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Model of Noncritical Concentration Fluctuations in Binary Liquids. Verification by
Ultrasonic Spectrometry of Aqueous Systems and Evidence of Hydrophobic Effects

A. Rupprecht and U. Kaatze*
Drittes Physikalisches Institut, Georg-August-uiisitéd, Burgerstrasse 42-44, D-37073 @mgen, Germany

Receied: March 12, 1999

This work is based on the experimental evidence from ultrasonic absorption spectra, measured between about
100 kHz and 5 GHz for some series of liquid mixtures with water as a constituent. Since none of the existing
models of noncritical concentration fluctuations appropriately applies for the shape of the existing set of
spectra, a comprehensive theoretical model has been derived which includes the favorable characteristics of
previous theories. In this model, fluctuations in concentration are assumed to equalize not only by diffusion
but, in parallel, also by a specific rate process. In addition, allowance is made for spatial correlations in the
concentration fluctuations. Discussion of the measured ultrasonic spectra in terms of the comprehensive model
evidences the effect from the hydrophobic properties of the nonaqueous constituent of the mixtures upon the
microheterogeneous structure of the liquid.
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During the past years much attention has been directed toward 0 Lk /‘3': _
the microinhomogeneous structure of binary liquids. Interestin . I
the liquid microheterogeneity and its accompanying fluctuations 5’ 3 | / # \\gpw)'..‘.,“Jﬁ_g's(v) -
of thermodynamic parameters does not just spring from its B ° T
import for our fundamental understanding of liquids, including L. \\
aspects of universality and dynamic scaling. It also results from / .
a variety of applications in biophysics, physical chemistry, and O T 3 10 30 100 30 M}'IZ 000

in chemical engineering as well.
The dynamic properties of critical binary systems of non-
associating constituents are well established now. Nevertheless, 2*; " )
C displayed as a function of frequeneyfor a mixture of water and

there appear to exist. three importan_t areas in.whi_ch our present, 1 toxyethoxy)ethanol (E») with mole fractionx = 0.04 of GEs.
knowledge of the microheterogeneity of liquids is still rather The gotted and dashed curves are graphs of a Romesiev'ev term
poor. (i) Theoretical treatments of the dynamic behavior of (eq 3) and a Debye relaxation spectral term (eq 2), respectively. The
critical systems is restricted to the close vicinity of a critical full curve represents the spectral term of the unifying model (eq 22).
point. Only recently the cross-over region between critical and

noncritical systems has been considered both theoretically andis the part of the total attenuation per wavelergttthat exceeds
experimentally:2 (i) Ultrasonic attenuation spectra of critical the high-frequency asymptotic paBv. In eq 1 o is the
mixtures of associating liquids always show contributions with attenuation coefficienty = c4dv is the wavelengthgs is the
relaxation characteristics, in excess of the contribution predicted sound velocity, and denotes a frequency independent coef-
by existing theories of concentration fluctuaticrigiii) Rather ficient. Also presented in Figure 1, for comparison with the
unexpectedly, a multitude of binary aqueous systems exhibit aexcess attenuation spectrum, is the graph of a Debye type
microinhomogeneous structure and display features of noncriti- relaxation spectral terkh (0 = 27v)

cal concentration fluctuations. Among these systems are mix-

Figure 1. Ultrasonic excess attenuation per wavelengiii)dx. at 25

tures of water with monohydric alcohdigoly(ethylene glycol)- Ty
monoalkyl ethersCiE;® tetraalkylammonium bromidestri- Ry(v) = Ap 5 (2
ethylenediaminé,and derivatives of uredAgain, however, the 1+ (wtp)

existing theoretical models do not satisfactory apply for all
measured spectra. Therefore, even theories that had beenvith discrete relaxation timep and with relaxation amplitude

originally designed for the description of critical systéf&? Ap. Obviously, a Debye term cannot account for the measured
have bee.n. emplrlcally used to represent experimental findings data. This is particularly true at high frequencies ¥ ;%)
for noncritical mixtures. where eq 2 predicts am~! behavior, at variance with the

