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This work is based on the experimental evidence from ultrasonic absorption spectra, measured between about
100 kHz and 5 GHz for some series of liquid mixtures with water as a constituent. Since none of the existing
models of noncritical concentration fluctuations appropriately applies for the shape of the existing set of
spectra, a comprehensive theoretical model has been derived which includes the favorable characteristics of
previous theories. In this model, fluctuations in concentration are assumed to equalize not only by diffusion
but, in parallel, also by a specific rate process. In addition, allowance is made for spatial correlations in the
concentration fluctuations. Discussion of the measured ultrasonic spectra in terms of the comprehensive model
evidences the effect from the hydrophobic properties of the nonaqueous constituent of the mixtures upon the
microheterogeneous structure of the liquid.

1. Introduction

During the past years much attention has been directed toward
the microinhomogeneous structure of binary liquids. Interest in
the liquid microheterogeneity and its accompanying fluctuations
of thermodynamic parameters does not just spring from its
import for our fundamental understanding of liquids, including
aspects of universality and dynamic scaling. It also results from
a variety of applications in biophysics, physical chemistry, and
in chemical engineering as well.

The dynamic properties of critical binary systems of non-
associating constituents are well established now. Nevertheless,
there appear to exist three important areas in which our present
knowledge of the microheterogeneity of liquids is still rather
poor. (i) Theoretical treatments of the dynamic behavior of
critical systems is restricted to the close vicinity of a critical
point. Only recently the cross-over region between critical and
noncritical systems has been considered both theoretically and
experimentally.1,2 (ii) Ultrasonic attenuation spectra of critical
mixtures of associating liquids always show contributions with
relaxation characteristics, in excess of the contribution predicted
by existing theories of concentration fluctuations.3,4 (iii) Rather
unexpectedly, a multitude of binary aqueous systems exhibit a
microinhomogeneous structure and display features of noncriti-
cal concentration fluctuations. Among these systems are mix-
tures of water with monohydric alcohols,5 poly(ethylene glycol)-
monoalkyl ethersCiEj,6 tetraalkylammonium bromides,7 tri-
ethylenediamine,8 and derivatives of urea.9 Again, however, the
existing theoretical models do not satisfactory apply for all
measured spectra. Therefore, even theories that had been
originally designed for the description of critical systems10-13

have been empirically used to represent experimental findings
for noncritical mixtures.5

For a noncritical aqueous solution of the alkyl polyglycol
ether C4E2, the discrepancy between theoretical predictions and
measured spectra is illustrated by an example given in Figure
1. In that diagram the excess attenuation per wavelength (Rλ)exc,
is displayed as a function of frequencyν. Here

is the part of the total attenuation per wavelengthRλ that exceeds
the high-frequency asymptotic partBν. In eq 1 R is the
attenuation coefficient,λ ) cs/ν is the wavelength,cs is the
sound velocity, andB denotes a frequency independent coef-
ficient. Also presented in Figure 1, for comparison with the
excess attenuation spectrum, is the graph of a Debye type
relaxation spectral term14 (ω ) 2πν)

with discrete relaxation timeτD and with relaxation amplitude
AD. Obviously, a Debye term cannot account for the measured
data. This is particularly true at high frequencies (ω . τD

-1)
where eq 2 predicts anω-1 behavior, at variance with the
experimental data. In conformity with the assumption of a
diffusive process, these data in part of the frequency range
decrease rather proportionally toω-1/2, thus indicating that the
cause of the sonic relaxation is not a stoichiometrically well
defined chemical equilibrium but rather a concentration fluctua-
tion mechanism. For this reason, additionally given in Figure 1
is the graph of the term

Figure 1. Ultrasonic excess attenuation per wavelength, (Rλ)exc, at 25
°C displayed as a function of frequencyν for a mixture of water and
2-(2-butoxyethoxy)ethanol (C4E2) with mole fractionx ) 0.04 of C4E2.
The dotted and dashed curves are graphs of a Romanov-Solov’ev term
(eq 3) and a Debye relaxation spectral term (eq 2), respectively. The
full curve represents the spectral term of the unifying model (eq 22).

