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We calculate the rate constant for the reaction•H + CH3OH f H2 + •CH2OH both in the gas phase and in
aqueous solution at 298 K. To accomplish this, we apply two different methods to estimate the electronic
energies along the reaction path. First, we use specific reaction parameters (SRP) to mix the exchange and
correlation energies in Becke’s adiabatic connection theory (AC-SRP) to optimize the model for the specific
bond-breaking, bond-making combination under consideration. Second, we obtain the potential energy using
a linear combination of the Hartree-Fock method and AM1 with specific reaction parameters (HF||AM1-
SRP); in this linear mixing method, eight NDDO parameters and the linear mixing parameter are simultaneously
optimized by a genetic algorithm. To calculate the reaction rate constants in solution, the solute atomic charges
are represented by class IV charges, the electric polarization of the solvent is determined from the electronic
charge distribution of the solute self-consistently, and the solute electronic, solvent electric polarization terms
are augmented by first-solvation-shell terms calculated by the SM5.42 solvation model. Reaction rate constants
of the hydrogen transfer reaction and the kinetic isotope effects are studied both in the gas phase at 200-
2400 K and in aqueous solution at 298 K. The AC-SRP and HF||AM1-SRP methods, although quite different,
give qualitatively similar pictures of the reaction at the separable equilibrium solvation level; however, it is
found that a full equilibrium solvation path (ESP) calculation, which involves optimization of structures along
the reaction path in the presence of solvent, is essential to reproduce the speedup of the reaction due to
solvation. The final calculation, based on the HF||AM1-SRP electronic structure calculations and ESP dynamics
with variational transition state theory in curvilinear coordinates with the microcanonical optimized
multidimensional tunneling approximation, agrees well with experiment not only for the speedup due to the
solvation but also for the•D + CH3OH and•H + CD3OH kinetic isotope effects.

1. Introduction

Recent years have seen great progress in modeling solvation
effects on chemical reactions, especially ionic reactions1-3 and
polar rearrangements.2-4 Radical chain reactions, in which a
radical abstracts an atom from a molecule which is thereby
converted to a radical, are an important class of reactions that
has been less well studied.5 Such bimolecular radical substitution
(SR2) reactions typically have smaller solvent effects than ionic
reactions, and thus they provide a sensitive test of theory.

Mezyk and Bartels6 have used pulse radiolysis (in which an
electron beam is passed into the liquid to produce the•H atoms)
and EPR to determine the rate constant (k) of

in aqueous solution, and since this reaction rate has been well
studied in the gas phase, it provides an opportunity to test
theories of radical kinetics in solution. Mezyk and Bartels fit
their results to an Arrhenius expression that yieldsk ) 5.0 ×
10-15 cm3 molecule-1 s-1 at 298 K.6 They evaluated the rate
enhancement compared to the gas phase as 23%, but we shall
reanalyze the evidence for this in section 4.

A particularly intriguing question is whether there is a large
hydrophobic acceleration due to association of the hydrophobic

hydrogen atom with CH3OH at the transition state. Mezyk and
Bartels postulated that if a large hydrophobic acceleration is
present, it must be largely canceled by liquid-phase quenching
of the gas-phase tunneling contribution, since the net solvent
effect is small.6 It is important that any theoretical treatment
aiming to resolve these effects and explain the solvent effect
includes both tunneling and hydrophobic effects. The present
treatment is based on variational transition state theory (VTST)
with multidimensional tunneling (MT) contributions,2,7-10 as
extended in recent work on liquid-phase reactions.11-14 (VTST/
MT is also called semiclassical VTST or SC-VTST.) Solvation
free energies are estimated by the SM5.42R15 and SM5.42
solvation models, which include not only the hydrophobic effect
but also electrostatic effects, dispersion, cavitation, and other
effects of the perturbed solvent structure in the vicinity of the
reacting solutes. The SM5.42R model is based on gas-phase
geometries and gas-phase reaction paths, and the SM5.42
model16 is obtained by relaxing these prescriptions (that is, by
optimizing stationary point geometries and defining reaction
coordiantes in the presence of solvent).

Section 2 presents the theoretical and computational methods
and reports the results. Section 3 summarizes the experimental
values. Section 4 presents a comparison of theory with experi-
ment along with additional discussion, and section 5 offers
concluding remarks.

•H + CH3OH f H2 + •CH2OH (1)
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2. Methods and Results

To calculate the reaction rate with VTST/MT in aqueous
solution, we first adopt the separable equilibrium solvation (SES)
approximation presented in a previous paper.14 In the SES
approximation, one first calculates a reaction path17 (RP) in the
gas phase and then solvates the system at geometries along the
gas-phase RP (including reactants, products, and saddle point)
by adding the standard-state molar free energy of solvation18

to the gas-phase potential energy.
The canonical variational theory (CVT) rate constant at

temperatureT for a bimolecular reaction can be written as11

where k̃ is Boltzmann’s constant,R is the gas constant,h is
Planck’s constant,C0 is the concentration corresponding to the
standard state (taken here as 1 mol/L),G0(R|T) is the liquid-
phase standard-state molar free energy (of activation) of
reactants at temperatureT, andG0(CVT|T) is the liquid-phase
standard-state molar free energy of the canonical variational
transition state at temperatureT. The latter is given by

whereG0(GT,s|T) is the liquid-phase standard-state molar free
energy at temperatureT of a generalized transition state (GT)
located at a values of the reaction coordinate. In the SES
approximation, the reaction coordinates is taken as the signed
distance from the gas-phase saddle point along the gas-phase
minimum energy path in mass-scaled coordinates.8,11 The
standard-state free energy of the liquid-phase system is given
by the sum of the Born-Oppenheimer potential energyV(RX)
of the solute in the gas phase, the internal free energy of the
solute molecule,GRVE(X|T), and the standard-state free energy
of solvation∆GS

0(RX|T) with the same solute geometry,RX:

where X can be either reactants (R) or the generalized transition
state (GT) ats. Note that the sum of the first and third term on
the right-hand side of eq 4 is the potential of mean force19

W(RX|T); hence,

The reaction rate constants in aqueous solution are also
calculated using the equilibrium solvation path (ESP) ap-
proximation. In this case, the geometries of the stationary points
are optimized in the presence of solvent, and the reaction path
is calculated using the potential of mean force, which is the
sum of the gas-phase potential and the free energy of solvation,
both considered as functions of all the degrees of freedom of
the solute.

To calculate tunneling effects in either the SES or the ESP
approximations, we employ the zero-order canonical mean shape
(CMS-0) approximation13 with the small-curvature tunneling
(SCT) and large-curvature tunneling (LCT) approximations.10

The SCT calculations are equivalent to tunneling along the
reaction path with an effective potential and effective reduced
mass. In the CMS-0 approximation, the effective potential for
tunneling at temperatureT is given by

where the classical effective potential is given by

The effective reduced mass depends on the masses of the
particles participating in the reaction coordinate and on the
curvature of the reaction path in isoinertial coordinates. The
LCT calculation involves both tunneling along the reaction
coordinate and tunneling along paths that cannot be referred to
the reaction coordinate; the latter follow straight-line cuts from
the reactant valley to the product valley on the concave side of
the curved reaction path in isoinertial coordinates. We recall
that the most reliable estimate of the tunneling contributions is
obtained by using the larger of the SCT and LCT tunneling
probabilities at each total energy; this yields the microcanonical
optimized multidimensional tunneling (µOMT) result.10 The gas-
phase reaction rate is calculated in the same way except with
∆GS

0(s|T) set to zero.
To include the solvation effect along the reaction path

completely, we would need to consider the nonequilibrium
solvation (NES) effect, but the present work is limited to
equilibrium solvation effects. The SES calculations involve the
SM5.42R solvation models, and the ESP calculation involves
SM5.42. All parameters of the SM5.42 model are taken to be
the same as in the SM5.42R.

The electronic structure methods used here are partly empiri-
cal. An important methodological point, though, is that after
the semiempirical parameters are determined, the gas-phase
electronic energies, the solvation free energies, and the effective
potentials used in the dynamics calculations and the dynamics
calculations themselves are generated directly from electronic
structure calculations of energies, energy gradients, energy
Hessians, free energies, free energy gradients, and free energy
Hessians without the intermediary of multidimensional fits to
any of these quantities. Approaches that avoid global or
semiglobal multidimensional fits of the potential energy function
but instead obtain the required energies, gradients, and Hessians
directly from electronic structure calculations are called direct
dynamics.9 For the present paper, all gradients were calculated
analytically, and all Hessians were generated by finite differ-
ences of gradients.

Throughout this paper, the zero of potential energyV is
chosen such thatVRP(s ) -∞) equals zero.

2.1. Gas-Phase Reaction Path and Potential Surface.The
first consideration is how many of the hydrogen atoms on the
methanol molecule need to be considered for abstraction. The
study of Lendvay et al.20 indicates that abstracting the alcoholic
hydrogen occurs with a much smaller rate than abstracting the
methyl hydrogen because of its larger bond strength. Therefore,
the alcoholic hydrogen abstraction is not considered in the
present work. We note next that the three hydrogen atoms on
the carbon are not all equivalent because they differ in the
dihedral angles they make with the O-H hydrogen. Geometry
optimization to search for a transition state in which the
abstracted hydrogen atom makes a dihedral angle of 180° with
the O-H hydrogen (the anti configuration) always results in a
second-order saddle point, also called a hilltop, i.e., a stationary
point with two imaginary frequencies. A first-order saddle point
(a saddle point with one imaginary frequency) is found for
abstracting either gauche hydrogen.

In reaction 1, a C-H bond is broken and an H-H bond is
formed. Therefore, the classical energy of reaction is given by

Veff,c(s) ) VRP(s) + ∆GS
0(s|T) (7)

∆E ) De(C-H) - De(H-H) (8)

kCVT(T) ) k̃T

hC0
exp{-[G0(CVT|T) - G0(R|T)]/RT} (2)

G0(CVT|T) ) max
s

G0(GT,s|T) (3)

G0(X|T) ) V(RX) + GRVE(X|T) + ∆GS
0(RX|T) (4)

G0(X|T) ) W(RX) + GRVE(T) (5)

Veff(s) ) Veff,c(s) + GRVE(s|T ) 0) (6)
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whereDe(A-B) is the equilibrium dissociation energy of the
A-B bond. Bauschlicher et al.21 calculated the equilibrium C-H
bond energy of methanol to be 102.4 kcal/mol using a modified
coupled-pair functional (MCPF) approach; applying a correction
of 2 kcal/mol, they then estimated the equilibrium C-H bond
energy to be 104.4 kcal/mol in the complete CI limit. The H-H
equilibrium bond energy is 109.5 kcal/mol, as calculated by
Kolos and Wolniewicz.22 We use these values to estimate the
zero-point-exclusive energy of the reaction (∆E) to be -5.1
kcal/mol.