For a noncritical aqueous solution of the alkyl polyglycol experimental data. In conformity with the assumption of a
ether GE, the discrepancy between theoretical predictions and diffusive process, these data in part of the frequency range
measured spectra is illustrated by an example given in Figure decrease rather proportionally¢o*/2, thus indicating that the

1. In that diagram the excess attenuation per wavelenga¢ cause of the sonic relaxation is not a stoichiometrically well
is displayed as a function of frequeney Here defined chemical equilibrium but rather a concentration fluctua-
tion mechanism. For this reason, additionally given in Figure 1

(0h)gye = 04 — By (1) is the graph of the term
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Rra(V) = AR Trdl p(@WTR9) 3) or a diffusive process with diffusion coefficiebt of the order
parameter. The chemical process, associated with an activation
which is based on the prominent theory of noncritical concentra- barrierAH¥, with a reaction volumeAV, and/or with a reaction
tion fluctuations, the RomaneySolov’ev model5-18 Written enthalpy AH, may consist in a jump of a molecule from a
in the format of eq 3Agrsis a frequency-independent amplitude positionT; to another on&,. Frequently it will be related to a
andlrs is a scaling function. The integréks can be given in dimerization reaction as assumed by EAtiBecause to these
an explicit form: presumptions, the time behavior of the fluctuations is controlled

by the differential equation
\ OTrs o

3 WTre — /20T T 1
|07 = 3 — RS RS .

—1In
42 WTps+ 20Tps + 1

2arctan(/2wtgg+ 1) — 2 arctan(/ 2wtz — 1)| (4)

The relaxation time

3¢(T H)/ot = (DV? — 1lrg)¢(F 1) (8)
Spatial Fourier transformation yields
$(@.t) = [L(F t) exp(TG)dr ©)
) with the wave vector. The simpler differential equation
Trs = In/D (5) . .
Ip(a.)/ot = — (1/r))e(q, 1) (10)
is a diffusion time,D is the mutual diffusion coefficient, and

Im is @ minimum interaction length of fluctuations. This empirical follows for the g space. Here
parametety, has been introduced in the theory just to allow for

the explicite form of the scaling function. T =1 T =D Tyt (11)
The spectrum for the 4E,/water mixture shown in Figure 1
also is only incompletely represented by the Romarselov’ev whereq = [q]. In isotropic liquids the correlations in fluctuations

term Rgg(v). In particular, the width of theRrg(v) term is will depend onr = [f| only. Equation 10 is solved by
insufficient to adequately account for the measured data, exponentials with characteristic decay timgfor each Fourier
extending over a broader frequency band. It has been showncomponent

recently that the width of theRrs term increases if spatial . .

correlations of concentration fluctuations are taken into account, #(q.t) = f(g) EXP(_UTg) (12)
which in the original RomanovSolov’ev theory are assumed R

to be absent. Even the consideration of such correlations, The weight functiori(q) is the Fourier transform of the spatial
however, does not result in a spectral term that allows for a correlationsg(r,0) in the fluctuations at time¢ = 0. Hence
satisfactory description of all existing ultrasonic attenuation Suitable initial conditiong(r,0) allowf(q), and thus the desired
spectra under consideration. This situation, and also the need#(a.), to be calculated. Romanov and Solove¥ in their
for the somewhat artificial, parameter in the original Ro-  model neglected spatial correlations of fluctuations and took
manov-Solov’ev theory, has prompted us to rederive a theoreti- N

cal model of concentration fluctuations and of their effects in Prg(r,0) 0 6(r) < frg(q) = constant (13)
the ultrasonic attenuation spectra of binary liquids. Here we o ) )
present a comprehensive treatment, taking into account the Montrose and Litovit# proposed an exponential decay with
merits of the previous theoriéd5-2 It turned out that this model ~ characteristic lengtly

allows for a uniform description of all broadband ultrasonic N nn
spectra under investigatién® Applying the comprehensive ¢ (r,0) U exp(=r/&) < fy (o) U (1 + (a8)?) © (14)
model, we also found unexpected correlations between the ) )
tendency of an aqueous system to form a microinhomogeneous ENd@° and Kihnel et al’ preferred an OrnsteinZernike
structure and the hydrophobic properties of the second constitu-ansatz"