RD(ν) ) AD

ωτD

1 + (ωτD)2
(2)

(Rλ)exc ) Rλ - Bν (1)
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which is based on the prominent theory of noncritical concentra-
tion fluctuations, the Romanov-Solov’ev model.15-18 Written
in the format of eq 3,ARS is a frequency-independent amplitude
and IRS is a scaling function. The integralIRS can be given in
an explicit form:

The relaxation time

is a diffusion time,D is the mutual diffusion coefficient, and
lm is a minimum interaction length of fluctuations. This empirical
parameterlm has been introduced in the theory just to allow for
the explicite form of the scaling function.

The spectrum for the C4E2/water mixture shown in Figure 1
also is only incompletely represented by the Romanov-Solov’ev
term RRS(ν). In particular, the width of theRRS(ν) term is
insufficient to adequately account for the measured data,
extending over a broader frequency band. It has been shown
recently7 that the width of theRRS term increases if spatial
correlations of concentration fluctuations are taken into account,
which in the original Romanov-Solov’ev theory are assumed
to be absent. Even the consideration of such correlations,
however, does not result in a spectral term that allows for a
satisfactory description of all existing ultrasonic attenuation
spectra under consideration. This situation, and also the need
for the somewhat artificiallm parameter in the original Ro-
manov-Solov’ev theory, has prompted us to rederive a theoreti-
cal model of concentration fluctuations and of their effects in
the ultrasonic attenuation spectra of binary liquids. Here we
present a comprehensive treatment, taking into account the
merits of the previous theories.7,15-20 It turned out that this model
allows for a uniform description of all broadband ultrasonic
spectra under investigation.5-9 Applying the comprehensive
model, we also found unexpected correlations between the
tendency of an aqueous system to form a microinhomogeneous
structure and the hydrophobic properties of the second constitu-
ent of the mixture. These correlations are also briefly discussed
in this article.

2. Concentration Fluctuation Model

Let F(rb, t) denote an order parameter which represents the
fluctuation amplitude of the local structure at timet around the
point rb. For the binary liquids under consideration a most
suitable order parameter is the deviation of the local molar
concentrationc(rb,t) from the meancj. Hence

The time dependence of local fluctuations may then be expressed
by the autocorrelation function of the order parameter

Changes in the local structure of the liquids are assumed to
be enabled along two different pathways, following either an
elementary chemical reaction with discrete relaxation timeτ0

or a diffusive process with diffusion coefficientD of the order
parameter. The chemical process, associated with an activation
barrier∆Hq, with a reaction volume,∆V, and/or with a reaction
enthalpy∆H, may consist in a jump of a molecule from a
positionrb1 to another onerb2. Frequently it will be related to a
dimerization reaction as assumed by Endo.20 Because to these
presumptions, the time behavior of the fluctuations is controlled
by the differential equation

Spatial Fourier transformation yields

with the wave vectorqb. The simpler differential equation

follows for theq space. Here

whereq ) |qb|. In isotropic liquids the correlations in fluctuations
will depend on r ) |rb| only. Equation 10 is solved by
exponentials with characteristic decay timeτg for each Fourier
component

The weight functionf̂(q) is the Fourier transform of the spatial
correlationsφ(r,0) in the fluctuations at timet ) 0. Hence
suitable initial conditionsφ(r,0) allow f̂(q), and thus the desired
φ̂(q,t), to be calculated. Romanov and Solov’ev15,16 in their
model neglected spatial correlations of fluctuations and took

Montrose and Litovitz19 proposed an exponential decay with
characteristic lengthê

Endo20 and Kühnel et al.7 preferred an Ornstein-Zernike
ansatz21,22

Here we propose the weight function

Using this function the long range correlations in fluctuations
are assumed to follow the Ornstein-Zernike behavior. This
means that, at long distances (r g ê), where direct interactions
between two “particles” can be neglected, correlations are
mediated indirectly by interactions with neighboring “par-
ticles”.28 This assumption has been proven useful in a recent
description of concentration fluctuations in aqueous solutions
of tetraalkylammonium bromides,7 where long ranging Cou-
lombic forces act their influence on the spatial distribution of
“particles”. In close similarity to the Montrose-Litovitz model,19

short range correlations are considered in eq 16 by a nearly
exponential decay atr < ê. In Figure 2 thef̂(q) function (eq
16) is compared to the corresponding weight functionsf̂ML(q)

