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A theoretical analysis is given of the dynamic consequences of reactor inhomogeneity arising from the
incomplete mixing of a single premixed feedstream into a CSTR, in nonlinear reactive systems with a single
dynamical variable. The coalescence-redispersion (CR) model is used to describe the interaction of feeding,
mixing, and chemical reaction, and the corresponding Langevin equation is derived in which the fluctuating
term due to feeding and mixing is a multiplicative colored noise process. From the stationary solution of the
corresponding Fokker-Planck equation, we obtain an analytical expression for the stochastic steady states,
using the white-noise approximation. This leads to an expression for the degree of reactor inhomogeneity
(defined as the variance of concentration in a single representative volume element) as a function of flow
rate, stirring rate, and the difference between the inflow and bulk concentrations. Finally, we derive a linear
scaling law that relates the shift of the stochastic steady state from its deterministic limit to the reactor
inhomogeneity. Analysis of the numerical and experimental results for the arsenous acid-iodate reaction
obtained in part 1 of this series [preceding paper] confirms the appropriateness of this approach and validates
the CR model for describing the stirring effects in one-variable nonlinear reactions.

1. Introduction

This paper continues the investigations in the preceding part
11 of the kinetic and dynamic effects of reactor inhomogeneities
that arise from the incomplete mixing of reactant feedstreams
in flow reactors (e.g., CSTR) with nonlinear reactions. The long-
term goal of these ongoing studies is to understand quantitatively
and qualitatively the roles of different types of inhomogeneities
on the dynamic responses of different classes of nonlinear
reactions. The dependence of reaction rates and hence of steady-
state concentrations, bifurcation points, and oscillation attributes
on stirring rate is usually called “stirring effect”. Their
dependence on the mixing mode, i.e., the way in which the
reactant streams are injected into the reactor (as a single,
premixed feedstream or as several, non-premixed feedstreams),
we refer to as “mixing effect”.

The type of inhomogeneity may be manipulated through the
mixing mode. When reactants enter as separate,non-premixed
feedstreams(NPM), they cannot react until they have mixed
with each other. This process, calledstream mixing, initially
enhances the reaction rate as the stirring rate is raised. All
subvolumes have different elementary compositionssa fact that
complicates the modeling of the reactor with NPM feeds. When
the reactants enter in a single,premixed feedstream(PM), the
entering parcels all have the same composition and are at their
highest concentration. Hence, the reaction rate is maximal in
the unstirred reactor if the rate law is a simple power law in
reactant concentrations, and the rate decreases as the stirring
rate is raised and as the feedstream is mixed into the already
aged and partly reacted reactor bulk.

While the various mixing models described in the literature2

allow one to simulate stirring and mixing effects with varying
degrees of success, not much is known about the causal links
between the mechanism of a reaction and the stirring and mixing
effects it exhibits. For instance, we do not generally know
whether a given reaction responds to decreased stirring with
decreased or increased rate or conversion, as the surprisingly
opposite stirring responses of the bistability hystereses in the
minimal bromate system3,4 and in the Belousov-Zhabotinsky
reaction5 show.

A key issue in studying stirring and mixing effects is to
quantify the reactor inhomogeneity and to relate it to chemical
conversion. As a first step in this direction, we analyzed recently5

the generic case of bistable systems with a single dynamical
variable, which requires a single, premixed reactant feedstream.
We showed that in this class of system decreased stirring always
causes the hysteresis loop to contract inside the high-stirring
loop. To distinguish it from other possible and observed3,4,6

responses, we called this the “stirring effect of the first kind”.
In the preceding paper (part 11), we studied the stirring effect
of the bistable arsenite-iodate system, which shows a stirring
effect of the first kind when the reactant streams are premixed,
by experiment and by numerical simulation. We used the
coalescence-redispersion (CR) model7 and chose reaction
conditions where the system can be described by a single
variable. The CR mixing model was chosen because it describes
in a simple but physically realistic manner the interaction of
feeding, mixing, and chemical reaction and because it provides
directly the probability distribution function1,8 that characterizes
the reactor inhomogeneity on a more fundamental level than
macroscopic averages do.