ent of the mixture. These correlations are also briefly discussed

in this article. ¢e(r,0) O (Ur) exp(-r/&) <= Fe(a) O (1 + (a§)) " (15)
2. Concentration Fluctuation Model Here we propose the weight function
Let p(f, t) denote an order parameter which represents the ?(q) 0 (14 0.16465) + 0_25(‘_.15)2)—2 (16)

fluctuation amplitude of the local structure at timmaround the

point T. For the binary liquids under consideration @ most  ysing this function the long range correlations in fluctuations

concentratiore(r,t) from the meart. Hence means that, at long distancesx &), where direct interactions
- - _ between two “particles” can be neglected, correlations are
p(T.) =c(r.) —¢ 6) mediated indirectly by interactions with neighboring “par-
The time dependence of local fluctuations may then be expressedicles”?® This assumption has been proven useful in a recent
by the autocorrelation function of the order parameter description of concentration f_Iuctuatlons in agueous solutions
of tetraalkylammonium bromid€syhere long ranging Cou-
o(T 1) = [p(T ,t)p(6,0)|][|]p(6,0)|2|:| (7 lombic forces act their influence on the spatial distribution of

“particles”. In close similarity to the Montroset.itovitz model°

Changes in the local structure of the liquids are assumed toshort range correlations are considered in eq 16 by a nearly
be enabled along two different pathways, following either an exponential decay at < &. In Figure 2 thef(g) function (eq
elementary chemical reaction with discrete relaxation time  16) is compared to the corresponding weight functityga)
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q Figure 3. Romanow-Solov'ev amplitude parameteédr of aqueous

Figure 2. Relative weights of the spectral contributions at wave number Solutions of tetras-propylammonium bromide at 2% displayed as a

q displayed for the present modé) {ull curve, eq 16) as well as for function of the equilibrium mole fractioi, of salt. Figure symbols

the Montrose-Litovitz (fu., dotted curve) and Endd( dashed curve) denote data derived from ultrasonic attenutation spécitee dashed
model. curve represents the prediction from eq 23.

Q T %% (22)
0 (1+0.164% + 0.2508))° 1 + 0’z

andfg(g) of the Montrose-Litovitz and Endo models, respec- R,.(V) =
tively. As will become evident below, by the particular choice m

of the coefficients in thef(q) function the present model

combines an OrnsteirZernike behavior of long range interac- The amplitude paramet&) is assumed to be largely given
tions with the integrability of the scaling function, without the  py the RomanovSoloviev amplitude factdf6 Qg which,
need for the introduction of a somewhat artificial minimum  according to the equation

interaction lengtH, (eq 5).

Assuming a Debye density of statege?/(272), for the pcngB V2 [ h
distribution of wave numberg on the surface of a sphere of Qr= 8 _2(V - —) (23)
volumeV, the spectral densityioX(w)|2Cof fluctuationsdX(F,t) g’ Cp

of a thermodynamic quantit can be calculated according to

linear system theory is related to thermodynamic quantities. In eqa8 the density,

ks the Boltzmann constant, the absolute temperatur¥,the

) molar volume, andA and ¢, are the instantaneous thermal
JoX(w))*00 — ﬁ, Re(¢(q,w)) dg (17) expansion coefficient and specific heat at constant pressure,
respectively. The double-primed quantities

Here ¢(q,w) is the Fourier transform ap(q,t). Hence g = 32G0/82X2, = 82V0/82X2, ' = 92 HO/BZXZ (24)
- R T N .
Rep(q.w) = if(q) — (18) are the second derivatives of the Gibbs free enthalpy, molar
2n T volume, and molar enthalpy, respectively. The subscript “0” is

used to indicate that the values of the thermodynamic quantities
and have to be taken without contributions from fluctuation. Quantity
%, denotes the equilibrium mole fraction of the dispersed phase,
s the nonaqueous constituent in the mixtures under consideration.
DBX(“’)' DD 73 fo f(Q) 2 2dq (19) The calculation of second derivatives from experimental data
T is doubtless a difficult attempt. Nevertheless, for various liquid
mixtures Qg data derived from eq 23 have been found in
reasonable agreement with experimental findings from ultrasonic
attenuation spectromet®}=2” As an example, th€g-versus-
%o relation for aqueous tetmapropylammonium bromide solu-
tions’ is displayed in Figure 3 indicating that the predictions
from the thermodynamic equations (eqs 23 and 24) fairly well
fit to the relaxation measurements. Following Montrose and
Litovitz1® there may exist another contributi@s due to the
relaxation with identical frequency behavior of the shear