We then estimate the classical (i.e., the zero-point-exclusive)
gas-phase barrier heightVq based on the experimental activation
energy. Tsang’s evaluation23 of the experimental data leads to
a temperature-dependent Arrhenius activation energy of

where K denotes a Kelvin,R is the gas constant, andT is
temperature. This leads to a phenomenological energy of
activation of 7-11 kcal/mol over the temperature range 500-
2000 K. In our experience with reactions studied previously, a
very rough estimate of the classical barrier height isEa(800 K)
( 2 kcal/mol, which yields 8( 2 kcal/mol. Lendvay et al.20

obtained slightly higher values, 11.34 and 10.55 kcal/mol, from
bond-addivity-corrected Møller-Plesset fourth-order perturba-
tion theory24 (BAC-MP4) and from the Gaussian-2 method25

(G2), respectively. From Table 1, we notice that other ab initio
methods also predict too high a barrier height, ranging from
10.5 to 22 kcal/mol. (One result of the present dynamics
calculations, which will employ a classical barrier height of∼8
kcal/mol, will be to allow us to make a better determination of
what value (or range of values) ofVq is most consistent with
existing experiments. We will return to this question in section
4.1.)

To carry out an accurate dynamics calculation, it is required
to find a level of electronic structure theory that gives an
accurate barrier height (Vq) and Born-Oppenheimer energy of
reaction (∆E). We examined several ab initio methods, including
Hartree-Fock theory,26 second-order Møller-Plesset perturba-
tion theory27 (MP2), quadratic configuration interaction based
on single and double excitations28 (QCISD), and the coupled-
cluster method with single and double excitations29 (CCSD).
We also employed several density functional theory30 (DFT)
methods and hybrid Hartree-Fock/density functional theory
methods based on Becke’s three-parameter adiabatic connec-
tion31-33 method. (Becke uses density functional theory plus
an adiabatic connection to develop an admixture of Hartree-

Fock, local density functional, and nonlocal density functional
approximations to the Fock-Kohn-Sham operator. This pro-
vides an alternative to the MP2, QCISD, and CCSD approaches
for the inclusion of electron exchange and electron correlation.)
For these methods, the MIDI!,34 6-31G*,35 correlation-consistent
polarized valence double-ú36 (cc-pVDZ), and correlation-
consistent polarized valence triple-ú37 (cc-pVTZ) basis sets were
used. None of the “pure” methods gives a good approximation
to the classical barrier height and the energy of the reaction.
We then carried out the reaction rate constant calculations using
two new approximations to estimate the free energy profiles
and the other information required along the reaction path and
tunneling paths. The first approximation is based on a new set
of parameters for Becke’s adiabatic connection method. The
second approximation is based on a linear combination of ab
initio Hartree-Fock and semiempirical AM1 theories. These
new methods are explained in the next two sections.

2.1.1. Adiabatic Connection Method with Specific Reaction
Parameters (AC-SRP).Table 2 gives energetic and geometric
information from several AC calculations. We see that one of
the methods (i.e., B3PW91/6-31G*) predictsVq and∆E values
close to our estimates of 8 and-5 kcal/mol, respectively. We
therefore took this as a starting point for improvement. To
improve the AC potential energy surface for reaction 1, we
developed a semiempirical strategy that we will call AC-SRP
to denote using specific reaction parameters (SRP) in the AC
method. In particular, we use Becke’s three-parameter (B3)
exchange-correlation operator, which is given by

whereFX
Slater is the Slater local exchange functional,37 FX

HF is
the nonlocal exchange energy operator of Hartree-Fock theory,
∆FX

Becke is Becke’s 1988 gradient correction38 to Slater’s
exchange functional, and∆FC

PW91(NL) and FC
PW91(L) are the

Perdew-Wang 199139 nonlocal and local correlation energy
functionals, respectively. The optimized values ofA, B, andC
suggested by Becke are 0.8, 0.72, and 0.81, respectively.31 These
values were optimized in an average way for a small training
set of experimental thermochemical data. For a specific reaction,
however, these parameters may not be optimum. For reaction
1, the barrier height (Vq) varied inversely withA and C and
directly with B, while ∆E varied directly withA and C and
inversely with B. Therefore, because the B3PW91/6-31G*
values of bothVq and ∆E are lower than the desired values,
more than one parameter needs adjustment to obtain agreement
with experiment. After extensive experimentation, we concluded

TABLE 1: Born -Oppenheimer Barrier Height (Vq), Energy
of Reaction (∆E), Bond Energies (De), and Saddle-Point
Interatomic Distances (Rq

AB) Calculated with ab Initio
Methodsa

theory Vq ∆E De(C-H) De(H-H) Rq
H-H Rq

C-H

HF/6-31G* 21.7 -1.2 80.6 81.8 0.960 1.351
MP2/6-31G* 20.2 2.4 95.1 92.7 0.928 1.373
QCISD/6-31G* 16.6 -2.1 95.3 97.4 0.963 1.358
HF/cc-pVDZ 19.8 -2.7 79.0 81.7 0.972 1.346
MP2/cc-pVDZ 14.4 -1.0 97.3 98.3 0.941 1.355
QCISD/cc-pVDZ 10.5 -5.7 97.9 103.6 0.984 1.326
CCSD/cc-pVDZ 10.8 -5.5 98.1 103.6 0.980 1.328
HF/cc-pVTZ 20.1 -4.1 79.6 83.7 0.967 1.334
MP2/cc-pVTZ 14.3 -1.9 101.7 103.6 0.928 1.342

a This table contains only gas-phase quantities. The energies exclude
zero-point contributions and are in kcal/mol; bond lengths are in
angstroms. The bond distances shown in Tables 1, 2, and 4 are those
for the making and breaking bonds.

Ea ) (2450 K)R + 2.11RT (9)

TABLE 2: Born -Oppenheimer Barrier Height (Vq), Energy
of Reaction (∆E), Bond Energies (De), and Saddle-Point
Interatomic Distances (Rq

AB) Calculated with Density
Functional Theory and Adiabatic Connection Methodsa

theory Vq ∆E De(C-H) De(H-H) Rq
H-H Rq

C-H

B3LYP/MIDI! 1.7 -9.8 97.9 107.7 1.070 1.261
B3LYP/6-31G* 3.6 -8.1 101.7 109.8 1.011 1.301
B3PW91/6-31G* 5.0 -6.2 100.7 106.8 1.001 1.307
B3P86/cc-pVDZ 1.1 -8.2 101.5 109.7 1.027 1.298
B3LYP/cc-pVDZ 2.0 -8.6 98.8 107.4 1.026 1.299
B3PW91/cc-pVDZ 3.3 -6.9 98.2 105.1 1.031 1.285
best estimate 6-10 -5.1 104.4 109.5

a This table contains only gas-phase quantities. The energies exclude
zero-point contributions and are in kcal/mol; bond lengths are in
angstroms. The bond distances shown in Tables 1, 2, and 4 are those
for the making and breaking bonds.

FAC ) AFX
Slater+ (1 - A)FX

HF + B∆FX
Becke

+ C∆FC
PW91(NL) + FC

PW91(L) (10)
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(as have others before us) that the results are much more
sensitive toA andB than toC. Therefore, we will concentrate
on A andB and adjust them in order to obtain better agreement
with experiment for the specific reaction 1. The results obtained
with specifically adjusted parameters will be called AC-SRP.
For reaction 1, we variedA andB to find values that produce
reasonably accurate values forVq and∆E without significantly
degrading the original AC predictions of the C-H and H-H
bond strengths and transition state bond lengths. The first three
rows of Table 3 show the standard values ofA, B, andC and
also the specific adjusted values used in this work; the latter
are in the row labeled AC-SRP. We found that the combination
A ) 0.6 andB ) 0.5 provides acceptable values forVq and∆E
as well as reasonable bond energies and geometries as shown
in Table 4.

With this approach, the optimized transition state geometry
has a dihedral angle of∼72° between the abstracted hydrogen
atom and the alcoholic hydrogen atom (the gauche or skew
configuration). Changing the dihedral angle corresponds to
rotating the alcoholic hydrogen atom around the C-O bond.
We optimized geometries at three stationary points correspond-
ing to local minima or maxima along this coordinate. One, at
the anti configuration, has a barrier height of 4.2 kcal/mol
(relative to the skew case as shown in Figure 1), and the other,
at the eclipsed configuration (where the alcoholic hydrogen atom
has a dihedral angle of 0° with respect to the abstracted hydrogen
atom), has a barrier height of 3.3 kcal/mol. Both of these barriers
are higher than the barrier of 2.2 kcal/mol calculated for
methanol using the same combination of the parametersA, B,
and C; this means that the 72° structure is the lowest energy
saddle point between reactants and products.

We then estimated the reduced moments of inertia for internal
rotation by the method of Pitzer;40,41 and we used these with a
formula presented previously42 to calculate hindered rotation
partition functions for both methanol molecule and the transition
state. For methanol, the hindered rotation partition function at
2000 K is estimated to be 3.50 as compared to the harmonic
limit of 3.97 (a deviation of 12%). Using the same approach
for the saddle point, the deviation is only 7% at 2000 K. At
lower temperatures, the deviation from the harmonic ap-
proximation is smaller, and at room temperature, the harmonic
oscillator approximation is adequate. Therefore, all further
calculations are based on the harmonic-oscillator/rigid-rotor43

approximations.

2.1.2. Linear Combination of Hartree-Fock and Molecular
Orbital Method (HF||AM1-SRP).Even though the AC-SRP
method seems to provide a reasonable potential energy surface
and has reasonable computational cost for gas-phase calculations
at stationary points, there are two disadvantages in this
method: (1) it is computationally costly to follow the whole
reaction path or to carry out LCT calculations; (2) the analytical
gradient of the solvation free energy is not yet implemented
for the Becke three-parameter method. Therefore, we will only
use the AC-SRP method for gas-phase and SES calculations.
We next describe a less expensive procedure for obtaining an
SRP potential energy surface that will be used to examine the
sensitivity of the SES result to the parametization method and
to study the difference between SES and ESP calculations. The
new method, to be called HF||AM1-SRP, should be especially
useful for calculations on large molecules. The HF||AM1-SRP
method also makes LCT calculations more affordable (recall
that LCT calculations require more input than SCT calcula-
tions10).

The HF||AM1-SRP method involves a linear combination of
total electronic energies from the Hartree-Fock and from
semiempirical molecular orbital theory (in this case AM144) with
specific reaction parameters. Note that AM1 with specific
reaction parameters (AM1-SRP) is a special case of the NDDO-

TABLE 3: Specific Reaction Parameters for Both AC-SRP
and HF||AM1-SRP Methods

original AC-SRPa HF||AM1-SRPa

A 0.80 0.60 (25)
B 0.72 0.50 (31)
C 0.81 0.81
USS C -52.029 -49.851 (4.2)
UPP C -39.614 -40.337 (1.8)
USS O -97.830 -99.182 (1.4)
UPP O -78.262 -80.763 (3.2)
âS C -15.716 -16.913 (9.7)
âP C -7.719 -9.190 (19)
âS O -29.273 -28.998 (0.9)
âP O -29.273 -29.249 (0.1)
xb 0.244

a Number in parentheses is absolute percent change from the original
value.b Mixing parameter of eq 11.