∂φ( rb,t)/∂t ) (D∇2 - 1/τ0)φ( rb,t) (8)

φ̂(qb,t) ) ∫rb
φ( rb,t) exp(i rbqb)drb (9)

∂φ̂(qb,t)/∂t ) - (1/τg)φ̂(qb, t) (10)

τg
-1 :) τq

-1 + τ0
-1 ) Dq2 + τ0

-1 (11)

φ̂(q,t) ) f̂(q) exp(-t/τg) (12)

φRS(r,0) ∝ δ(r) S f̂RS(q) ) constant (13)

φML(r,0) ∝ exp(-r/ê) S f̂ML(q) ∝ (1 + (qê)2)-2 (14)

φE(r,0) ∝ (1/r) exp(-r/ê) S f̂E(q) ∝ (1 + (qê)2)-1 (15)

f̂(q) ∝ (1 + 0.164(qê) + 0.25(qê)2)-2 (16)

RRS(ν) ) ARSωτRSIRS(ωτRS) (3)

IRS(ωτRS) ) 3 -
3xωτRS

4x2 [2π - ln
ωτRS - x2ωτRS + 1

ωτRS + x2ωτRS + 1
-

2arctan(x2ωτRS + 1) - 2 arctan(x2ωτRS - 1)] (4)

τRS ) lm
2 /D (5)

F( rb,t) ) c( rb,t) - cj (6)

φ( rb,t) ) 〈F( rb,t)F(0B,0)〉/〈|F(0B,0)|2〉 (7)
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and f̂E(q) of the Montrose-Litovitz and Endo models, respec-
tively. As will become evident below, by the particular choice
of the coefficients in thef̂(q) function the present model
combines an Ornstein-Zernike behavior of long range interac-
tions with the integrability of the scaling function, without the
need for the introduction of a somewhat artificial minimum
interaction lengthlm (eq 5).

Assuming a Debye density of states,Vq2/(2π2), for the
distribution of wave numbersq on the surface of a sphere of
volumeV, the spectral density〈|δX̃(ω)|2〉 of fluctuationsδX(rb,t)
of a thermodynamic quantityX can be calculated according to
linear system theory

Here φ̃(q,ω) is the Fourier transform ofφ̂(q,t). Hence

and

The integral on the right hand side of this relation exists only
if toward high wavenumbersf̂(q) decreases more rapidly than
q-2. For this reason, in previous theories7,15-18,20integration has
been performed over the interval from 0 to a maximum value
qmax. This value has then been interpreted as to be due to a
minimum interaction lengthlm ) 2πqmax

-1 , as mentioned afore.
Consider δX̃(ω) the response of a linear system to a

harmonically oscillating driving forceδỸ(ω) so that

with the complex susceptibilityø ) ø′ + iø′′. The fluctuation
dissipation theorem yields23

relating the imaginary part of the susceptibility to the spectral
density of the fluctuations inX.

3. Model Spectral Function

Application to compressional waves leads to the contribution
of this “unifying model” of concentration fluctuations to the
sonic attenuation per wavelength. It can be expressed by the
spectral term

The amplitude parameterQ is assumed to be largely given
by the Romanov-Solov’ev amplitude factor15,16 QR which,
according to the equation

is related to thermodynamic quantities. In eq 23F is the density,
kB the Boltzmann constant,T the absolute temperature,V the
molar volume, andA and cp are the instantaneous thermal
expansion coefficient and specific heat at constant pressure,
respectively. The double-primed quantities

are the second derivatives of the Gibbs free enthalpy, molar
volume, and molar enthalpy, respectively. The subscript “0” is
used to indicate that the values of the thermodynamic quantities
have to be taken without contributions from fluctuation. Quantity
xj2 denotes the equilibrium mole fraction of the dispersed phase,
the nonaqueous constituent in the mixtures under consideration.
The calculation of second derivatives from experimental data
is doubtless a difficult attempt. Nevertheless, for various liquid
mixtures QR data derived from eq 23 have been found in
reasonable agreement with experimental findings from ultrasonic
attenuation spectrometry.24-27 As an example, theQR-versus-
xj2 relation for aqueous tetra-n-propylammonium bromide solu-
tions7 is displayed in Figure 3 indicating that the predictions
from the thermodynamic equations (eqs 23 and 24) fairly well
fit to the relaxation measurements. Following Montrose and
Litovitz19 there may exist another contributionQS due to the
relaxation with identical frequency behavior of the shear
viscosityηs. Assuming a linear superposition