OX(@) = y(@)0¥(w) (20) viscositys. Assuming a linear superposition
Q=Qr+ Qs (25)

The integral on the right hand side of this relation exists only
if toward high wavenumberfq) decreases more rapidly than
g2 For this reason, in previous theoriés1820integration has
been performed over the interval from 0 to a maximum value
Omax This value has then been interpreted as to be due to a
minimum interaction lengtt, = 27,5, as mentioned afore.

Consider 6X(w) the response of a linear system to a
harmonically oscillating driving forcéY(w) so that

with the complex susceptibility = y' + iy"". The fluctuation
dissipation theorem yield$

follows.
" S0\ (2 Since atr > & the spatial correlations in fluctuations are
2" HoloX(@)I T 1) assumed to follow the OrnsteiZernike ansatz, the relation
relating the imaginary part of the susceptibility to the spectral _
J arey.b PIDIY P § = kg T/(677,D) (26)

density of the fluctuations iX.

by Kawasaki® and Ferrefl® may be used to relate the

characteristic correlation lengt§ to the mutual diffusion
Application to compressional waves leads to the contribution coefficient. Equation 26 is identical with the Stokesinstein

of this “unifying model” of concentration fluctuations to the relation describing the diffusion of a spherical particle of radius

sonic attenuation per wavelength. It can be expressed by the& in a liquid with shear viscositys. Utilizing eq 26 there are

spectral term just three unknown parameters leftRan(v), namelyQ, D, and

3. Model Spectral Function
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Figure 4. Shape of the relaxation spectral terms of the unifying model Figure 5. Shape of the relaxation spectral terms of the unifying model
(Rum, Gmax— 0) the modified version of this modeR{,, Gmax < ®) as (Rum), the Montrose-Litovitz (Ru.), and the EndoRg) model. See

well as of the originalRzg) and the extended Romane®olov'ev Rec) Figure 4 for the meaning ofs.

model. Parametews denotes the frequency of maximum excess

attenuation (df)ex/dv = 0, B(oh)exdd? < O atwy). CalculatingR?,, of the unifying model also almost agrees wWiRkii(v) atv > vs

gmax has been choosen so tHal, ~ Re. in accordance with our expectations. Integration over the

completeq space @max — ©), however, results in significant
70. The latter quantity can be left out of consideration if no changes in the high frequency part of the spectral function
process with discrete relaxation time plays a significant role (Rim(v) > R(v), v > vg), indicating that highy components
within the concentration fluctuation scheme. The values for the in the fluctuations add noticeable contributions to the high
diffusion coefficientD derived from ultrasonic spectra may be frequency part of the absorption spectrum. As Romanov and
compared to data that have been derived from other measureSolov’ev already pointed out in their pioneering papef

ments, e.g., NMR studies. The amplitude parameerin spectral functions that are based on the assumption of a
principle, can be verified by the thermodynamic measurements minimum interaction length,, therefore, apply only up to the
using eq 23. frequencyys of the maximumR(v) value.

In Figure 5 the model spectral functioRsm(v), Ru. (v), and
Re(v) from the unifying model as well as the Montrose-Litovitz
and the Endo theory, respectively, are presented. The three
functions nicely agree at < vs. As a result of the assumption
of an Ornsteir-Zernike behavior also for small interactions, in
conjunction with the assumption of a minimum interaction
lengthly,, in the Endo modeRe(v) exhibits significantly smaller
values atv > vsthanRym(v) andRy. (v). Figure 5 additionally
indicates that the unifying model, up to high frequencies,
%rovides an excellent approximation of the predictions by the
Montrose-Litovitz theory.

