linear relation between? and @mix/Tiow)(Xs — Xo)? calculated for both steady states, whryvas the independent variable, at fixagk

= 0.0533 s andjow = 1.6 s.

SS1
1.5x10°%
slope = 1.85
1.2x10°%4
o~
b
9.0x10"°
6.0x10° T . )
4.0x107 6.0x10” 8.0x10°
(Tm.ix /Tﬂow)(x'xo)2
1.00x10704
7.50x107114 §52
slope = 2.03
« 5.00x1074
[«
2.50x107 14
0.00 . . . .
0 1ot 2o 3x10M axioM

(% mix T ) (X-%)°

Figure 5. Experimental relation between the shifigS) = xS —
X{(Snax) Of the steady states at stirring ra@drom the “high stirring
limit” at Spax= 2000 rpm andX — xo). For SS1,[ Jo=1 x 10° M,
and for SS2,[["]o = 1.5 x 1075 M. All other parameters are the same
as those in part 1.

Equation 32, the linear approximation of eq 26, is useful for
analyzing experimental data, specifically the proportionality
between the observed shift or the first moment of the signal,
and the fluctuation intensity, or second momefit For both
branches independently, the coefficient of proportionaiity

SS1
S -1x107
=
<
221074
0.0 2.0x10 4.0x10™!! 6.0x107!
o’ (M?)
210+
$s2
E 1x10°%- .
<
0 . ,
0.0 20x1078 4.0x107°
0‘2 ( M 2)

Figure 6. Linear relationship betweer\ and o? obtained from
simulations, whereni is the independent variable. Parametersragge
=16sand[Jo=4 x 10°M.

g'(x) estimated at the deterministic steady state is affected only
by the control parametes, whereas the intensity of fluctuations

is affected only by the stirring rate. Therefore, the flow rate is

not an appropriate bifurcation parameter for studying stirring

effects. Indeed, the mixing time in eq 26 appears only as a ratio
Tmix/Tiow- Under certain conditions, the effect of a decreasing

flow rate is the same as that of an increasing mixing rate.

(¥)/g'(x) increases slightly as the critical points are approached Moreover, varying the flow rate changes the entire hydrody-

on either branch. Hence, the shifof the steady states increase

namic picture of inflow and mixing in a CSTR. This may lead

as the critical points are approached. Figures 5 and 6 illustrateto complications in applying the results of our theoretical
this kind of behavior for experiment and simulations, respec- consideration. Hence, the inflow concentratianis the most

tively. It is important to note that this growth of the shift with
decreasing stirring rate follows from the condition tigd(x)/

suitable bifurcation parameter for studying stirring effects in
nonlinear chemical systems.
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04 .
. SS1 1.5
L ]
\ 104
& 3 z
S =
< < 0.5
-6
0.0
*
0 10 20 0 1 2 3
o (10°Vv?) o (10°V 2)

Figure 7. Response diagramy(Xo), calculated from the CR model. Dots represent the results of the simulationg, &t 0.0533 S;tiow = 1.6 S
and | “]Jo = 8 x 1075 M. Dashed lines represent the stochastic steady statadculated from eq 26. The solid line represents the deterministic
hysteresis.

The linear relation (32) illustrates the fluctuatiogissipation dimensional. Otherwise, the appropriate kinetic model must be
theorem according to which the linear system response is givenat least two-dimensional.
by the autocorrelation function of the fluctuatioiisn particular,
eq 32 is similar to an expression obtained by Hannon and Appendix 1
Horsthemké® for the model of the arsenatéodate reaction. Our aim is to derive the autocorrelation functi@ft,t’) =

Their analysis is based on the integrodifferential equation of EMEM)D) defined by eq 16 for the random procesf).
the Fokker-Planck type for the pdf from which one can deduce  congider first the change of the autocorrelation function in the
the expression for the shift of the deterministic steady state underijme interval At

incomplete mixing. Our analysis gives the explicit eq 26 for Ay , N ,
the stochastic steady states. It is based on the representationéc(t’t AL) = CLEFAL) = (L)

of the CR model by a Langevin equation at high stirring rate = BOE' +AL) — EW)EMHDO

and of incomplete mixing as a multiplicative colored noise — , , . N
process. The validity of this approach is confirmed by the good Dt (OL0%; (O (T +AT) [0, (¢ '+At ) ,
correspondence between experiments, simulations, and theoreti- i (D[0% ()] (1) [0%: (1)1 (34)
cal results. By introducing changes of(t’) andodx;(t') during the same time