follows.
Since atr . ê the spatial correlations in fluctuations are

assumed to follow the Ornstein-Zernike ansatz, the relation

by Kawasaki13 and Ferrell28 may be used to relate the
characteristic correlation lengthê to the mutual diffusion
coefficient. Equation 26 is identical with the Stokes-Einstein
relation describing the diffusion of a spherical particle of radius
ê in a liquid with shear viscosityηs. Utilizing eq 26 there are
just three unknown parameters left inRum(ν), namelyQ, D, and

Figure 2. Relative weights of the spectral contributions at wave number
q displayed for the present model (f̂, full curve, eq 16) as well as for
the Montrose-Litovitz ( f̂ML, dotted curve) and Endo (f̂E, dashed curve)
model.

Figure 3. Romanov-Solov’ev amplitude parameterQR of aqueous
solutions of tetra-n-propylammonium bromide at 25°C displayed as a
function of the equilibrium mole fractionxj2 of salt. Figure symbols
denote data derived from ultrasonic attenutation spectra.7 The dashed
curve represents the prediction from eq 23.

〈|δX̃(ω)|2〉 ∝ V

2π2 ∫0

∞
q2Re(φ̃(q,ω)) dq (17)

Re(φ̃(q,ω) ) 1
2π

f̂(q)
τg

1 + ω2τg
2

(18)

〈|δX̃(ω)|2〉 ∝ V

4π3 ∫0

∞
q2f̂(q)

τg

1 + ω2τg
2
dq (19)

δX̃(ω) ) ø(ω)δỸ(ω) (20)

ø′′ ∝ ω〈|δX̃(ω)|2〉 (21)

Rum(ν) ) Q∫0

∞ q2

(1 + 0.164qê + 0.25(qê)2)2

ωτg

1 + ω2τg
2

(22)

QR )
Fcs

2kTB

8π
V2

g′′2(V′′
V

- A
h′′
cp

) (23)

g′′ ) ∂
2G0/∂

2x2, V′′ ) ∂
2V0/∂

2x2, h′′ ) ∂
2 H0/∂

2x2 (24)

Q ) QR + QS (25)

ê ) kBT/(6πηsD) (26)
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τ0. The latter quantity can be left out of consideration if no
process with discrete relaxation time plays a significant role
within the concentration fluctuation scheme. The values for the
diffusion coefficientD derived from ultrasonic spectra may be
compared to data that have been derived from other measure-
ments, e.g., NMR studies. The amplitude parameterQ, in
principle, can be verified by the thermodynamic measurements
using eq 23.

The effect of a maximum wave vectorqmax< ∞ in the spectral
function is illustrated by Figure 4 where graphs ofRum(ν) are
presented for both a finiteqmax and also forqmax f ∞. Because
no analytical form exists for the integral in the spectral function
(eq 22), the values ofRum have been calculated numerically
using the Romberg method.29 For this purpose a parameterqM

has been introduced up to which the calculation of the integral
was performed. In order to verify that a sufficiently highqM

value had been chosen in the calculations, we always made sure
that use of a largerqM did not affect the spectral function within
the frequency range under consideration. For the numerical
calculations the substitutions

lead to the following form of eq 22

which has proven an adequate formulation also in the evaluation
of measured spectra.