The objectives of the present paper are to describe theoreti-
cally the stirring effect of the first kind and to use the results to
analyze the experimental and numerical data obtained in part
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1. In section 2, the one-dimensional Langevin equation that
corresponds to the CR model is derived. Its corresponding
Fokker-Planck equation is then solved in section 3, and an
analytical expression for the stochastic steady states is obtained.
The main results of the analysis are an expression (eq 31) that
relates the fluctuation amplitude (reactor inhomogeneity)σ to
the forcing of the reactor by the rates of inflow and stirring and
a scaling relation (eq 33) between the stirring effectsthe shift
∆ of the stochastic steady state from its deterministic limits
and the amplitudeσ of fluctuations. Finally, the analysis of the
numerical and experimental results of part I1 confirms the
validity of the assumptions of the CR model and of the analytical
reduction of the model.

2. The Langevin Equation for the CR Model

The CR model regards the CSTR as a collection ofN fluid
elements or cells that are randomly replaced by fresh reactant
and which collide randomly with each other at the respective
replacement and mixing rates. The numerical algorithm is
described in part 1.1 At any time t the reactor is characterized
by the concentration vector{x1(t), ..., xi(t), ..., xN(t)}, wherexi-
(t) is the concentration in theith cell. Our goal is to obtain
closed-form expressions for the average stationary concentration
in a CSTR and for the intensity of the reactor inhomogeneity,
i.e., for the first and second moments of the stochastic variable
xi, the concentration in theith cell. In the limit of sufficiently
high stirring, one obtains a stochastic representation of the CR
model9 in terms of a one-variable Langevin equation forxi. To
further analyze this Langevin equation, we follow standard
procedures described elsewhere.10,11 The CR model has previ-
ously been formulated in terms of integrodifferential equations
for the stationary probability distribution of concentrations.7

These equations, however, have no known analytical solutions;
hence, Evangelistaet al.13 and Horsthemke and Hannon14

performed perturbation expansions of the probability distribution
with respect to the small parameterτmix/τflow to obtain ap-
proximate solutions. To avoid complications related to the
analysis of the integrodifferential equation, we present here an
alternative, heuristic analysis of the CR model. It leads to a
closed-form solution for the stochastic steady states that agrees
with the results of Hannon and Horsthemke.15

Between feeding and mixing events, each cell evolves
according to its batch kinetics

In the well-stirred, deterministic limit, the CSTR is governed
by

whereg(x) is given explicitly by eq 6 of part 1 for the arsenite-
iodate reaction. Schematically this function is shown in Figure
1 by the solid line.

The stochasticity arises from the random, independent choice
of cells because of mixing and feeding. Mixing is described by
the stochastic process

The probability per unit time thatøij(t) ) 1 is kmix ) 1/τmix,

and the cumulative probability for the interval∆t is ∆tkmix. The
mixing process is characterized by

where δxji ) 1/2(xj(t) - xi(t)) is the half the concentration
difference prior to mixing the cells.

Feeding is described by the stochastic process

The probability per unit time thatφi ) 1 is kflow ) 1/τflow, and
the cumulative probability for the interval∆t is ∆tkflow.

We derive now an equation for the concentration change∆xi

) xi(t+∆t) - xi(t) in the ith cell due to feeding, mixing, and
chemical reaction during the interval∆t. In this representation,
mixing and feeding events take place only at discrete timest, t
+ ∆t, t + 2∆t, ..., while during the interval∆t, xi evolves
according to the batch kinetics equation (1). Because a celli
cannot undergo feeding and mixing events at the same time,
we allow for mixing only at the beginning and for feeding at
the end of the interval, but the opposite choice is equally valid
and leads to the same result. If theith cell is mixed with cellj
at time t (i.e., øij(t) ) 1), then the concentration in theith cell
at time t + ∆t is given by

If no mixing event takes place att (i.e., if øij(t) ) 0),

dxi/dt ) f(xi) (1)

dxi/dt ) g(x) ) f(x) + kflow(x0 - x) (2)

øij(t) ) {1 if the ith andjth cells are mixed at timet
0 otherwise

(3)

Figure 1. Schematic representation of the deterministic and stochastic
rate functionsg(x) andgs(x) defined by eqs 2 and 28, respectively, to
illustrate the bistability of the steady-state solutions ofg(xd) ) 0 and
gs(xs) ) 0 and the origins of the shifts∆ ) xs - xd of the stochastic
steady statesxs (open circles) from their deterministic limitsxd (closed
circles).