The only known exceptions from the stirring effect of the interval
first type are the minimal bromate system oscill&fcand the . ey ,
Briggs—Rauscher reactiohpoth in a CSTR. In the minimal Ay (U, AT) = i (THAL) — 2;(F)
bromate system the fluctuations were controlled through the 'ATY = Sy (f "N Sy (f
stirring rate, as described above, while in the light-sensitive Aaxj‘(t AL) 6X1'a AT 6)("(”
Briggs—Rauscher reaction a fluctuating light source was used Equation 34 may be rewritten in the following form:
for that purpose. In both systems thesteresis loop was found LA A ,
to broaden and to shift outside the low-noise hysteresis, as theAC(t’t AL) = O (010%; (O] A (€. AT [0, (1)) L
external noise intensity (due to mixing or to light) growis Bl (O[0% (D1 Crii (1) + Agg (1, At))[A0X; (', At)] T (35)
type of “stirring effect of the second kind” might be explained
along the lines developed in this paper by taking into account
the essential multidimensionality of the reacting systems. Indeed
if a system is effectively one-dimensional, a stirring effect of
the first type is necessarily observed. Equation 32 indicates that AC(tELAY = Tr (O[0% (O] (D[0x; (D] Ay (LAY T (36)
in the one-dimensional case the direction of the shift is governed
by the curvature of the rate function. As a possible extension
of this result, we may assume that in the multidimensional case
the direction of the shift is also governed by the generalized
curvature of the rate function, which becomes a vector which - o o : .
may have positive and negative components. As a result, thethe c'o.ndltlonal proEablllty that it is not ZET0 1S deflnepl by the
hysteresis may shift in a complex manner and a priori in any condition thaty;(t) = 1, given bykmixAt. Finally we arrive at
direction, depending on the components of this vector, when AC(LELAL) = —Kyi At (D[0%; (D] (D[0x;(D]0 (37)
projected into the 1D response diagram. ) )

Finally, the analysis performed in this paper suggests a new Which gives eq 18.
way of utilizing the stirring effect on chemical bistability as a .
taxonomic tool. If the hysteresis shrinks in response to decreaseda‘ppend'x 2
stirring and both branches are stabilized (stirring effect of the  Here we derive eq 20 for the amplitudke of the inflow
first type), the system may be consideredeffectvely one- perturbation. Assuming that the initial concentration of ite

The second term in this expression may be omitted because on
average its leading term containg?. To simplify the analysis,
'we assume thdt= t'. This allows us to rewrite eq 35 as

The last term in this expressiop;(t,At) depends ony;(t).
Namely, if x;(t) = 1, theny;(t,At) = —1 with probability 1—
kmixAt. Otherwise, the product in brackets equals zero. Therefore,
the right side of this equation is always negative. Moreover,
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cell lies near its steady state, the corresponding concentrationprocess, we arrive at

change may be estimated as
Ax= Atf(x) + Ko (X — X(1)) + [ALF'(x)Ox(t) —

A% =Xg = X R X9 = X (38) &, (t+AD)Ox (1)1 (46)
Therefore, the initial condition for the autocorrelation function where the first two terms give explicitly the deterministic
is given by equation. Therefore, in the perfect mixing limit the last term
vanishes:
A=k 2 39
=N X (39) 0= [ALF ' (x)Ox(t) — ¢ (t+ADOX (1)
whereN; is the number of cells perturbed by the inflow aNd = At (x)0% — Kiou AtOX; (47)
is the total number of cells. The number of cells unperturbed
by the inflow isNs = N — Ny. Substitutingoxs from eq 42 gives
At every moment the following condition must hold: ,
0= AtoX(NSf (%) + NiKyoy) (48)
N
[Bx(t) = E Ox(t) =0 (40) The last expression holds for any valuedf if
=
& _ kflow 49
Denoting bydx; the average perturbation of a single cell by the N~ g(x) (49)

inflow and byodxs the average perturbation of a single cell among

the remaining cells, one may rewrite this condition as Substituting this into eq 39 gives the final result of eq 20.

NOXs + Nox = 0 (41) Acknowledgment. This work was supported by the Natural
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