Also displayed in Figure 4 for comparison withRum(ν) are
the Romanov-Solov’ev functionRRS(ν)15,16 and the spectral
functionRccf(ν) representing the RS model as extended for the
effect of spatial correlations of fluctuations.7 To enable an easy
comparison of their shape normalized spectral terms are shown
in Figure 4. Due to the consideration of spatial correlations in
the extended model, theRccf(ν) term in the low frequency range
(ν < νs) obviously extends over a broader frequency band than
the RRS(ν) function. Because both spectra are based on an
Ornstein-Zernike behavior of long range correlations,Rum(ν)
and Rccf(ν) display the same properties atν < νs. Since no
additional process with relaxation timeτ0 is taken into account
here (τ0 f ∞, τg ) τq), the modified spectral function

of the unifying model also almost agrees withRccf(ν) at ν > νs

in accordance with our expectations. Integration over the
completeq space (qmax f ∞), however, results in significant
changes in the high frequency part of the spectral function
(Rum(ν) > Rum

/ (ν), ν > νs), indicating that highq components
in the fluctuations add noticeable contributions to the high
frequency part of the absorption spectrum. As Romanov and
Solov’ev already pointed out in their pioneering paper,15,16

spectral functions that are based on the assumption of a
minimum interaction lengthlm, therefore, apply only up to the
frequencyνs of the maximumR(ν) value.

In Figure 5 the model spectral functionsRum(ν), RML(ν), and
RE(ν) from the unifying model as well as the Montrose-Litovitz
and the Endo theory, respectively, are presented. The three
functions nicely agree atν < νs. As a result of the assumption
of an Ornstein-Zernike behavior also for small interactions, in
conjunction with the assumption of a minimum interaction
lengthlm, in the Endo model,RE(ν) exhibits significantly smaller
values atν > νs thanRum(ν) andRML(ν). Figure 5 additionally
indicates that the unifying model, up to high frequencies,
provides an excellent approximation of the predictions by the
Montrose-Litovitz theory.

4. Relaxation Time Distribution of the Fluctuation Model

Effects from the simultaneous action of the diffusive process
and the reaction with relaxation timeτ0 may be additionally
illustrated by the behavior of the relaxation time distribution
functionGum corresponding with the spectral functionRum. Let
τ* denote a suitably chosen relaxation time, e.g.,τ* ) 1 ns
here, andr ) ln(τ/τ*). Then Gum is defined by

with

For this unifying modelGum can be given in an analytical
form

and, using the substitutionq f ((τ-1 - τ0
-1)/D)1/2

otherwise. In eq 33Gum
/ is an amplitude following from

relation 31 and

Figure 4. Shape of the relaxation spectral terms of the unifying model
(Rum, qmax f ∞) the modified version of this model (Rum

/ , qmax < ∞) as
well as of the original (RRS) and the extended Romanov-Solov’ev (Rccf)
model. Parameterνs denotes the frequency of maximum excess
attenuation (d(Rλ)exc/dν ) 0, d2(Rλ)exc/dν2 < 0 atνs). CalculatingRum

/ ,
qmax has been choosen so thatRum

/ ≈ Rccf.

τqM
) (DqM

2 )-1, ϑ ) (qMê)-1, V ) τqM
/τ0 (27)

Rum(ν) ) Qω
Dê

lim
qMf∞ [(qMê)-3 ∫0

1

u2

(ϑ2 + 0.164ϑu + 0.25u2)2

u2 + V
(u2 + V)2 + (ωτqM

)2
du] (28)

Rum
/ (ν) ) Rum(ν, qmax, τg ) τq) (29)

Figure 5. Shape of the relaxation spectral terms of the unifying model
(Rum), the Montrose-Litovitz (RML), and the Endo (RE) model. See
Figure 4 for the meaning ofνs.

Rum(ν) ) Q∫0

∞
Gum(r)

ωτ
1 + (ωτ)2

dr (30)

∫0

∞
Gum(r)dr ) 1 (31)

Gum(r) ) 0 at τ0 < τ < (D2qM)-1 (32)

Gum(r) )

Gum
/ [er(1 - τ*er/τ0)]

1/2

[er + 0.328(τêe
r(1/τ* - er/τ0))

1/2 + τê(1/τ* - er/τ0)]
2

(33)
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is a characteristic relaxation time.
The relaxation timeτ0 of the stoichiometrically defined

process constitutes the maximum time constant of the model.
A prospective slower decay by diffusion of local fluctuations
in concentration will be short circuited by theτ0 mechanism.
Relaxation timesτ > τ0, therefore, are missing inGum. Parameter
τê, as defined by eq 34, is another characteristic relaxation time
of the model. It represents the decay time for which the integrand
of eq 19 adopts its maximum value. Hence, to the corresponding
component (with wave vector (Dτê)-1/2 in the fluctuations) the
strongest weight is given in the integral of theRum(ν) function
(eq 22). The characteristic timeτê thus defines the location of
Gum within the r space, whereasτ0 determines the shape of the
distribution function.