øijδxij ) -øjiδxji (4)

〈øij〉 )
1

N2
∑
i,j

N

øij ) ∆tkmix (5)

φi(t) ) {1 if the ith cell is replaced by a new cell
with concentrationx0 at timet

0 otherwise
(6)

xi(t + ∆t) )
xi(t) + xj(t)

2
+ ∆tf(xi(t) + xj(t)

2 )
) xi(t) + δxji + ∆tf(xi+δxji) (7)

xi(t+∆t) ) xi(t) + ∆tf(xi(t)) (8)
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Hence, when mixing takes place with probabilityøij(t)

If the ith cell is replaced by a new cell att + ∆t (i.e.,φi(t+∆t)
) 1)

When both random processes occur concurrently, the con-
centration in theith cell is given by

and its change in the interval by

In the limit of high stirringδxji(t) , xi(t), the last term may
be neglected. Performing a Taylor expansion off nearxi(t) and
keeping only terms that are linear inδxji, one obtains

The stochastic feeding process is now replaced by a constant
process16 whose value is equal to its time average:φi(t+∆t)
f kflow∆t. Thus,

where [δxij] is the average value ofδxij when the flow occurs
as just described, andO(2) denotes terms containing (∆t)2.

In the limit ∆t f 0, eq 14 reduces to the Langevin equation
for the evolution of the concentration in a representative celli
(i.e., a “local” variable)

where the indexi has been dropped andê(t) is a random process
defined by

To analyze the Langevin equation (15), we first characterize
the properties of processê(t). When this is done, it is sufficient
to obtain the expression for the mean value of the process and
its correlation function〈ê(t)ê(t′)〉, where〈 〉 symbolizes averaging
over an ensemble of systems. It follows from the antisymmetry
of øij(t), given by eq 4, that

An estimate of the autocorrelation function follows from

analyzing eq 16. For this purpose one should rewrite it at times
t and t + ∆t, multiply the results, and perform the averaging.
This is done explicitly in Appendix 1. Finally, we obtain

which implies that the processê(t) is characterized by an
exponentially decaying correlation function:

The value of the initial amplitudeA is given by the initial
condition of eq 18. It may be estimated as follows. The main
source of fluctuations in the CSTR is its forcing by the feeding
process. This is characterized by the frequencykflow of replacing
a cell by a new one with concentrationx0. Therefore, the change
of concentration due to this perturbation is approximatelyxs -
x0, wherexs is the steady-state concentration. The fraction of
these cells is proportional tokflow. Using the assumption that
the concentration of all other cells lies near the steady statexs

(i.e.,δxij , xs), the fraction of the rest of the cells is proportional
to the chemical relaxation time, given by-g′(xs). In Appendix
2 we show that the initial perturbation may be estimated as

The simplest way of analyzing eq 15 is to go to the limit of
white noisesa good approximation for weakly colored noise.17

This is achieved by formally substituting exp(-kmixt) f 1/kmixδ-
(t), giving the correlation function

where

In the well-stirred limit τmix, D f 0, one recovers the
deterministic rate law (eq 2). As expected, fluctuations diverge
as the bifurcationg′(xs) f 0 is approached. Our analysis treats
only steady states sufficiently far from the bifurcation points.
However, this restriction is of little practical importance because
noise-induced transitionsoccur long before the bifurcation
points are reached.

2.1. Analysis of the Langevin Equation.We further analyze
eq 15 by introducing the density distributionP(x,t|x0,t0) ≡ P(x,t)
for the conditional probability of finding the system at a point
x at time t, provided that it was atx0 at time t0. The evolution
of this probability density is governed by a Fokker-Planck
equation that can be obtained from eq 15 by the standard
techniques10,11

where the Stratonovich interpretation10 of the white-noise
approximation of eq 15 is used. The stationary solution of eq
23 is12

xi(t+∆t) ) [1 - øij(t)][xi(t) + ∆tf(xi(t)] +
øij(t)[xi(t) + δxji + ∆tf(xi(t)+δxji)] (9)

xi(t + ∆t) ) x0 (10)

xi(t + ∆t) ) φi(t+∆t)x0 + [1 - φi(t+∆t)]{[1 - øij(t)] ×
[xi(t) + ∆tf(xi(t)] + øij(t)[xi(t) + δxji + ∆tf(xi(t)+δxji)]}