TABLE 4: Born -Oppenheimer Barrier Height (Vq), Energy
of Reaction (∆E), Bond Energies (De), and Saddle-Point
Interatomic Distances (Rq

AB) Calculated with Various
Electronic Structure Methodsa

theory Vq ∆E De(C-H) De(H-H) Rq
H-H Rq

C-H

B3PW91/6-31G* 5.0 -6.2 100.7 106.8 1.001 1.308
AC-SRP 7.8 -4.5 101.4 106.0 0.971 1.322
HF/STO-3G 19.1 -11.2 104.5 115.7 0.968 1.275
AM1 -0.4 -28.0 81.4 109.4 1.341 1.135
AM1-SRP 4.1 -4.9 104.4 109.3 0.804 1.310
HF||AM1-SRPb 7.8 -5.0 105.6 110.7 0.867 1.277
best estimate 8-10c -5.1 104.4 109.5

a This table contains only gas-phase quantities. The energies exclude
zero-point contributions and are in kcal/mol; bond lengths are in
angstroms. The bond distances shown in Tables 1, 2, and 4 are those
for the making and breaking bonds.b In this paper, HF||AM1-SRP
denotes HF/STO-3G||AM1-SRP.c See section 4.1.

Figure 1. Spline fit to saddle-point and hilltop energies in the gas
phase as a function of the H-C-O-H dihedral angle from AC-SRP
calculations. For this figure, the zero of energy is at the saddle point.
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SRP method.45 The total electronic energy is written as

wherex is the mixing parameter,EHF is the electronic energy
from Hartree-Fock theory, andEAM1-SRP is the electronic
energy from the AM1-SRP Hamiltonian. Equation 11 differs
in a fundamental way from eq 10. Equation 11 involves a linear
combination of separately calculated energies rather than a
combination of operators and functionals as in (10). To
implement eq 10 requires mixing theories at the level of the
Fock-Kohn-Sham operator, whereas eq 11 can be imple-
mented more modularly by combining separate energy calcula-
tions. Furthermore, the analytic gradient of eq 11 is easily
implemented as the sum of the analytic gradients of the two
terms on the right-hand side, and this analytic gradient is used
for optimizing geometries and calculating reaction paths. The
general approach in eq 11, by which two or more energy
components are combined linearly with a coefficient optimized
for a specific reaction (or specific limited range of systems), is
called linear mixing with specific reaction parameters (LM-
SRP). In the present application, we also add additional specific
reaction parameters in one of the two energy components,
namely the AM1 component, in which we will optimize eight
parameters simultaneously withx. This specific implementation
of LM-SRP is called HF||AM1-SRP.

To test whether useful results can be obtained by the
HF||AM1-SRP method with minimal expense, we use the STO-
3G46 minimal basis set for the HF calculations. Table 3 shows
the value ofx and the changed AM1-SRP parameters that
reproduce theVq and∆E calculated from the AC-SRP method.
These parameters (x and the eight other parameters in the last
column of Table 3) were determined by using a genetic
algorithm47 (GA). The pure HF/STO-3G results, the unmodified
AM1 results, and the unmixed AM1-SRP results are also shown
in Table 4. It is important to point out that the NDDO parameters
of the AM1-SRP method were optimized with nonzerox; that
is, they were optimized simultaneously withx by the GA to
makeEHF||AM1-SRP agree well with the AC-SRP results rather
than to make theEAM1-SRP term useful on its own. (We found
in earlier calculations that the AM1-SRP method withx ) 0
did not give as good a potential surface as those considered
here.) We note that Hartree-Fock theory has the tendency to
overestimate classical barrier heights (Vq) due to the lack to
electron correlation. We also note that pure AM1 calculations
often provide quite inaccurate geometries for saddle points. The
purpose of the linear combination method is to allow one to
obtain reasonable results for a specific reaction at low compu-
tational cost and at the same time allow us include a convenient
starting point for calculations on liquid-phase solutions.

In a certain sense, the HF||AM1-SRP strategy works for the
same reasons that Becke’s original B3 strategy works. In
particular, the B3 strategy mixes an ab initio Hartree-Fock
calculation, which tends to overestimate barrier heights and
underestimate bond energies, with a DFT component, and pure
DFT tends to underestimate32 barrier heights. The HF||AM1-
SRP method reduces the cost and complexity of this successful
strategy in three ways: (i) a very small basis set is used for the
HF component (barrier heights are still overestimated by HF
theory, even with small basis sets); (ii) AM1-SRP is substituted
for DFT; (iii) the theories are mixed at the energy level rather
than the Fock-operator level.

As for the AC-SRP case, all further calculations with
HF||AM1-SRP are based on the harmonic oscillator and rigid-
rotor43 approximation.

2.2. Validation of the Gas-Phase Charge Distribution and
Dipole Moment. To make the dynamics calculations in solution
credible, we also need to validate the accuracy of the electronic
charge distribution in the gas phase. The reason for this is that
the charge distribution is a major factor in determining the
electrostatic portion of the solvation free energy; thus, if the
gas-phase charge distribution were inaccurate, the calculations
might give unreliable solvation free energies. It has been shown
previously that accurate charge distributions can be obtained
from HF, B3PW91, B3LYP, and AM1 wave functions by
Charge Model 248 (CM2), which involves a class IV mapping,49

and the SM5.42R15 and SM5.4216 solvation models use these
charges. The present situation, though, is subtle insofar as the
solvation free energies are calculated by the CM2 and SM5.42R
models, which are parametrized for (among others) BPW91/6-
31G*, B3LYP/MIDI!, HF/MIDI!, and AM1 but not for AC-
SRP, HF/STO-3G, or AM1-SRP. In the SM5.4215 or SM5.42R16

solvation models, the cavity dispersion solvent structure (CDS)
terms must be consistent with agiVen treatment of the
electrostatics. We use experimental and original-parameter CM2
dipole moments and original-parameter CM2 partial charges as
diagnostics of the accuracy of the partial charges. We also
performed additional ab initio calculations to test the charge
distribution.

2.2.1. Charges and Dipole Moments in AC-SRP.Calculating
accurate partial atomic charges at points along the reaction path
is essential to calculating accurate rate constants of reactions
in liquid-phase solutions. The CM2 charge model is a semiem-
pirical class IV charge model that has been parametrized for
several basis sets and levels of treatment of the electronic wave
function. Although it has not been parametrized for AC-SRP/
6-31G*, it has been parametrized for the standard BPW91/6-
31G* method. We employed the charge model parameters
intended for the BPW91/6-31G* method with the adjusted AC-
SRP/6-31G* method and determined whether the resulting
calculated charges and dipole moments are within an acceptable
range as judged by experiment and high-level theory for
reactants and products. The gas-phase dipoles and partial atomic
charges for CH3OH and CH2OH calculated from various ab
initio methods and density functional models are compared to
our values from AC-SRP calculations in Table 5. Because the
AC-SRP values of the dipole moments and partial charges on
our molecule are within the error of experiment and of the CM2
charges calculated with the original globally validated48 param-
eters and are also reasonably close to other theoretical values,
we concluded that a readjustment of charge model parameters
is not required.

Because we will use SM5.42R solvation parameters originally
determined15 for the BPW91/6-31G* method, it is important
not only that the AC-SRP/6-31G* gas-phase charge distribution
is reasonably accurate but also that it does not differ significantly
from the BPW91/6-31G* charge distribution. Table 5 also
confirms that this test is satisfied.

2.2.2. Charges and Dipole Moments in HF||AM1-SRP.We
also need to check and validate the charge distribution of the
HF||AM1-SRP method. Since there are no CM2 parameter sets
optimized for the HF/STO-3G and AM1-SRP methods, new
CM2 parameter sets are required. In the spirit of specific reaction
parameters45,50 (SRP), we denote the new parametrized proce-
dure as CM2-SRP. Similarly to the standard procedure used to
determine theC andD parameters for the CM2 charge model,48

we first fixed the partial charge of benzene at 0.11 by setting
the CC-H parameter, then the rest of the parameters were
determined by fitting to the partial charges of the methanol and

EHF||AM1-SRP) xEHF + (1 - x)EAM1-SRP (11)
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hydroxymethyl radical using a genetic algorithm47 (GA). The
CM2-SRP parameters are given in Table 6, and the dipole
moments are shown in Table 7. The dipole moment of the
HF||AM1-SRP method is determined by assuming the partial
charges are scaled in the same way as the electronic energies.
Therefore,

where x is the mixing parameter,qHF is the partial charge
calculated by HF/STO-3G using the CM2-SRP charge model,
andqAM1-SRPis the partial charge calculated by AM1-SRP using

the CM2-SRP charge model. We find that the partial charges
calculated using this linear combination with the adjusted CM2
parameters are close to the values of the globally validated CM2/
AM1 method. Since the dipole moments are very similar to the
CM2/AM1 ones, we use the AM1 solvation parameters for the
SM5.42 calculations based on the HF||AM1-SRP description.

2.3. Solvation Free Energies.Having checked and validated
the gas-phase charge distributions against gas-phase dipole
moments, we used the SM5.42R and SM5.42 models to
calculate the free energies of solvation. Note that this involves
adding the solvent reaction field to the mixed Fock operator of
AC-SRP theory and to each Fock operator of the LM-SRP
theory (i.e., separately to the HF and AM1-SRP Fock operators).
Furthermore, the linear mixing of energy components in LM-
SRP theory becomes a linear combination of potentials of mean
force. We remind the reader that SM5.42R theory uses a
geometry optimized in the gas phase while SM5.42 theory
involves geometry optimization in the liquid phase. Thus, the
SM5.42R/AC-SRP calculations involve an AC-SRP gas-phase
geometry, and the SM5.42R/HF//AM1-SRP calculations involve
an HF||AM1-SRP gas-phase geometry.