The effect of a maximum wave vectgtax < « in the spectral
function is illustrated by Figure 4 where graphsRyf(v) are
presented for both a finitgmaxand also folgmax— . Because
no analytical form exists for the integral in the spectral function
(eq 22), the values oRy,m have been calculated numerically
using the Romberg methd8For this purpose a parameigy
has been introduced up to which the calculation of the integral
was performed. In order to verify that a sufficiently high
value had been chosen in the calculations, we always made sur
that use of a largegy did not affect the spectral function within
the frequency range under consideration. For the numerical

calculations the substitutions 4. Relaxation Time Distribution of the Fluctuation Model

_ 2 -1 _ -1 _ Effects from the simultaneous action of the diffusive process
Toy = Do)~ =(qus) ~» v= TqM/TO @7) and the reaction with relaxation timg may be additionally
illustrated by the behavior of the relaxation time distribution
lead to the following form of eq 22 function Gym corresponding with the spectral functi®gm. Let
7* denote a suitably chosen relaxation time, erd..= 1 ns
here, and = In(z/t*). Then Gyn is defined by
I . — 1
Ri(1) = 32 im | (@) J,

Rum(V) = Q L/Z)‘” Gum(r)Ldr (30)

2 2 1+ 2
_ u R u2+ v zdu (28) (w7)
(92 + 0.1640u + 0.282)% (U + v)* + (w1, ) with
which has proven an adequate formulation also in the evaluation f°° G, (Ndr =1 (31)
of measured spectra. o ~um
Also displayed in Figure 4 for comparison wilm(v) are For this unifying modelG,m, can be given in an analytical

the Romanov-Solov’ev functionRerg(v)1>1¢ and the spectral  form
function Reef(v) representing the RS model as extended for the
effect of spatial correlations of fluctuatiohg.o enable an easy — <+ < (P24 )1
comparison of their shape normalized spectral terms are shown Gur() =0 at T =7 = (D) (32)
in Figure 4. Due to the consideration of spatial correlations in
the extended model, tH«(v) term in the low frequency range

(v < vg) obviously extends over a broader frequency band than G, =

the Rrg(v) function. Because both spectra are based on an " "
Ornstein-Zernike behavior of long range correlatiom(v) . [€(1— €ty

and Rec(v) display the same properties at< vs. Since no Gum[er +0.328¢.€ (1" — €l ))1/2+ (LUt — €17y
additional process with relaxation timegis taken into account £ 0 £ 0
here o — o, 7y = 7¢), the modified spectral function (33)

and, using the substitutiop— ((z~* — 7,")/D)2

otherwise. In eq 33G;,, is an amplitude following from
R;klm(’V) = Rum(V1 Omax Tg = Tq) (29) relation 31 and
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7. = £°/(4D) (34)

is a characteristic relaxation time.

The relaxation timerp of the stoichiometrically defined
process constitutes the maximum time constant of the model.
A prospective slower decay by diffusion of local fluctuations
in concentration will be short circuited by thg mechanism.
Relaxation times > 7o, therefore, are missing B, Parameter
7z, as defined by eq 34, is another characteristic relaxation time
of the model. It represents the decay time for which the integrand
of eq 19 adopts its maximum value. Hence, to the corresponding
component (with wave vectobgz) "2 in the fluctuations) the
strongest weight is given in the integral of tRgy(v) function
(eq 22). The characteristic time thus defines the location of
Gum Within ther space, whereas determines the shape of the
distribution function.

At some parameter values:(to/t:) graphs of the relaxation
time distribution functionGym(r) are presented in Figure 6. In
order to show the relative importance of the different molecular

mechanisms on realistic conditions, parameter values as resulted

from ultrasonic spectra for aqueous solutions of n-butylurea have
been selected hefeFor the 0.8 molar solutionz§, 7o/t: = 53

ns, 5.3) a rather broad relaxation time distribution, as charac-
teristic for diffusive processes, emerges. The cutoff bydhe
process around = 2.3 plays only an insignificant role in the
distribution function. Toward higherbutylurea concentrations,
the fluctuation correlation length increases and the diffusion

mechanisms slow down. Consequently, the characteristic re-

laxation timer substantially shifts to higher values. As a result
the decay of the concentration fluctuations is more and more
governed by the stoichiometrically defined process with almost
concentration independeny, corresponding with a rather sharp
cut off in Gym(r) nearr = 3 (Figure 6).