(11)

∆xi ≡ xi(t+∆t) - xi(t)

) ∆tf(xi(t)) + ∆tøij(t)f(xi(t)+δxji - ∆tf(xi(t))øij(t) +
φi(t+∆t){x0 - xi(t) + ∆tøij(t)f(xi(t)) - øij(t)δxji +

øij (t)f(xi(t) + δxji) - ∆tf(xi(t))} + øij(t)δxji (12)

∆xi ) ∆tf(xi(t)) + ∆tøij(t)δxjif ′(xi(t)) +
φi(t+∆t){x0 - xi(t) - øij(t)δxji - ∆tøij(t)δxjif ′(xi(t)) -

∆tf(xi(t))} (13)

∆xi ) ∆t{f(xi(t)) + kflow(x0 - xi(t)) +

(f ′(xi(t)) - kflow)øij(t)[δxij]} + O2

) ∆t{g(xi(t)) + g′(xi(t))øij(t)[δxij]} + O2 (14)

dx/dt ) g(x) + g′(x)ê(t) (15)

ê(t) ) øij[δxji] (16)

〈ê(t)〉 ) 0 (17)

d〈ê(t)ê(t′)〉/dt ) -kmix〈ê(t)ê(t′)〉 (18)

〈ê(t)ê(t′)〉 ) Ae-kmix|t-t′| (19)

A ) -
kflow

g′(xs)
(xs - x0)

2 (20)

〈ê(t)ê(t′)〉 ) Dδ(t - t′) (21)

D ) τmixA ) -
τmix

τflow

(xs - x0)
2

g′(xs)
(22)

∂tP(x,t) ) -∂x(g(x)P(x,t)) + D(xs)∂xx(g′(x)2P(x,t)) (23)

Ps(x) ) N
g′(x)

eU(x)/D (24)
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whereN is a normalizing factor andU(x) is given by

For a bistable system, the probability distribution has two
maxima which correspond to the stochastic steady states. They
are obtained from the stationary condition dP(x)/dx ) 0:

or, using eq 22

The roots of eq 27 give the position of the stochastic steady
statesxs. By analogy with the definition of deterministic steady
statesg(x) ) 0, we introduce thestochastic rate function

which is schematically drawn in Figure 1 together withg(x).
Both functions intercept the abscissa at different points, reflect-
ing the effect of stirring on the steady states.

The variance ofx is given by10

At sufficiently high stirring, (τmix/τflow)(xs - x0)2(g′′/g′)2 , 1
and eq 29 reduces to

Because this is the variance of the concentration in a single
representative cell, we refer to it also as thelocal Varianceσl

2

to distinguish it from theglobal Varianceσg
2 of the concentra-

tion, averaged over the whole reactor. The relation of these two
quantities and their measurement is discussed elsewhere.9,18

The degree of spatial inhomogeneityof the reactor

is a consequence of the stochastic processê(t), specified by eqs
19 and 20; i.e., it results from the forcing of the reactor by the
inflow. We will show that this equation correctly reproduces
both the CR model and the experiments.

Finally, the stirring effect on the steady states is defined as
the shift∆ ) xs - xd of the stochastic steady statexs from its
deterministic, high stirring limitxd. The latter are the roots of
g(xd) ) 0, and the stochastic steady statesxs are the roots of eq

26, as illustrated by Figure 1. Substituting and performing a
Taylor expansion to first order in∆ leads to

Sufficiently far from the transition points, this expression for
the shift of the steady statereduces to

In the range of validity of this key result (i.e., at sufficiently
high stirring and far from the transition), the observed shift∆
of the stochastic steady state is proportional to the reactor
inhomogeneityσl

2. For fixed control parameters (varying only
the stirring rate), the relationship is linear and the direction of
the shift is determined by the sign ofg′′(xd), becauseg′(xd) is
always negative asxd is a stable state. We show below that eq
33 allows one to make general conclusions regarding the stirring
effect on bistability hystereses in one-variable systems.