The solute-electronic and solvent-polarization contribution
(∆GEP) to free energy of solvation, the cavitation dispersion
solvent structure contributions (GCDS) to free energy of solvation,
and the total free energy of solvation (∆GS

0) of the reactants,
products, and saddle point calculated by the SM5.42R/AC-SRP
method are given in the sum row of Table 8. Recall that∆GEP

consists of two terms:

15 whereGP is the electric polarization free energy of the solvent,
including the solvent reorganization cost, as estimated by the
generalized Born approximation, and∆EE is the solute electronic
distortion cost that is incurred in achieving the self-consistent
polarization field. We note that

where ε is the solvent’s dielectric constant,qk is the self-
consistent partial charge on atomk, and γkk' is a Coulomb
integral. For the higher rows in Table 8, the∆GEP values are

TABLE 5: Dipole Moments of CH2OH and CH3OH

levela methodb dipole moment (D)

CH3OH
HF/MIDI! CM2/HF/MIDI! 1.63
HF/MIDI!6D//HF/MIDI! CM2/HF/MIDI!6D 1.62
HF/6-31G*//HF/MIDI! CM2/HF/6-31G* 1.69
BPW91/MIDI!//

HF/MIDI!
CM2/BPW91/MIDI! 1.65

B3LYP/MIDI!//
HF/MIDI!

CM2/B3LYP/MIDI! 1.63

BPW91/6-31G*//
HF/MIDI!

CM2/BPW91/6-31G* 1.71

BPW91/6-31G* CM2/BPW91/6-31G* 1.62
AC-SRP/6-31G* CM2/BPW91/6-31G* 1.74
experimental 1.7

CH2OH
MP2/6-31G*//AC-

SRP/6-31G*
ChelpG 1.57

MP2/cc-pVDZ//AC-
SRP/6-31G*

ChelpG 1.42

QCISD/cc-pVDZ ChelpG 1.44
MP2/cc-pVDZ ChelpG 1.45
B3LYP-SRP/MIDI!//AC-

SRP/6-31G*
CM2/B3LYP/MIDI! 1.39

BPW91/MIDI!//AC-
SRP/6-31G*

CM2/BPW91/MIDI! 1.38

BPW91/6-31G*//AC-
SRP/6-31G*

CM2/BPW91/6-31G* 1.43

AC-SRP/6-31G* CM2/BPW91/6-31G* 1.49

a In B3LYP-SRP, the LYP nonlocal functional is substituted for the
PW91 nonlocal functional in the standard way (ref 58) but with the
AC-SRP values ofA, B, andC. b In each case, this column gives the
method that is used to calculate partial atomic charges and the dipole
moment is calculated from these charges.

TABLE 6: CM2-SRP Parameters

CH-C CH-O CC-O DC-O

AM1a -0.0200 0.1770 0.0260 0.0160
CM2-AM1-SRPb -0.0200 0.0149 -0.0874 0.0215
CM2-STO-3Gc -0.0210 0.2953 -0.0111 -0.0068

a Original CM2 parameter set for AM1 wave function.b CM2-SRP
parameter set for AM1-SRP wave function.c CM2-SRP parameter set
for HF/STO-3G wave function.

TABLE 7: Gas-Phase Dipole Moment in Debyes with
Geometries Optimized by HF||AM1-SRPa

wave function CM2 parameters CH3OH CH2OH CH4OH

AM1 AM1 1.63 1.43 1.44
AM1-SRP AM1 2.48 2.15 2.30
HF/STO-3G AM1 1.29 1.27 1.13
AM1-SRP CM2-AM1-SRP 1.73 1.45 1.58
HF/STO-3G CM2-STO-3G 1.67 1.81 1.63
HF||AM1-SRPa CM2-AM1-SRP||

CM2-STO-3G
1.64 1.49 1.48

a HF||AM1-SRP means HF/STO-3G||AM1-SRP. For this method,
the tabulated dipole moment is calculated by eq 12.

qHF||AM1-SRP) xqHF + (1 - x)qAM1-SRP (12)

TABLE 8: ∆GEP, ∆GCDS, and Free Energy of Solvation∆GS
0

of the Atoms in Reactants, Products, and Saddle Point Using
the SES Approximation with Geometries Optimized in the
Gas Phase by AC-SRP

reactants saddle point products

atoma ∆GEP GCDS ∆GS
0 ∆GEP GCDS ∆GS

0 ∆GEP GCDS ∆GS
0

H 0.00 1.80 1.80-0.80 1.26 0.46 0.00 1.18 1.18
X 0.01 0.04 0.05 0.12 0.09 0.21 0.00 1.18 1.18
C 0.05 1.21 1.27 0.13 1.20 1.33-0.10 1.74 1.64
O -2.00 -2.53 -4.53 -0.13 -2.00 -2.13 -0.72 -1.78 -2.50
Y -0.28 0.04-0.24 -0.55 0.04-0.51 0.16 0.04 0.20
Z -0.28 0.04-0.24 -0.13 0.04-0.09 -0.30 0.04-0.26
W -1.67 -0.35 -2.02 -3.11 -0.35 -3.46 -3.02 -0.35 -3.37

sum -4.17 0.25-3.91 -4.47 0.28-4.19 -3.98 2.05-1.93

∆(sum)b 0.00 0.00 0.00-0.30 0.03-0.28 0.19 1.80 1.98

a To distinguish the hydrogen atoms, the symbols X,Y, Z, and W
are used. The reaction is described as H+ XCYZOW f XH +
CYZOW. b Difference with respect to the values at reactants.

∆GEP ) ∆EE + GP (13)

GP ) (1 - ε

2ε
)∑

k
∑
k'

qkqk'γkk' (14)
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partitioned among the atomsk based on the following expres-
sion:

whereGP(k) is defined in a previous paper.51 Equation 15 has
the desirable property that the total electronic and polarization
contribution to the solvation free energy is the sum of a
contribution∆GEP(k) from each atom.

The CDS contributions are also partitioned among atoms; this
partitioning is more obvious since the CDS term is easily written
as a sum of terms each associated with the surface area of a
given atom.15,52 The total free energies of solvation obtained
from the HF||AM1-SRP calculations are tabulated in Tables 9
and 10 for the SES and ESP approximations.

In the ESP calculation, the geometries of the stationary points
are reoptimized in solution. While one can still tabulate and
analyze∆GEP, it is also instructive to consider the contribution
from changing the geometry. This converts∆GEP to ∆GENP

where N denotes the nuclear part. Note that

and

All three calculations indicate an increase of the positive value
of GCDS as the reaction moves to the product side, and this
contributes to decreasing the equilibrium constant in aqueous
solution as compared to the gas phase.

2.4. Saddle Point Geometries.Table 11 gives the valence
internal coordinates for the three saddle-point structures used
for the dynamics calculations reported here.

2.5. Dynamics.2.5.1. AC-SRP.All reaction path calculations
were carried out in isoinertial coordinates8 scaled to a reduced
massµ of 1.0 amu. Although we developed the interpolated
variational transition state theory by mapping53 (IVTST-M)
algorithm to allow us to obtain reasonable reaction rates by using
VTST/SCT with reaction paths covering a very limited range

of reaction path, in the present work, since it is a qualitatively
new kind of application and since we wish to carry outµOMT
calculations as consistently as possible with SCT ones, we
decided to follow the reaction path over a wide range in the
reaction coordinate to prevent any possible imprecision that
might be introduced by the interpolation scheme. First, we
calculated the gas-phase reaction path using the Page-McIver54

method. The gradient step size was 0.0026 Å, and Hessians
were calculated at every second gradient point from-1.3 to
0.8 Å along the reaction coordinate. The vibrational frequencies
along the reaction path were evaluated using a set of redundant
internal coordinates55 that consist of six stretches, seven
nondegenerate bends, one doubly degenerate linear bend, and
two torsions. The lowest real frequency mode of methanol and
the generalized transition states corresponds to the internal
rotation of the alcoholic hydrogen atom around the C-O bond
and can be treated with the hindered rotator approximation,40-42

but as discussed above, we used the harmonic treatment due to
the small anharmonicity. The forward symmetry factor is set
to 2.

The tunneling calculation was carried out with the small-
curvature tunneling approximation10 (SCT) with 40 coordinate
points for each action integral and was Boltzmann averaged
using 40 energies. The effective reduced mass10 is interpolated
along the reaction path using a sixth-order Lagrangian interpola-
tion scheme. The final gas-phase rate constants calculated are
given in Table 12, where they are compared with the experi-
mental values.

To include the free energy of solvation along the gas-phase
reaction path for the separable equilibrium solvation (SES)
approximation, we used variational transition state theory with
the interpolation based on single-point energies algorithm56

(VTST-ISPE).
Figure 2 shows a plot of

for both the gas-phase and the aqueous-phase versions of
reaction 1 as calculated by the AC-SRP method.

2.5.2. HF||AM1-SRP.The dynamics calculations with the
HF||AM1-SRP method are also carried out with a scaling mass
equal to 1.0 amu. The reaction path was followed using the
Page-McIver54 method in the range-0.8 to 0.8 Å with a
gradient step size of 0.0011 Å. The harmonic vibrational
frequencies were calculated using redundant internal coordi-
nates55 at every fourth gradient step. The small-curvature
tunneling10 (SCT) calculation is again carried out with 40
coordinate points for each action integral and Boltzmann
averaged using 40 energies. The effective reduced mass for SCT
is interpolated using a sixth-order Lagrangian interpolation
scheme. For the HF||AM1-SRP calculations, large-curvature
tunneling10 (LCT) calculations were also carried out. All excited
states are included for LCT calculations (as described in ref
10) if they are allowed. The reaction rate constants in liquid-
phase solution are estimated using both the SES and ESP
methods, and all dynamical calculations in solution were carried
out with the same numerical parameters as in the gas phase.
To check the stability of the calculations with respect to
reorienting the generalized transition state dividing surfaces, all
HF||AM1-SRP calculations were repeated with the RODS57

algorithm. The average change in the rate constants at 298 K
was 1% for gas-phase rates, 5% for SES, and 9% for ESP. These
changes are small enough not to affect our conclusions, so for
consistency with the AC-SRP calculations, we report the results
obtained without RODS.

TABLE 9: ∆GEP, ∆GCDS, and Free Energy of Solvation∆GS
0

of the Atoms in Reactants, Products, and Saddle Point at
HF||AM1-SRP Using the SES Approximation with
Geometries Optimized in the Gas Phase by HF||AM1-SRP

reactants saddle point products

atoma ∆GEP GCDS ∆GS
0 ∆GEP GCDS ∆GS

0 ∆GEP GCDS ∆GS
0

H 0.00 1.80 1.80-0.02 1.23 1.21 0.00 1.16 1.16
X -0.01 -0.02 -0.03 -0.28 0.04-0.24 0.00 1.16 1.16
C 0.03 1.34 1.37 0.06 1.33 1.39-0.07 1.92 1.85
O -1.80 -2.09 -3.88 -1.20 -1.76 -2.96 -0.66 -1.16 -1.82
Y -0.22 -0.02 -0.24 -0.28 -0.02 -0.30 0.11-0.18 -0.07
Z -0.22 -0.02 -0.24 -0.01 -0.02 -0.03 -0.28 -0.03 -0.32
W -2.26 -0.65 -2.92 -2.77 -0.66 -3.44 -3.55 -0.50 -4.06

sum -4.47 0.34-4.13 -4.51 0.13-4.38 -4.46 2.36-2.10

∆(sum)b 0.00 0.00 0.00-0.04 -0.20 -0.24 0.01 2.02 2.04

a To distinguish the hydrogen atoms, the symbols X,Y, Z, and W
are used. The reaction is described as H+ XCYZOW f XH +
CYZOW. b Difference with respect to the values at reactants.