5. Comparison with Ultrasonic Spectra of Binary Liquids

In order to verify the predictions of the unifying model we
have fitted theR,n(v) function to broadband ultrasonic spectra
as measured for three series of binary liquids (i) aqueous
solutions of urea and of its derivatives, (ii) monohydric alcohol/
water mixtures, and (iii) mixtures of water with poly(ethylene
glycol)monoalkyl ethers (). Depending on the hydrophobic/
hydrophilic balance of the organic molecules, the tendency
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Figure 6. Relaxation time distribution function of the unifying model
(egs 32 and 33) at different characteristic relaxation timesnd
relaxation time ratioso/e.
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solution ofn-propanol in water at 28C .5 The full curve is the graph
of the Rum(v) spectral term with parameter values=920.7 A3, D =
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Figure 7. Ultrasonic

1.3.10°m?s 1, £=7.6 A, andro — = (top). Spectrum of an 8.47 M
aqueous solution of sec-butyl alcohol at’Z5(bottom). Dashed curves
show the subdivision of the spectrum intcRa, term Q = 8.2 A3,
D=0.67x102°m2s? £=10.1 A 7 — o) and aR, term (A, =
0.046,7p = 0.23 ns).

The spectra of both additional series of liquids can be also
nicely described by the unifying model. Some mixtures call for
an additional Debye term (eq 2). Also the ultrasonic spectra of
some alcohols under investigatforiollow a Debye type
relaxation. For this reason, the spectral function

Sol¥) = Ryn(v) + Rp(v) + By

has been used to represent the total absorption per wavelength

(39)

toward a microinhomogeneous structure of the aqueous systemsgpectra of the alcohol/water and theE@vater mixtures.

is expected to vary significantly within each series. This is
particular true for the monohydric alcohol/water an&j@vater
mixtures which include completely miscible systems and also
such with miscibility gap.

Besides urea itself the first afore mentioned series includes
methyl-, ethyl-, n-propyl-, and n-butylurea, as well as the
isomers of the latter, tetramethyln,n-diethyl-, and n,n'-

diethylurea. The sonic parameters for the solutions of this series,

with solute concentrations between 0.5 and 10.5 mol/L, are
detailed discussed elsewhér&Ve shall, therefore, focus on

Examples for experimental spectra and the corresponding model
function Se(v) without (Ap = 0) and with @&p = 0) Debye
term Rp(v) are shown in Figures 7 and 8, respectively.

It is worth noting that the ultrasonic spectra for all alcohol/
water mixtures do not ask for & process. Most spectra,
therefore, besides tigparameter, which represents the limiting
high frequency part in the attenuation coefficient, require just
two adjustable parameterf3,andD. This is a remarkable result,
since so far theoretical models of noncritical concentration
fluctuations did not adequately apply for the experimental

some general trends in the spectra here. Most interesting, thefindings. For this reason the Fixmaiawasaki modet®-13
frequency dependent excess attenuation per wavelength for alidesigned for critical systems, had been used to empirically

solutions investigated within this first series can be well
represented by the unifying model relaxation functiRm(v).
Only with the solutions ofn-propylurea andn-butylurea a

represent the noncritical alcohol/water speétras briefly
mentioned above, spectra for some mixtures of high alcohol
content exhibit additional Debye type relaxation behavior. A

stoichiometrically defined process appears to be present. TheDebye term is also found for pure alcohols, it is suggested to

experimental spectra of the other series (i) solutions can be well
described analytically assuming — oo, thus applying the
Romanow-Solov’ev model in its extended versidR.(v) to
account for spatial correlations of concentration fluctuations.

be due to structural isomerization or association by hydrogen
bonding of alcohol molecules.