3. Data Analysis

The purpose of part 11 was to test the agreement between
the experimentally measured stirring effect in the bistable
arsenous acid-iodate reaction and the numerical simulations
based on the coalescence redispersion model. That comparison
involved the average signalsxs(S) (stochastic steady states or
first moment of the fluctuating signal), as well as the noise
intensity (or second moment of the fluctuating signal) and the
probability distribution functions (pdf’s), all as functions of
stirring or mixing rate. In the present section the analytical
results of the previous section are compared with experimental
and numerical results, obtained in part 1.

To verify eq 31, the dependences of the experimental and
calculated noise intensitiesσl

2 were tested for both steady states
as functions of all arguments in the equation. Figures 2 and 3
show σl

2 as functions of the inverse stirring rate 1/S for the
experiments and of the mixing timeτmix for the simulated data,
respectively. Best straight lines through the origin connect the
data points. Unconstrained least-squares fits miss the origin by
amounts that are insignificant, given the scatter of data points.
There appears to be a slight deviation from linearity near the
origin, i.e., in the limit of high stirring. Its origin is unclear
because there are no limitations on the theory in this limit.

The dependence ofσl
2 on the feed concentrationx0 was also

studied at constant mixing and feeding rates. Only the simulation
data are given in Figure 4, because the experimental data are
very similar. The straight line fits the data points extremely well
over the full range. The slopes of the fitted lines are sufficiently
close to the theoretical value to confirm the validity of eq 31.
The linear dependence of the stirring effect∆(σ2) (eq 32) was
tested, and the results are summarized in Figures 5 and 6 by
plotting the measured (Figure 5) and calculated shifts (in Figure
6) as functions of the fluctuation intensity, where stirring rate
S and τmix, respectively, were the independent variables. The
straight lines through the data points and the origin agree well
with the predictions of eqs 31 and 32 over the full range of
stability of the competing steady states.

The response diagram (Figure 7) illustrates again1 the
pronounced stirring effect on SS1 and the relative insensitivity
of SS2. Its purpose is to compare the stochastic steady statesxs

calculated from eq 26, given here by the dashed curves, with

U(x) ) ∫x

g(x) dx

g′(x)g′(x)
(25)

g(xs) - D(xs)g′(xs)g′′(xs) ) 0 (26)

g(xs) +
τmix

τflow
(xs - x0)

2g′′(xs) ) 0 (27)

gs(x) ) g(x) - D(x)g′(x)g′′(x) (28)

〈δx2〉 )
-2D(xs)

U′′(xs)

) -2Dg′
1 - 2D(g′′2/g′)

using eqs 20 and 26

) 2
τmix

τflow
(xs - x0)

2 1

1 +
τmix

τflow
(xs - x0)

2(g′′/g′)2

(29)

〈δx2〉 ) 2
τmix

τflow
(xs - x0)

2 (30)

σl
2 ) 2

τmix

τflow
(xs - x0)

2 (31)

∆ ) 1
4[ g′′(xd)

g′(xd) - 1
4

σl
2g′′′(xd)]σl

2 (32)

∆ ) 1
4

g′′(xd)

g′(xd)
σl

2 (33)
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the numerical results obtained from simulations of the CR
model, as described in ref 1. The latter are given by the data
points.

4. Discussion

The reduction of the CR model to the Langevin equation (15)
is based on the assumption that the intensity of noise is
sufficiently small. Further assumptions were made to obtain eq

26 for the stochastic steady state. The inflow is taken to represent
a constant perturbation, leading to the colored noise with
correlation function equation 19. This perturbation is small
enough that only a small fraction of cells (τmix/τflow , 1) is
replaced by reagents. Both conditions are well met in typical
CSTR experiments. The forcing of the reactor is balanced by
chemical reaction which tends to increase the concentration in
each cell. As a result, the system finds itself in a stochastic
steady state at any finite value of the mixing rate. Near the
critical points, the transitions are in reality noise-induced
transitions between stochastic steady states.

The noise intensity (eq 20) is determined by forcing through
the inflow and by imperfect mixing. The perturbation caused
by the inflow decays with a finite relaxation time. According
to eq 32, the reactor inhomogeneityσl

2 is thus the “cause” of
the stirring effect∆(kmix), and both are linearly related.