At some parameter values (τê, τ0/τê) graphs of the relaxation
time distribution functionGum(r) are presented in Figure 6. In
order to show the relative importance of the different molecular
mechanisms on realistic conditions, parameter values as resulted
from ultrasonic spectra for aqueous solutions of n-butylurea have
been selected here.9 For the 0.8 molar solution (τê, τ0/τê ) 53
ns, 5.3) a rather broad relaxation time distribution, as charac-
teristic for diffusive processes, emerges. The cutoff by theτ0

process aroundr ) 2.3 plays only an insignificant role in the
distribution function. Toward highern-butylurea concentrations,
the fluctuation correlation lengthê increases and the diffusion
mechanisms slow down. Consequently, the characteristic re-
laxation timeτê substantially shifts to higher values. As a result
the decay of the concentration fluctuations is more and more
governed by the stoichiometrically defined process with almost
concentration independentτ0, corresponding with a rather sharp
cut off in Gum(r) nearr ) 3 (Figure 6).

5. Comparison with Ultrasonic Spectra of Binary Liquids

In order to verify the predictions of the unifying model we
have fitted theRum(ν) function to broadband ultrasonic spectra
as measured for three series of binary liquids (i) aqueous
solutions of urea and of its derivatives, (ii) monohydric alcohol/
water mixtures, and (iii) mixtures of water with poly(ethylene
glycol)monoalkyl ethers (CiEj). Depending on the hydrophobic/
hydrophilic balance of the organic molecules, the tendency
toward a microinhomogeneous structure of the aqueous systems
is expected to vary significantly within each series. This is
particular true for the monohydric alcohol/water and CiEj/water
mixtures which include completely miscible systems and also
such with miscibility gap.

Besides urea itself the first afore mentioned series includes
methyl-, ethyl-, n-propyl-, and n-butylurea, as well as the
isomers of the latter, tetramethyl-,n,n-diethyl-, and n,n′-
diethylurea. The sonic parameters for the solutions of this series,
with solute concentrations between 0.5 and 10.5 mol/L, are
detailed discussed elsewhere.9 We shall, therefore, focus on
some general trends in the spectra here. Most interesting, the
frequency dependent excess attenuation per wavelength for all
solutions investigated within this first series can be well
represented by the unifying model relaxation functionRum(ν).
Only with the solutions ofn-propylurea andn-butylurea a
stoichiometrically defined process appears to be present. The
experimental spectra of the other series (i) solutions can be well
described analytically assumingτ0 f ∞, thus applying the
Romanov-Solov’ev model in its extended versionRccf(ν) to
account for spatial correlations of concentration fluctuations.

The spectra of both additional series of liquids can be also
nicely described by the unifying model. Some mixtures call for
an additional Debye term (eq 2). Also the ultrasonic spectra of
some alcohols under investigation5 follow a Debye type
relaxation. For this reason, the spectral function

has been used to represent the total absorption per wavelength
spectra of the alcohol/water and the CiEj/water mixtures.
Examples for experimental spectra and the corresponding model
function Stot(ν) without (AD t 0) and with (AD * 0) Debye
term RD(ν) are shown in Figures 7 and 8, respectively.

It is worth noting that the ultrasonic spectra for all alcohol/
water mixtures do not ask for aτ0 process. Most spectra,
therefore, besides theB parameter, which represents the limiting
high frequency part in the attenuation coefficient, require just
two adjustable parameters,Q andD. This is a remarkable result,
since so far theoretical models of noncritical concentration
fluctuations did not adequately apply for the experimental
findings. For this reason the Fixman-Kawasaki model,10-13

designed for critical systems, had been used to empirically
represent the noncritical alcohol/water spectra.5 As briefly
mentioned above, spectra for some mixtures of high alcohol
content exhibit additional Debye type relaxation behavior. A
Debye term is also found for pure alcohols, it is suggested to
be due to structural isomerization or association by hydrogen
bonding of alcohol molecules.