∆GEP(k) ) ∆GEP

GP(k)

∑
k

GP(k)

(15)

∆GEP ) ∑
k

∆GEP(k) (16)

∆GS
0(SM5.42R)) ∆GEP + GCDS (17)

∆GS
0(SM5.42)) ∆GENP + GCDS (18)

∆Veff,c(s) ) Veff,c(s) - Veff,c(s ) reactants) (19)

Direct Dynamics for Free Radical Kinetics in Solution J. Phys. Chem. A, Vol. 103, No. 25, 19994899



2.6. Software.For AC-SRP, all electronic structure calcula-
tions were carried out with the Gaussian9458 program combined
with the mn-gsm98.2.359 solvation module. Gas-phase and
solution dynamics calculations for AC-SRP were carried out
with a prerelease version of gaussrate8.1,60 based on polyrate8.161

and Gaussian94.58 The HF||AM1-SRP calculations were carried
out with the gamess62 program (version of May 1998) with the
gamesol2.163 solvation module. Dynamics calculations at the
HF||AM1-SRP level were carried out using a prerelease version
of gamesolrate8.1,64 based on polyrate8.161 and gamesol2.1.63

3. Experimental Situation

3.1. All-Protium Reaction. There are three reactive channels
for hydrogen atom abstraction from a methanol molecule by a
hydrogen atom, the formation of H2 + CH2OH (channel 1), of
H2 + CH3O (channel 2), and of H2O + CH3 (channel 3).
Lendvay et al.20 calculated the reaction barrier heights of these
reactions using ab initio methods and showed that channel 3
has a much higher barrier than the other two. Furthermore, they
showed that channel 2 also has a much higher barrier than
channel 1 such that it contributes only 4% at 1000 K and less
than 0.1% at room temperature. Their calculations supersede
earlier, less reliable estimates of the rate of channel 2, which
led to a recommendation that the measured rate constant might
contain as much as a 20% contribution from channel 2.
Therefore, unlike previous workers, we do not make any
correction to the measured rate constants to subtract out channel
2 in either the gas phase or the liquid solution phase.

Comparison to experiment must take account of experimental
errors. To eliminate fluctuations of individual data points and

TABLE 10: ∆GEP, ∆GCDS, and Free Energy of Solvation∆GS
0 of the Atoms in Reactants, Products, and Saddle Point at

HF||AM1-SRP Using the ESP Approximation with Geometries Optimized in Water by SM5.42/HF||AM1-SRP

reactants saddle point products

atoma ∆GEP GCDS ∆GEP + GCDS ∆GEP GCDS ∆GEP + GCDS ∆GEP GCDS ∆GEP + GCDS

H 0.00 1.80 1.80 -0.02 1.22 1.20 0.00 1.16 1.16
X 0.00 -0.02 -0.02 -0.28 0.04 -0.24 0.00 1.16 1.16
C 0.03 1.34 1.37 0.06 1.34 1.40 -0.10 1.92 1.82
O -1.83 -2.09 -3.93 -1.28 -1.94 -3.22 -0.68 -1.16 -1.83
Y -0.21 -0.02 -0.23 -0.31 -0.02 -0.33 0.13 -0.03 0.10
Z -0.21 -0.02 -0.23 0.00 -0.02 -0.03 -0.30 -0.03 -0.33
W -2.34 -0.66 -2.99 -2.87 -0.66 -3.53 -3.75 -0.66 -4.41
sum -4.57 (-4.62)c 0.34 -4.23 (-4.28)d -4.71 (-4.56)c -0.04 -4.75 (-4.60)d -4.70 (-5.16)c 2.37 -2.33 (-2.79)d

∆(sum)b 0.00 0.00 0.00 -0.15 -0.38 -0.53 (-0.32)e -0.13 2.03 1.90 (1.49)e

a To distinguish the hydrogen atoms, the symbols X,Y, Z, and W are used. The reaction is described as H+ XCYZOW f XH + CYZOW.
b Difference with respect to the values at reactants.c Values in parentheses are∆GENP. d Values in parentheses are∆GS

0 calculated by eq 16.
e Values in parentheses are computed from∆GS

0 rather than from∆GEP + GCDS.

TABLE 11: Saddle Point Structures H-X-CYZOW a

HF||AM1-SRPAC-SRP
SES SES ESP

rH-X 0.971 0.867 0.854
rX-C 1.323 1.277 1.278
rC-Y 1.091 1.088 1.082
rC-Z 1.085 1.088 1.083
rC-O 1.368 1.387 1.396
rO-W 0.959 0.972 0.984
θHXC 177.85 178.51 178.08
θXCY 103.36 106.41 105.99
θXCZ 103.57 106.37 105.46
θXCO 110.91 108.18 107.68
θCOW 109.18 109.70 108.41
φHXCY 121.97 75.53 128.02
φHXCZ 239.83 197.10 249.12
φHXCO 357.58 313.33 5.73
φHCOW 71.53 67.78 71.26

a Bond distancesr in Å, bond anglesθ and torsion anglesφ in
degrees.

TABLE 12: Gas-Phase Reaction Rate Constants in cm3
Molecule-1 s-1

temp (K)
AC-SRP

CVT/SCT
HF||AM1-SRP

CVT/SCT
HF||AM1-SRP
CVT/µOMT expt

200 1.8 (-16) 8.0 (-16) 1.3 (-15)
250 1.0 (-15) 2.9 (-15) 4.8 (-15)
282 2.5 (-15) 6.0 (-15) 9.5 (-15)
298 3.8 (-15) 8.3 (-15) 1.3 (-14) 2.8 (-15)a

300 4.0 (-15) 8.7 (-15) 1.3 (-14) 3.1 (-15)a

325 7.0 (-15) 1.4 (-14) 2.1 (-14) 6.0 (-15)a

359.4 1.4 (-14) 2.5 (-14) 3.5 (-14) 1.3 (-14)a

400 2.8 (-14) 4.5 (-14) 6.1 (-14) 2.8 (-14)a

500 1.0 (-13) 1.5 (-13) 1.8 (-13) 1.3 (-13)b

600 2.8 (-13) 3.6 (-13) 4.2 (-13) 4.3 (-13)b

1000 2.9 (-12) 3.3 (-12) 3.4 (-12) 6.5 (-12)b

1500 1.3 (-11) 1.4 (-11) 1.4 (-11) 3.5 (-11)b

2000 3.4 (-11) 3.4 (-11) 3.4 (-11) 9.5 (-11)b

2400 5.8 (-11) 5.6 (-11) 5.7 (-11)

a From Aders (ref 69).b From Tsang (ref 23).

Figure 2. Born-Oppenheimer energyVRP(s) along the gas-phase
reaction path (solid curve) compared to the aqueous potential of mean
force along the gas-phase (dashed curve) reaction path; both curves
are calculated by AC-SRP. Note that∆Veff,c(s) ≡ Veff,c(s) - Veff,c(s )
-∞), whereVeff,c(s) is defined in eq 7.

4900 J. Phys. Chem. A, Vol. 103, No. 25, 1999 Chuang et al.



to provide a consistent comparison of gas-phase and liquid data
at a single temperature, all experimental values are evaluated
at 298.0 K from linear Arrhenius fits provided by the experi-
metalists in their original publications or from the nonlinear
Arrhenius fit of Tsang23 in his review article.

Consider first the liquid-phase data in aqueous solution. The
Arrhenius fit of Mezyk and Bartels6 agrees with previous
work65,66 within about 25% for 288-295 K but differs from
previous measurements by a factor of 1.7 (lower than previous
work by Smaller et al.65) at 281 K and a factor of 1.8 (higher
than previous work by Neta et al.66) at 303 K.6 However, the
EPR method used in ref 6 is expected to be much more accurate
than the methods applied previously, and the rate of reaction 1
was measured quite often to serve as a standard; therefore, the
uncertainty is expected to be no greater than a factor of 1.5.67

We therefore estimate an uncertainty of a factor of 1.5 in the
value we obtain from the fit of ref 6, which iskaq ) 5.0 ×
10-15 cm3 molecule-1 s-1 at 298 K.

In the gas phase, Tsang23 provided a recommendation over
the range 500-2000 K. There are no data available above 2000
K, and he does not have a recommendation below 500 K
because of uncertainties in the data.68 Tsang estimates a factor
of 3 uncertainty at 2000 K and a factor of 1.5 uncertainty at
500 K. The only measurements that extend below 500 K are
those of Aders69 and Meagher et al.70 The averaged measured
value of Meagher et al. leads to 3.9× 10-15 cm3 molecule-1

s-1 at 298 K. However, they consider that their directly
measured value is probably unreliable due to mechanistic
complications and suggest combining their measured activation
energy with a preexponential factor equal to one-half their
measured preexponential factor for H+ CH3OCH3 (because
there are only half as many abstractable hydrogens). This would
decrease the rate constant to 1.1× 10-15 cm3 molecule-1 s-1

at 298 K. Although this correction factor was accepted by Tsang
(who misquoted the temperature range of Meagher et al.70 as
300-404 K rather than 298-575 K), we believe it is very
dangerous because CH3OH and CH3OCH3 have different barrier
heights and barrier widths and hence different amounts of
tunneling, and this could lead to significantly different curvatures
of their Arrhenius plots. Furthermore, this theoretical correction
of their measured rate constant makes it agree much less well
with the result of Aders,69 which is 2.8× 10-15 cm3 molecule-1

s-1 at 298 K. In light of these uncertainties in the results of
Meagher et al., we will use the results of Aders as the best
estimates of the experimental rate constants below 500 K.
However, we estimate an uncertainty of at least a factor of 3 in
this value.

The ratiokaq/kgas is thus estimated to be about 1.8 at 298 K,
with an experimental uncertainty estimated to be at least a factor
of 3. The present best estimate of the experimental value of the
aqueous acceleration is larger than the experimental estimate
used by Mezyk and Bartels6 (80% vs 23%), but it agrees with
it within the experimental uncertainty.

3.2. Deuterium Attack Reaction. Meagher et al.70 also
measured the deuterium attack reaction, i.e.,•D + CH3OH, in
the gas phase. They foundkDH (where the first subscript denotes
the attacking atom and the second denotes the transferred atom)
to be 6.9× 10-15 cm3 molecule-1 s-1 at 298 K. This leads to
a value of 0.56 for thekHH/kDH kinetic isotope effect (KIE).
Although the absolute reaction rate of the hydrogen transfer
reaction in Meagher’s experiment is not, in our opinion, as
reliable as the values from Aders' experiment, Meagher’s
experiement provides the best available experimental informa-
tion on the gas-phase KIE (under the assumption that the errors

approximately cancel in the KIE), and thus we accept their value
for the gas-phase KIE. Lossack et al.71 measured the D+
CH3OD reaction in aqueous solution and obtained a value of
kHH/kDH ) 0.71 for the aqueous KIE. (Note that in the gas-
phase experiment the W atom in H+ XCYZZOW is H, whereas
in the aqueous experiment the W is D.) We carried out a full
dynamics calculation for the reaction D+ CH3OD both in
solution and in the gas phase.