In summary, the conditions of validity of the present
considerations are (1) the system behaves effectively as one-
dimensional, (2) experiments involve a single, premixed reactant
flow, and (3) the stirring rate is sufficiently high. In the reactor
described in ref 1, deviations from the linear predictions become
appreciable belowS < 30-50 rpm.

When these conditions are fulfilled, the system can exhibit
only a stirring effect of the first kind. It arises as the system
responds chemically to the perturbations due to feeding and
incomplete mixing. This response is governed by the sign of
the curvatureg′′(x). Figure 1 illustrates that the curvature of
the rate function is always negative at SS1 and positive at SS2.
Consequently, the upper branch shifts down and the lower
branch shifts up as the noise intensity increases (Figures 6 and
7).

Analysis of Figure 1 and of eq 32 also gives the correct
direction of shift of the critical points. The stochastic steady
states correspond to the intersections of the stochastic rate
function g(xs), defined by eq 26 with thex axis. Assume that
decreasing the control parameter shifts the functiong(x) down.
This is equivalent to moving thex axis up and keepingg(x)
fixed. Below a critical valueC1 of the control parameter, SS1
disappears and thex axis intersectsg(x) only once. The
corresponding stochastic critical valueC1

s where thex axis is
tangent to the stochastic rate functiongs(x) lies at a higher value
of the control parameter. Hence, in the presence of noise, the
left critical point shifts to the right, and by the same argument
the right critical point moves to the left. This agrees with Figure
7, even if the magnitude of the shift of the right critical value
is too small to be resolved by our experiment. So, eq 32 gives
qualitatively correctly the direction of the shifts of the steady
states and of the critical points: as the reactor inhomogeneity
is made to grow, the hysteresis shrinks along both coordinates
of the response diagram.

The quantitative expression for this generic behavior is given
by eq 26, the expression for the stochastic steady states. It gives
the stochastic steady states as the roots of a polynomial in the
same way as the solutions ofg(x) ) 0 represent the deterministic
steady states. In the limit of ideal mixing (τmix f 0), the second
term in eq 26 vanishes and the equation reduces to the
deterministic limit. Therefore, the second term in eq 26
represents the stochastic effects. From the expression for this
stochastic term, it follows that the stirring effect increases as
the stirring rate decreases, the flow rate increases, and the
difference between the inflow and bulk concentration grows.
The stirring effect is most pronounced wheng′′(x)/g′(x) is large.
This rate reflects the influence of chemical relaxation.

Figure 2. Dependence of the experimentally measured noise intensity
(second moment of the fluctuating electrode potential)σ2 on the inverse
stirring rate. [I -]0 ) 1 × 10-5 M for SS1. [I -]0 ) 1.5 × 10-5 M for
SS2. The remaining experimental parameters are the same as those in
part 1.

Figure 3. Dependence of the noise intensityσ2 on mixing time. Data
points were simulated by the CR model. The line was constrained to
go through the origin to demonstrate the validity of eq 31.τflow ) 1.6
s; [I -]0 ) 4 × 10-5 M for both steady states.
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Equation 32, the linear approximation of eq 26, is useful for
analyzing experimental data, specifically the proportionality
between the observed shift∆, or the first moment of the signal,
and the fluctuation intensity, or second momentσl

2. For both
branches independently, the coefficient of proportionalityg′′-
(x)/g′(x) increases slightly as the critical points are approached
on either branch. Hence, the shifts∆ of the steady states increase
as the critical points are approached. Figures 5 and 6 illustrate
this kind of behavior for experiment and simulations, respec-
tively. It is important to note that this growth of the shift with
decreasing stirring rate follows from the condition thatg′′(x)/

g′(x) estimated at the deterministic steady state is affected only
by the control parameterx0, whereas the intensity of fluctuations
is affected only by the stirring rate. Therefore, the flow rate is
not an appropriate bifurcation parameter for studying stirring
effects. Indeed, the mixing time in eq 26 appears only as a ratio
τmix/τflow. Under certain conditions, the effect of a decreasing
flow rate is the same as that of an increasing mixing rate.
Moreover, varying the flow rate changes the entire hydrody-
namic picture of inflow and mixing in a CSTR. This may lead
to complications in applying the results of our theoretical
consideration. Hence, the inflow concentrationx0 is the most
suitable bifurcation parameter for studying stirring effects in
nonlinear chemical systems.