Quite remarkably a reduced number of parameters is also
required for the ¢E;/H,O mixtures. Only the ¢Ei/H>0 system
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Figure 8. Ultrasonic excess attenuation spectrum of an 8.47 molar
aqueous solution ofecbutyl alcohol (tof) and of a 2.6 M aqueous
solution of 2-butoxyethanol (bottdin25 °C. Dashed curves show the
subdivision of the spectra into a Debye term ang,aterm. The full
curves represent the sum of both relaxation terms, respectively.
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Figure 9. Characteristic relaxation time: versus mole fractiox of

the nonaqueous constituent for some aqueous systems @t Z2E1,
2-ethoxyethanol; C4E1, 2-butoxyethanol; C4E2, 2-(2-butoxyethoxy)-
ethanol; nEUn-ethylurea; nPUn-propylurea; nBUn-butylurea.

needs an additional Debye relaxation téRg{y) if the dominat-

ing part of the spectra is represented by Rg(v) function
(Figure 8). The excess absorption spectra of the other liquids
within the (iii) series can be well described by the unifying
model. The GEj/water mixtures, most of the i4E;/water
mixtures, and even some of theE;/water mixtures, do not
call for atp process. Hence again, in addition to Breoefficient

(eq 35), just parametefd andD are necessary for an adequate
description of various experimental spectra over the frequency
range from 0.1 to 2000 MHz. These results may be taken to
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Figure 10. Maximum characteristic relaxation timesmax for some
series of mixtures of water with organic constituents plotted against
the numben of carbon atoms per alkyl group of the organic molecules.
The following shorthand notations are used: Eth, ethandProp,
n-propanol; i-Propjso-propanol; t-Bu tert-butanol; C2E1, 2-butoxy-
ethanol; iC3E1liso-propoxyethanol; C4E2, 2-(2-butoxyethoxy)ethanol;
n-EU, n-ethylurea; n-PUn-propylurea; n-Bun-butylurea,n,n-DEU,
n,n'-diethylurea; n,n-DEUn,n-diethylurea; TMU, tetramethylurea.
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alkyl group of the nonaqueous constituent. This result also
indicates the minor role which the hydrophilic groups of the
organic molecules play in the dynamics of concentration
fluctuations.

As expected intuitively there exists a relative maximum in
the ¢ values as a function of mole fraction With increasing
alkyl group length the compositiog,ax at which this maximum
occurs shifts to smaller mole fraction of the organic constituent.
For a clear view of the concentration fluctuation characteristics
of all liquids under study, in Figure 10 a plot of the maximum
decay timerszmax = 7z(Xmax) for each binary system is given as
a function of the numben of carbon atoms per alkyl group.
This diagram confirms the uniform concentration fluctuation
properties of molecules with unbranched alkyl groups, exhibiting
a strong increase in:max When going fromn =2 ton = 4. It
also clearly shows a substantial effect of branching of the alkyl
groups, particularly for the isomers ofbutylurea. The maxi-
mum ¢ value resulting for then,n’-diethylurea solutions is
smaller thanrzmax for n-butylurea by the remarkable factor of
100. For solutions oh,n-diethylurea and especially of tetra-
methylurear:max iS even reduced by another factor of 20,
adopting values around 10 ps which is in the order of the
molecular reorientation times.

The 7¢ data derived from the ultrasonic spectra of aqueous

indicate that, in the spectral functions used so far for alcohol/ Solutions strongly support the idea of concentration fluctuations
water and E/water mixtures under consideration, an additional 0 P substantially promoted by alkyl groups of the nonaqueous
Debye term was necessary to account for an incomplete Constituent. Effects of isomerization and thus of the steric
consideration of noncritical concentration fluctuations rather than @rrangement of the hydrophobic groups are also most important
representing a specific molecular mechanism. for the formation of a microinhomogeneous liquid structure.
As unbranched alkyl groups are most effective in promoting
long-ranging correlations in fluctuations we suggest that “premi-
cellar” hydrophobic interactions between these groups are the

The unifying model enables a common view of the results o minant factor in the molecular dynamics of microheterogenity.
for the three series of liquids. Values of the parameters of the

model are discussed in_ref 9. Here we want to direct a_ttf_ent_ion References and Notes
to some general trends in the behavior of the characteristic time
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