3.3. Deuterium Transfer Reaction. The gas-phase rate
constant for the H+ CD3OH f HD + CD2OH reaction is not
known, but the reaction rate has been measured in aqueous
solution by Anbar et al.,72 and they estimated 20 for the kinetic
isotope effectkHH/kHD.

4. Discussion

In comparing the theoretical results to experiment, the reader
should keep in mind that absolute reaction rates are very
sensitive to small changes in barrier heights, which are uncertain.
Thus, we can learn more about the physical effects responsible
for solvent effects on reaction rates from ratios of rate constants
than from absolute rate constants.

We note that conventional TST, CVT, and CVT/SCT may
be considered to be successively more complete theories. We
do not present all these levels as competing theories but rather
as approximations to our most complete dynamical level, CVT/
µOMT; it is interesting to study the lower level dynamical results
because examination of the less complete dynamical calculations
helps us to understand how important it is to include the higher
level dynamical effects. The same spirit applies to the com-
parisons of SES results to ESP results; SES theory is an
approximation to the more complete ESP theory.

4.1. All-Protium Reaction. 4.1.1.Gas Phase. An Arrhenius
plot of the gas-phase rate constants is given in Figure 3, and it
shows nonlinearity at lower temperatures, which is primarily
due to the large amount of tunneling at these temperatures. The
nonlinearity is reflected in different values for the gas-phase
activation energy as a function of the temperature range over
which the slope is measured or calculated. With the AC-SRP
method, the activation energy obtained from the local slope of

Figure 3. Arrehnius plot of calculated and exprimental gas-phase rate
constants for reaction 1.
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the Arrhenius plot is 5.66 kcal/mol for the range 300-600 K,
while the activation energy obtained for the range 600-1000
K is 7.08 kcal/mol.

Table 12 shows that we obtain good agreement with gas-
phase experiments over the entire temperature range if we take
account of the experimental uncertainties (factor of 3 at the
extremes of the experimental temperature range but about 1.5
near 500 K). In fact, we agree with experiment within the
experimental uncertainty (although our slope is somewhat
smaller). Of course, this agreement is partly by construction
since the AC-SRP parameters were adjusted in part to give a
reasonable barrier height. This confirms that the adjustment does
yield a reasonable solventless (i.e., gas-phase) barrier height.
Based on comparing the magnitudes of the rate constants and
the temperature dependencies of the theoretical and experimental
results in Table 12, we conclude that the theoretical barrier
heights of the potential energy surfaces used in this paper may
be too low by about 1.2( 1 kcal/mol; that is, the best estimate
of the true barrier height is probably 9( 1 kcal/mol. In light
of the uncertainties in the experiments, further adjustment of
the semiempirical parameters in our potential surfaces was not
pursued.

4.1.2. Liquid Phase. Our main focus is on solvent effects, to
which we turn next. The solution-phase rate constants at 298 K
are shown in Table 13. The SES/AC-SRP/CVT/SCT rate
constant at 298 K is 3.8× 10-15 cm3 molecule-1 s-1, which
agrees well with experiment. The HF||AM1-SRP method results
in an SES/CVT/SCT rate constant that is 2.3 times higher than
that from AC-SRP and 1.7 times higher than experiment, still
within our assigned experimental error bar. For the HF||AM1-
SRP potential surface, we also carried out the tunneling
calculation by the more reliableµOMT method, which increases
the calculated rate constant by another factor of 1.5, making it
2.5 times bigger than experiment. At the SES level, the ratio of
k(liquid) to k(gas) is reasonably consistent between the AC-
SRP and HF||AM1-SRP energy surfaces, and it decreases as
the dynamical level is increased, from 1.5-1.6 at the conven-
tional TST dynamical level to 1.0-1.1 when variational effects
and tunneling are included. The fact that these ratios are similar
for the quite different AC-SRP and HF||AM1-SRP approaches
is very encouraging. It is not 100% clear what to make of the
final value ofk(liquid)/k(gas)) 1.0 in the separable equilibrium
solvation calculation. On one hand, this does fall within the
experimental error bars, and it is reasonably close to Mezyk
and Bartels' analysis showing only a 23% acceleration (i.e.,
k(liquid)/k(gas)≈ 1.2), but on the other hand, our own analysis

of experiment and our identification of thebestexperimental
values indicates an 80% acceleration of the reaction rate by the
solvent in water (i.e.,k(liquid)/k(gas)≈ 1.8). Nevertheless, it
is very instructive to examine the various factors contributing
to k(liquid)/k(gas) in the SES approximation, especially since
the final value of∼1.0 results from a cancellation of solvent
effects rather than an absence of solvent effects. For example,
Table 8 shows a large change in the electronic polarization free
energy of the oxygen atom as we move from the reactants to
the saddle point;∆GEP of this atom becomes less negative. At
the same time, the∆GEP values of the alcoholic hydrogen atom
and one of the hydrogens from the methyl group become more
negative, and the net result is to make∆GEP more negative by
0.3 kcal/mol, thereby accelerating the reaction in aqueous
solution by a factor of 1.7. There is no discernible hydrophobic
acceleration, and the cavity dispersion solvent structure term
does not change much, although it does lower the final value
of k(liquid)/k(gas) as calculated by conventional transition state
theory (see Table 13) to 1.6.

As we move toward the product side, the overall∆GEP

becomes 0.2 kcal/mol less negative than that for reactants, and
it becomes 0.5 kcal/mol less negative than the value at the saddle
point. As we move to the products,GCDS increases about 1.8
kcal/mol and results in a total increase of 1.98 kcal/mol in the
free energy of solvation∆GS

0. (The values just mentioned are
for AC-SRP, but comparison of Table 9 to Table 8 shows that
HF||AM1-SRP provides a similar picture.) The fact that the free
energy of aqueous solvation decreases the free energy profile
by ∼0.3 kcal/mol at the saddle point but increases it by∼2.0
kcal/mol at the product causes the true dynamical bottleneck to
be later than the saddle point; this is an example of a “parallel
effect” in the language73 of Albery-More O’Ferrall-Jencks
diagrams. This displacement of the dynamical bottleneck toward
products is barely visible in Figure 2, but it decreases the
aqueous acceleration factor from 1.6 to 1.5. The effect is larger,
20% instead of 6% in the HF||AM1-SRP calculations, reducing
k(liquid)/k(gas) from 1.5 at the TST level to 1.2 at the CVT
level. Then, when we include the quantum mechanical tunneling
effects in the dynamics calculation by the SCT approximation,
the reaction rate in solution does not increase as much as the
gas-phase one, and the final liquid-phase rate constant differs
from the gas-phase value by only 1-2% at 298 K for either
energy surface.

To explore further the factors contributing to the possibility
that the aqueous rate is significantly accelerated relative to the
gas-phase rate, we carried out an ESP calculation with the
HF||AM1-SRP method. In the ESP calculation, the geometries
of the stationary points are optimized using an effective potential
that is a sum of the gas-phase potential and the free energy of
solvation. Table 10 shows that solvation effects are more
favorable at the transition state in this more complete calculation,
both due to electronic electric polarization terms and due to
CDS terms. Figure 4 shows theGCDS andGP along the reaction
path for the HF||AM1-SRP method with SES and ESP ap-
proximations. The values of the SES calculation (dotted curves)
are consistently higher than the values in the ESP approximation
(solid curves) by about 0.2 kcal/mol. Figure 5 shows the partial
charges of the atoms along the reaction path with SES and ESP
approximations. The difference between the SES and ESP values
of GCDS is due almost entirely to the oxygen atom. The hydrogen
atom of the hydroxyl group has the most positive charge and
the oxygen atom of the hydroxyl group has the most negative
charge, and these two atoms contribute almost all the difference
between the SES and ESP values ofGEP. The charge of the

TABLE 13: Rate Constantsaof Reaction 1 at 298 K and
Ratios of Liquid-Phase Rate Constants to Gas-Phase Ones

k(liquid) k(liquid)/k(gas)

source method k(gas) SES ESP SES ESP

experimental 2.8b 5.0c 1.8b

AC-SRP TSTd 0.6 0.9 1.6
CVT 0.5 0.8 1.5
CVT/ZCT 1.3 1.6 1.2
CVT/SCT 3.8 3.8 1.0

HF||AM1-SRP TSTd 1.1 1.7 2.2 1.5 2.0
CVT 0.7 0.9 1.9 1.2 2.7
CVT/ZCT 2.0 2.4 4.8 1.2 2.4
CVT/SCT 8.3 8.7 16.6 1.1 2.0
CVT/LCT 12.7 12.5 25.7 1.0 2.0
CVT/µOMT 12.9 12.7 25.9 1.0 2.0

a k in units of 10-15 cm3 molecule-1 s-1. b Uncertainty: at least a
factor of 3 (see text).c Uncertainty: factor of 1.5 (see text).d TST
denotes conventional transition state theory; that is, the free energy of
activation is evaluated at the saddle point, and tunneling is neglected.
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carbon atom becomes slightly negatively charged toward the
product region due to the formation of the radical. Figure 6
compares the gas-phase and liquid-phase charges along the gas-
phase reaction path. This figure shows that the basic trends
observed in Figure 5 (in particular the nonmonotonic behavior
of qH andqX, the decrease ofqC, and the increase ofqO), are

present already in the gas phase, although the magnitudes of
most charges are increased by dielectric screening in the liquid.
Finally, Figure 7 presents the liquid-phase SES charges from
the AC-SRP calculations. Comparison of these charges to the
SES charges in either Figure 5 or 6 shows encouraging
agreement for the trends in thesdependencies, with the biggest
difference being the smaller variation inqX in the AC-SRP
calculation.

The rate constants from the gas-phase calculations are given
in Table 12, and the aqueous reaction rate constants are given
in Table 13. Furthermore, the solvation effect increases from
2.0 to 2.7 when the maximum free energy of activation is found.
This is high enough so that the ratio remains above the “best”
experimental estimate of 1.8 even after tunneling reduces it 26%
from 2.7 to 2.0.