Figure 4. Linear relation betweenσ2 and (τmix/τflow)(xs - x0)2 calculated for both steady states, wherex0 was the independent variable, at fixedτmix

) 0.0533 s andτflow ) 1.6 s.

Figure 5. Experimental relation between the shifts∆(S) ) xs(S) -
xs(Smax) of the steady states at stirring rateS from the “high stirring
limit” at Smax ) 2000 rpm and (x - x0). For SS1, [I -]0 ) 1 × 10-5 M,
and for SS2, [I -]0 ) 1.5× 10-5 M. All other parameters are the same
as those in part 1.

Figure 6. Linear relationship between∆ and σ2 obtained from
simulations, whereτmix is the independent variable. Parameters areτflow

) 1.6 s and [I -]0 ) 4 × 10-5 M.
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The linear relation (32) illustrates the fluctuation-dissipation
theorem according to which the linear system response is given
by the autocorrelation function of the fluctuations.19 In particular,
eq 32 is similar to an expression obtained by Hannon and
Horsthemke15 for the model of the arsenate-iodate reaction.
Their analysis is based on the integrodifferential equation of
the Fokker-Planck type for the pdf from which one can deduce
the expression for the shift of the deterministic steady state under
incomplete mixing. Our analysis gives the explicit eq 26 for
the stochastic steady states. It is based on the representations
of the CR model by a Langevin equation at high stirring rate
and of incomplete mixing as a multiplicative colored noise
process. The validity of this approach is confirmed by the good
correspondence between experiments, simulations, and theoreti-
cal results.

The only known exceptions from the stirring effect of the
first type are the minimal bromate system oscillator3,4 and the
Briggs-Rauscher reaction,6 both in a CSTR. In the minimal
bromate system the fluctuations were controlled through the
stirring rate, as described above, while in the light-sensitive
Briggs-Rauscher reaction a fluctuating light source was used
for that purpose. In both systems thehysteresis loop was found
to broaden and to shift outside the low-noise hysteresis, as the
external noise intensity (due to mixing or to light) grows. This
type of “stirring effect of the second kind” might be explained
along the lines developed in this paper by taking into account
the essential multidimensionality of the reacting systems. Indeed,
if a system is effectively one-dimensional, a stirring effect of
the first type is necessarily observed. Equation 32 indicates that
in the one-dimensional case the direction of the shift is governed
by the curvature of the rate function. As a possible extension
of this result, we may assume that in the multidimensional case
the direction of the shift is also governed by the generalized
curvature of the rate function, which becomes a vector which
may have positive and negative components. As a result, the
hysteresis may shift in a complex manner and a priori in any
direction, depending on the components of this vector, when
projected into the 1D response diagram.

Finally, the analysis performed in this paper suggests a new
way of utilizing the stirring effect on chemical bistability as a
taxonomic tool. If the hysteresis shrinks in response to decreased
stirring and both branches are stabilized (stirring effect of the
first type), the system may be considered aseffectiVely one-

dimensional. Otherwise, the appropriate kinetic model must be
at least two-dimensional.

Appendix 1

Our aim is to derive the autocorrelation functionC(t,t′) )
〈ê(t)ê(t′)〉, defined by eq 16 for the random processê(t).
Consider first the change of the autocorrelation function in the
time interval∆t′:

By introducing changes ofø(t′) andδxji(t′) during the same time
interval

Equation 34 may be rewritten in the following form:

The second term in this expression may be omitted because on
average its leading term contains∆t′2. To simplify the analysis,
we assume thatt ) t′. This allows us to rewrite eq 35 as

The last term in this expressionøij(t,∆t) depends onøij(t).
Namely, if øij(t) ) 1, thenøij(t,∆t) ) -1 with probability 1-
kmix∆t. Otherwise, the product in brackets equals zero. Therefore,
the right side of this equation is always negative. Moreover,
the conditional probability that it is not zero is defined by the
condition thatøij(t) ) 1, given bykmix∆t. Finally we arrive at

which gives eq 18.