Quite remarkably a reduced number of parameters is also
required for the CiEj/H2O mixtures. Only the C4E1/H2O system

Figure 6. Relaxation time distribution function of the unifying model
(eqs 32 and 33) at different characteristic relaxation timesτê and
relaxation time ratiosτ0/τê.

Figure 7. Ultrasonic excess attenuation spectrum of a 4.9 molar
solution ofn-propanol in water at 25°C.5 The full curve is the graph
of the Rum(ν) spectral term with parameter values Q) 20.7 Å3, D )
1.3.10-10 m2 s-1, ê ) 7.6 Å, andτ0 f ∞ (top). Spectrum of an 8.47 M
aqueous solution of sec-butyl alcohol at 25°C (bottom). Dashed curves
show the subdivision of the spectrum into aRum term (Q ) 8.2 Å3,
D ) 0.67× 10-10 m2 s-1, ê ) 10.1 Å, τ f ∞) and aRD term (AD )
0.046,τD ) 0.23 ns).

Stot(ν) ) Rum(ν) + RD(ν) + Bν (35)

τê ) ê2/(4D) (34)
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needs an additional Debye relaxation termRD(ν) if the dominat-
ing part of the spectra is represented by theRum(ν) function
(Figure 8). The excess absorption spectra of the other liquids
within the (iii) series can be well described by the unifying
model. The C2E1/water mixtures, most of the i-C3E1/water
mixtures, and even some of the C4E1/water mixtures, do not
call for aτ0 process. Hence again, in addition to theB-coefficient
(eq 35), just parametersQ andD are necessary for an adequate
description of various experimental spectra over the frequency
range from 0.1 to 2000 MHz. These results may be taken to
indicate that, in the spectral functions used so far for alcohol/
water and CiEj/water mixtures under consideration, an additional
Debye term was necessary to account for an incomplete
consideration of noncritical concentration fluctuations rather than
representing a specific molecular mechanism.

6. Hydrophobic Effects

The unifying model enables a common view of the results
for the three series of liquids. Values of the parameters of the
model are discussed in ref 9. Here we want to direct attention
to some general trends in the behavior of the characteristic time
τê reflecting the decay of concentration fluctuations by diffusion.
The values ofτê, according to eqs 26 and 34 following from
the diffusion coefficientD and shear viscosityηs data of the
liquids,

within each series of mixture vary in a characteristic manner.
For the constituents with unbranched alkyl group this effect is
illustrated in Figure 9. This plot ofτê data clearly points at three
groups of liquids, differing in the number of carbon atoms per

alkyl group of the nonaqueous constituent. This result also
indicates the minor role which the hydrophilic groups of the
organic molecules play in the dynamics of concentration
fluctuations.

As expected intuitively there exists a relative maximum in
the τê values as a function of mole fractionx. With increasing
alkyl group length the compositionxmax at which this maximum
occurs shifts to smaller mole fraction of the organic constituent.
For a clear view of the concentration fluctuation characteristics
of all liquids under study, in Figure 10 a plot of the maximum
decay timeτêmax ) τê(xmax) for each binary system is given as
a function of the numbern of carbon atoms per alkyl group.
This diagram confirms the uniform concentration fluctuation
properties of molecules with unbranched alkyl groups, exhibiting
a strong increase inτêmax when going fromn ) 2 to n ) 4. It
also clearly shows a substantial effect of branching of the alkyl
groups, particularly for the isomers ofn-butylurea. The maxi-
mum τê value resulting for then,n′-diethylurea solutions is
smaller thanτêmax for n-butylurea by the remarkable factor of
100. For solutions ofn,n-diethylurea and especially of tetra-
methylureaτêmax is even reduced by another factor of 20,
adopting values around 10 ps which is in the order of the
molecular reorientation times.30

The τê data derived from the ultrasonic spectra of aqueous
solutions strongly support the idea of concentration fluctuations
to be substantially promoted by alkyl groups of the nonaqueous
constituent. Effects of isomerization and thus of the steric
arrangement of the hydrophobic groups are also most important
for the formation of a microinhomogeneous liquid structure.
As unbranched alkyl groups are most effective in promoting
long-ranging correlations in fluctuations we suggest that “premi-
cellar” hydrophobic interactions between these groups are the
dominant factor in the molecular dynamics of microheterogenity.
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