Because tunneling plays a significant role in the solvation
effect, it is interesting to examine it in more detail. For this
reason, we have included an intermediate level of tunneling
calculation in Table 13, namely zero curvature tunneling (ZCT).
In ZCT tunneling,Veff,c(s) is the same as for SCT tunneling,
but reaction path curvature is not included in the effective
reduced mass. Thus, the solvation effect on tunneling arises
entirely from the shape ofVeff,c(s) in the ZCT approximation.
Table 13 shows that, in the AC-SRP calculations, 60% of the
tunneling reduction ink(liquid)/k(gas) occurs already at the ZCT
level. The broadening of the effective barrier that accounts for
this is readily apparent in Figure 2. However, in the HF||AM1-
SRP calculations, the tunneling reduction comes not from the
change in shape of the effective barrier along the classical
reaction path (as would show up in the ZCT calculation) but
rather from the deviations of the average tunneling path from
the classical reaction path (as show up inµeff(s) or in the LCT
calculations). These deviations, which could be zero in the

Figure 4. Free energies of the electric polarization contribution (GEP)
and the cavitational dispersion structural contribution (GCDS) along the
reaction path of the HF||AM1-SRP method with SES (in dotted curves)
and ESP (in solid curves) approximations.

Figure 5. Partial atomic charges in atomic units along the reaction
path of the HF||AM1-SRP method in SES (in dotted curves) and ESP
(in solid curves) approximations. In Figures 5-11, we use the labeling
scheme: H+ XCYZOW f HX + CYZOW.

Figure 6. HF||AM1-SRP partial atomic charges in atomic units along
the gas-phase reaction path; solid curves are for the gas phase, and
dotted curves are aqueous results in the SES approximation.
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absence of reaction path curvature in the barrier region, increase
the tunneling probability, and the calculations in Table 13 show
that they are more significant in the gas phase than in solution.
For the AC-SRP calculations, this appears to result primarily
from the fact that reaction path curvature effects amplify any
differences that are already apparent at the ZCT level, whereas
in the HF||AM1-SRP calculation the effect appears more subtle
and is apparently due to a solvation-induced shift in the
alignment of region of highest curvature with the barrier top.

One should also note that, even in the gas phase, the ESP/
CVT/SCT reaction rates calculated by HF||AM1-SRP are a
factor of 2.2 higher than those calculated by AC-SRP. This
increase is a product of these factors: a factor of 1.34 at the
CVT level (the barrier height effect), a 1.15-fold increase due
to ZCT tunneling (the barrier width effect), and a final factor
of 1.44 due to reaction path curvature. For the HF||AM1-SRP
energy surface, we were also able to show that large-curvature
tunneling results in a further increase of another factor of 1.55.
This latter factor is perhaps surprising since large-curvature
tunneling is often associated with the heavy-light-heavy mass
contribution rather that the present light-light-heavy (H-H-
CH3OH) mass combination.74 Nevertheless, large-curvature
tunneling effects of this size are also known for other light-
light-heavy cases, e.g.,kµÃΜΤ/kSCT|300K ) 1.35 for H-H-O
and 1.46 for H-H-Cl.75

We also note that the HF||AM1-SRP reaction rates estimated
by CVT/SCT and CVT/µOMT are higher than the experimental
results by more than the estimated experimental error bar. We
believe though that at the present state of knowledge, one should
not pay as much attention to absolute reaction rate constants as
to rate constant ratios. Thus, for example, the fact that LCT
tunneling increases the rate constants is physically significant;
the fact that it takes the calculated value farther from the best

experimental estimate is just an artifact of the theoretical barrier
height apparently being slightly too low. The comparisons of
absolute reaction rates are hampered by uncertainties in the
experiments, uncertainties in the absolute barrier height, and
uncertainties about nonequilibrium effects. But the rate constant
ratios still help us to ascertain thefactorswhich must eventually
be understood and converged if we are to ultimately make our
theoretical treatments of this kind of reaction reliable. With this
motivation, we next discuss two more kinds of ratios: (i)kESP/
kSES and (ii) kinetic isotope effects.

As noted above, the SES calculations, although identifying
some factors that accelerate the reaction in liquid-phase solution,
do not predict a net speedup of the reaction rate in solution.
However, in the ESP approximation, a speedup of the reaction
in solutionis observed and the calculated ratiok(liquid)/k(gas)
equals 2 (where the experimental value is estimated to be 1.8,
see above).

We found that the tunneling effect is quenched by solvent to
a similar extent in the SES or ESP calculations. To place this
in a more quantitative context, we use the HF||AM1-SRP
calculations to factor thekESP/kSES ratio as follows:

where the transmission coefficientκ is the ratio ofkCVT/µOMT to
kCVT. Thus, the values in parentheses in eq 20 indicate
respectively the relative contributions from the tunneling effect,
the variational effect, and conventional TST in the SES and
ESP approximations. The left-hand side of eq 20 equals 2.04
in the HF||AM1-SRP calculation, and the contribution from the
tunneling effect is 0.9, from variational effects is 1.72, and from
the saddle point is 1.32. Therefore, in this factorization, the
factor of 2 in speedup observed in the ESP approximation is
mainly contributed by the variational effect, i.e., the effect on
the rate constant of variationally determining the maximum of
the free energy profile (see eq 13) rather than placing it at the
conventional transition state ats ) 0.

Recall that the difference in the SES and ESP approximations
is that in SES we use the gas-phase reaction path and add the
free energy of solvation at each point, whereas in the ESP
approximation the reaction path is followed in the bath. To study
the difference of the transition-state variational effect in these
approximations, we had to locate the dynamical bottleneck,
which is the maximum of the free energy profile at 298 K. For
the SES calculation, the bottleneck is located ats ) 0.10 Å,
where the free energy (G0 of eq 4 with the zero ofV placed at
reactants) equals 38.41 kcal/mol, and the free energy profile in
the ESP approximation has a maximum ats ) 0.06 Å with G0

) 37.92 kcal/mol. The difference of 0.49 kcal/mol in the free
energy corresponds to the factor of 2.3 that thekESP

CVT/kSES
CVT ratio

equals at 298 K. The classical energies and the zero-point
energies at the dynamical bottlenecks can be obtained by linearly
interpolating between the closest two saved points on the
reaction path. For the ESP approximation, the classical energy
VRP is 7.25 kcal/mol and the zero-point energy (ZPE) is 33.35
kcal/mol, whereas these values equal 7.00 and 33.83 kcal/mol
in the SES approximation. We then partition the-0.49 kcal/
mol that we obtained forGESP

0,CVT - GSES
0,CVT into -0.25 kcal/mol

from the classical effective potential energy (which is the sum
of Born-Oppenheimer energy and free energy of solvation),
+0.48 kcal/mol from ZPE, and-0.34 kcal/mol from thermal
vibrational-rotational energy.

Figure 7. AC-SRP partial atomic charges in atomic units along the
gas-phase reaction path as computed by the SES approximation for
aqueous solution.
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kSES
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Table 14 gives the saddle-point information for the aqueous
reaction calculated with AC-SRP and HF||AM1-SRP at 298 K.
From the vibrational frequencyνm of modem, we can calculate
its contribution to the rate constant, which is given by the
partition functionQm with the zero of energy at the saddle point.
Note that

whereZm is the zero-point energy of modem, k̃ is Boltzmann’s
constant, andQ̃m is the usual partition function that tends to
unity asT f 0. From the HF|AM1-SRP frequencies in Table
14, we find thatQm

ESP/Qm
SESexceeds 1.10 for only two modes,m

) 1 and 14, for which it equals 1.54 and 1.10, respectively.
(The former value reflects a significant difference in the O-H
bond distance, which is 0.99 Å in the ESP and 0.97 Å in the
SES approximation, and the latter reflects an increase in both
the C-O and O-H bond lengths.) However,Qm

ESP/Qm
SES is in

the range 0.82-0.89 for all of modesm ) 2-6, and the
accumulation of these small effects dominates the product of
all Qm

ESP/Qm
SES ratios; the product is 0.78. This vibrational

contribution to kESP/kSES from the saddle point is, in turn,
dominated by a factor of 0.68 from reactants, due primarily to
a factor of 0.62 fromm ) 5 and 0.82 fromm ) 9, partly
canceled by factors of 1.22 fromm ) 1 and 1.21 fromm ) 12.
Putting the reactant and transition state contributions together,
the vibrational contribution to the rate constant is then 1.14
()0.78/0.68), which consists of 1.26 fromm ) 1, 0.75 fromm
) 2-6, and 1.19 from the rest. In perspective, the vibrational
contribution of a factor of 1.14 tokESP/kSES accounts for 44%
of the effect of optimizing geometries and reaction paths in

solution at the conventional TST level sincekESP/kSES ) 1.32
at the conventional TST level (see Table 13). This in turn is
32% of the finalkESP/kSESvalue of 2.0, which results primarily
from a large increase in this ratio at the CVT level, which is
partly canceled by the tunneling effect (again see Table 12).
The main lesson to be learned from this dissection is that the
final overall solvent effect results from many, many contribu-
tions in both directions, which partly cancel. (This is an
important result in that it shows by example why very simple
explanations, although appealing, cannot be trusted.) Neverthe-
less, the above discussion shows that a large part of the
enhancement ofk(liquid) over k(gas) comes from variational
transition state effects and vibrations.

Table 15 gives information about the aqueous CVT reaction
bottlenecks calculated with AC-SRP and HF||AM1-SRP at 298
K. We compare the classical effective potential, the adiabatic
ground-state energy, the breaking C-H bond distance, the
forming H-H bond distance, and the partial charges of O and
H atoms for AC-SRP and HF||AM1-SRP calculations. For the
HF||AM1-SRP energy surface, the SES and ESP approximations
lead to similar reaction bottlenecks at 298K, except that the
classical effective potential differs by 0.09 kcal/mol. The AC-
SRP energy surface shows an earlier bottleneck than the ones
obtained by the HF||AM1-SRP method.

At this point we can return to Table 10 and ask how much
the hydrophobic effect contributes tok(liquid)/k(gas). We define
the hydrophobic acceleration as the contribution tok(liquid)/
k(gas) from the CDS terms on atoms H, X, C, Y, and Z. Table
10 shows that the sum of these CDS terms decreases by 0.52
kcal in proceeding to the conventional transition state. This effect
alone would yield a solvent-induced increase in the rate constant
of 2.4, which is larger than the calculated speedup of 1.32 at
the TST level and is even larger than the final calculated speedup
of a factor of 2.0. Thus, from this point of view, it is correct to
say that the rate acceleration occurs by hydrophobic acceleration

TABLE 14: Saddle Point of R1 in SES and ESP
Approximations at 298 K

HF||AM1-SRPAC-SRP
SES SES ESP

V (kcal/mol)a 7.75 7.77
∆Veff,c (kcal/mol)b 7.48 7.54 7.46
∆Veff (kcal/mol)c 39.48 40.47 40.56
Rq

H-H (Å) 0.971 0.841 0.854
Rq

C-H (Å) 1.322 1.297 1.281
qO

d -0.480 -0.495 -0.494
qW

d 0.391 0.365 0.366
qX

d 0.084 0.109 0.110
qH

d -0.115 -0.059 -0.057
V1 (O-H str.) 3924e 3680 3500
V2 (C-H str.) 3265 3412 3461
V3 (C-H str.) 3134 3388 3435
V4 1547 1786 1866
V5 1501 1561 1639
V6 1437 1474 1529
V7 1377 1438 1447
V8 1364 1387 1389
V9 1220 1292 1288
V10 1169 1199 1191
V11 1121 1156 1148
V12 606 574 590
V13 395 386 392
V14 326 304 279
V15 1450i 1826i 1797i

a Gas-phase Born-Oppenheimer energy with respect to the energies
of the reactants.b Classical effective potential energy with respect to
the classical effective potential of the reactants (see eqs 7 and 17).
c Effective potential energy (see eq 6) with respect to the classical
effective potential of the reactants, i.e.,Veff (s) 0) - Veff (s) reactants).
d To distinguish the hydrogen atoms, the symbols X, Y, Z, and W are
used. The reaction is described as H+ XCYZOW f CYZOW + XH.
e Frequencies are in cm-1.