Appendix 2

Here we derive eq 20 for the amplitudeA of the inflow
perturbation. Assuming that the initial concentration of theith

Figure 7. Response diagramxs(x0), calculated from the CR model. Dots represent the results of the simulations, atτmix ) 0.0533 s,τflow ) 1.6 s
and [I -]0 ) 8 × 10-5 M. Dashed lines represent the stochastic steady statesxs calculated from eq 26. The solid line represents the deterministic
hysteresis.

∆C(t,t′,∆t′) ) C(t,t′+∆t′) - C(t,t′)

) 〈ê(t)ê(t′+∆t′) - ê(t)ê(t′)〉

) 〈øij(t)[δxji(t)]øij(t′+∆t′)[δxji(t′+∆t′)] -
øij(t)[δxji(t)]øij(t′)[δxji(t′)]〉 (34)

∆øij(t′,∆t′) ) øij(t′+∆t′) - øij(t′)

∆δxji(t′,∆t′) ) δxji(t′ + ∆t′) - δxji(t′)

∆C(t,t′,∆t′) ) 〈øij(t)[δxji(t)]∆øij(t′,∆t′)[δxji(t′)]〉 +
〈øij(t)[δxji(t)](øij(t′) + ∆øij(t′,∆t′))[∆δxji(t′,∆t′)]〉 (35)

∆C(t,t,∆t) ) 〈øij(t)[δxji(t)]øij(t)[δxji(t)]∆øij(t,∆t)〉 (36)

∆C(t,t,∆t) ) -kmix∆t〈øij(t)[δxji(t)]øij(t)[δxij(t)]〉 (37)
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cell lies near its steady state, the corresponding concentration
change may be estimated as

Therefore, the initial condition for the autocorrelation function
is given by

whereNf is the number of cells perturbed by the inflow andN
is the total number of cells. The number of cells unperturbed
by the inflow isNs ) N - Nf.

At every moment the following condition must hold:

Denoting byδxf the average perturbation of a single cell by the
inflow and byδxs the average perturbation of a single cell among
the remaining cells, one may rewrite this condition as

This gives the following relation betweenδxs andδxf:

The ratioNf/N may be estimated, based on the correspondence
between stochastic and deterministic description of dynamics
in a CSTR in the limit of perfect mixing. For this purpose, we
rewrite eq 13

Averaging both sides of this equation gives

where the second term may be neglected because its first
nonzero term contains∆t2. Performing the Taylor expansion
near steady state results in

Using the property〈φi(t)〉 ) kflow∆t of the stochastic feeding

process, we arrive at

where the first two terms give explicitly the deterministic
equation. Therefore, in the perfect mixing limit the last term
vanishes:

Substitutingδxs from eq 42 gives

The last expression holds for any value ofδxf if

Substituting this into eq 39 gives the final result of eq 20.
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∆xi ) x0 - xi ≈ x0 - xs (38)

A )
Nf

N
(x0 - xs)

2 (39)

〈δxi(t)〉 )
1

N
∑
i)1

N

δxi(t) ) 0 (40)

Nsδxs + Nfδxf ) 0 (41)

δxs ) -
Nf

Ns
δxs (42)

∆xi ) (1 - φi(t+∆t))∆tf(xi(t)) + φi(t+∆t)(x0 - xi(t))
(43)

〈∆xi〉 ) ∆x ) 〈∆tf(xi(t)〉 - 〈φi(t+∆t)∆tf(xi(t)〉 +
〈φi(t+∆t)x0〉 - 〈φi(t+∆t)xi(t))〉 (44)

∆x ) ∆t〈f(xs)〉 + ∆t〈f ′(xs(t)δxi(t)〉 + 〈φi(t+∆t)x0〉 -
〈φi(t+∆t)xs〉 - 〈φi(t+∆t)δxi(t)〉 (45)

∆x ) ∆tf(xs) + kflow(x0 - x(t)) + 〈∆tf ′(xs)δxi(t) -
φi(t+∆t)δxi(t)〉 (46)

0 ) 〈∆tf ′(xs)δxi(t) - φi(t+∆t)δxi(t)〉

) ∆tf ′(xs)δxs - kflow∆tδxf (47)

0 ) ∆tδxf(Nsf ′(xs) + Nfkflow) (48)

Nf

N
) -

kflow

g′(xs)
(49)
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