TABLE 15. CVT Reaction Bottleneck of R1 in SES and
ESP Approximations at 298 K

HF||AM1-SRPAC-SRP
SES SES ESP

s (bohr) 0.0609 0.1837 0.1129
∆Veff,c (kcal/mol)a 7.42 7.01 7.10
∆Veff (kcal/mol)b 39.53 40.86 40.63
RCVT

H-H (Å) 0.94 0.79 0.79
RCVT

C-H (Å) 1.36 1.35 1.34
qO

c -0.476 -0.533 -0.541
qW

c 0.392 0.403 0.404
qX

c 0.083 0.109 0.112
V1 (cm-1) 3923 3660 3503
V2 (cm-1) 3270 3464 3481
V3 (cm-1) 3138 3447 3451
V4 (cm-1) 1632 2525 2420
V5 (cm-1) 1546 1572 1601
V6 (cm-1) 1432 1475 1505
V7 (cm-1) 1351 1443 1436
V8 (cm-1) 1347 1314 1316
V9 (cm-1) 1222 1199 1201
V10(cm-1) 1154 1141 1140
V11(cm-1) 1118 1106 1109
V12(cm-1) 611 617 616
V13(cm-1) 396 393 393
V14(cm-1) 322 317 283

a Classical effective potential energy with respect to the classical
effective potential of the reactants (see eqs 7 and 17).b Effective
potential energy (see eq 6) with respect to the classical effective
potential of the reactants, i.e.,Veff (s ) 0) - Veff (s ) reactants).c To
distinguish the hydrogen atoms, the symbols X, Y, Z, and W are used.
The reaction is described as H+ XCYZOW f CYZOW + XH.

Qm ) Q̃me-Zm/k̃T (21)
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partly canceled by other effects. Although it is a somewhat
unsettling result, there is no way to avoid the conclusion from
the discussion above that the precise amount of hydrophobic
acceleration and the precise amount of cancellation result from
a complicated interplay of many factors that determine the
location of the dynamical bottleneck along the reaction path in
the gas phase and in solution.

Six more plots illustrating the differences between the SES
and ESP calculations are provided in Figures 8-13. Figure 8
shows that optimizing the reaction path in solution does not
change the synchronicity of the reaction. Figures 9-11 show
that the electrostatics are more sensitive than the first solvation
shell effects to optimizing the reaction path in solution, and
they also show which atomic sites’ contributions vary strongly
along the reaction path. Figures 12 and 13 illustrate the
quantitative variations in the computed barrier along the reaction
path. These variations will be important in the discussion that
follows.

4.2. Kinetic Isotope Effects.As mentioned in the previous
section, the kinetic isotope effects (KIEs) have also been studied
experimentally. Table 16 shows the calculated and experimental
values of the gas-phase KIEs, wherekVX is used to indicate
k(V + CX3OW f VX + CX2OW); that is, the first subscript
is used for the attacking species and the second subscript is
used for the transfer species. Note that forkDH our AC-SRP
calculations are for W) D whereas the experiment is for W)
H, but this does not effect our conclusions because the secondary
KIE at W is very small. (We checked this with AC-SRP at the
conventional TST level where we found a gas-phase ratiokDH(W
) H)/kDH(W ) D) ) 1.02.) Meagher et al.70 measuredkHH/kDH

(W ) H) in the gas phase and obtained a value of 0.56, which
may be compared to our values of 0.95 for AC-SRP/CVT/SCT,
0.82 for HF||AM1-SRP/CVT/SCT, and 0.68 for HF||AM1-SRP/
CVT/µOMT. This comparison indicates that the HF||AM1-SRP
energy surface may be more realistic than the AC-SRP one and
also that large-curvature tunneling effects are important to get
the KIE correct.

The kinetic isotope effects in aqueous solution are given in
Table 17. In this case, there are two experiments: Lossack et
al.71 found 0.70 forkDH (W ) D); Anbar et al.72 found 20.0 for

kHD. Calculations using AC-SRP and HF||AM1-SRP generated
close agreement with these experimental values.

Figure 8. HF||AM1-SRP calculations of making and breaking bond
distances for the aqueous reaction: (s) ESP; (- - -) SES.

Figure 9. HF||AM1-SRP calculations of solvent-accessible surface
areas of the individual atoms for the aqueous reaction: (s) ESP;
(- - -) SES. In the solvation models used in this paper, the solvent-
accessible surface area is the same as the exposed area of the van der
Waals surface.

Figure 10. HF||AM1-SRP calculations of electric polarization free
energy in aqueous reaction: (s) ESP; (- - -) SES.
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5. Summary and Conclusions

In this paper, we have introduced several new ideas for
modeling implicit potential energy surfaces and potentials of
mean force for direct dynamics calculations. These include the
Becke three-parameter HF-DFT method with specific reaction

parameters (denoted AC-SRP to indication its rationalization
by the adiabatic connection theorem), charge model 2 with
specific reaction parameters, and the linear mixing specific
reaction parameter (LM-SRP) method, in particular HF||AM1-
SRP, in which two energy components are mixed with an
empirical coefficient. The AC-SRP approach mixes energy
functionals at the level of the Fock operator for a self-consistent
field or self-consistent reaction field calculation, whereas the
LM-SRP approach mixes energy components at the level of

Figure 11. HF||AM1-SRP calculations of the cavity dispersion solvent
structure free energy in aqueous solution: (s) ESP; (- - -) SES.

Figure 12. Born-Oppenheimer energyVRP(s) along the gas-phase
reaction path (dashed curve) compared to the aqueous potential of mean
force along the gas-phase (dotted curve) reaction path as calculated by
HF||AM1-SRP and the solution-phase reaction path calculated by
HF||AM1-SRP (solid curve). Note that∆Veff,c(s) ≡ Veff,c(s) -
Veff,c(s ) -∞), whereVeff,c(s) is defined in eq 7.

Figure 13. HF||AM1-SRP calculations of∆Veff,c(s) + GRVE (s,T )
0): (s) ESP; (- - -) SES; (- - -) gas.

TABLE 16: Gas-Phase Kinetic Isotope Effect at 298 K

kHH/kDH
a kHH/kHD

b

experiment 0.6
AC-SRP TST 0.46 7.1

CVT 0.44 7.6
CVT/ZCT 0.63 8.2
CVT/SCT 0.95 12.0

HF||AM1-SRP TST 0.44 10.2
CVT 0.29 10.6
CVT/ZCT 0.55 9.8
CVT/SCT 0.82 13.8
CVT/LCT 0.67 28.0
CVT/µOMT 0.68 21.1

a Theory, k(H + CH3OH)/k(D + CH3OD); experiment,k(H +
CH3OH)/k(D + CH3OH). b k(H + CH3OH)/k(H + CD3OH).

TABLE 17: Kinetic Isotope Effects at 298 K in Aqueous
Solution

kHH/kDH
a (W ) D) kHH/kHD

b

source method SES ESP SES ESP

experiment 0.7 0.7 20 20
AC-SRP TST 0.48 7.7

CVT 0.44 7.8
CVT/ZCT 0.59 7.8
CVT/SCT 0.84 10.9

HF||AM1-SRP TST 0.44 0.39 10.3 10.3
CVT 0.27 0.34 10.9 10.7
CVT/ZCT 0.53 0.60 10.3 9.5
CVT/SCT 0.81 0.91 14.6 13.3
CVT/LCT 0.53 0.51 28.3 26.6
CVT/µOMT 0.48 0.51 21.3 20.2

a k(H + CH3OH)/k(D + CH3OD). b k(H + CH3OH)/k(H + CD3OH).
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total energies in the gas-phase or potentials of mean force in
solution.

Using these new methods, this paper presents one of the first
attempts to quantitatively estimate the solvent effect on the rate
constant of a free radical reaction in solution. Solvent effects
are predicted to be much smaller than for ionic reactions, as
expected. Using the AC-SRP method with parameters adjusted
to gas-phase data, we carried out separable equilibrium solvation
(SES) rate constants in aqueous solution, and we obtained an
absolute reaction rate in aqueous solution that is within the
experimental uncertainty, but we did not find a speedup of the
reaction due to the solvent. The SES calculations with the AC-
SRP energy surface are based on canonical variational theory
(CVT) with the small-curvature tunneling (SCT) approximation.

To perform calculations with higher levels of dynamics,
namely (i) equilibrium solvation path (ESP) instead of SES and
(ii) microcanonical optimized multidimensional tunneling (µOMT)
instead of SCT, we created a less expensive and less complicated
energy surface by the LM-SRP methods; in particular, we used
the HF||AM1-SRP combination. This was accomplished by a
bootstrap process in which HF||AM1-SRP was optimized to AC-
SRP saddle-point predictions, whose validity rests in part on
the earlier parametrization of AC-SRP to experiment (this is
an important point because without the AC-SRP calculation one
would have less confidence in the reasonableness of the
HF||AM1-SRP saddle-point geometry, and we have recently
shown56 how critical it is to employ an accurate saddle-point
geometry). The ESP calculations at the CVT/µOMT level with
the HF||AM1-SRP energy surface show that it is indeed
important to include large-curvature tunneling in this reaction,
and they yield much higher reaction rates with a solvent-induced
speedup of a factor of 2, in excellent agreement with the
somewhat uncertain experimental situation (estimated experi-
mental speedup) 1.8 ( factor of 3). If we break down the
effects in dynamical terms, the most significant contributor to
this enhancement is the difference between the variational and
conventional transition states. A smaller, but still significant,
contributor is the difference in the O-H bond distance when
the reaction path is optimized in solution. If instead we break
down the effects in terms of the components of the free energy
of solvation, we see that a major contributor is hydrophobic
acceleration due to association of the hydrophobic attacking
hydrogen atom with the other reactant.

Both the SES and ESP methods employing the HF||AM1-
SRP energy surface with inclusion of large-curvature tunneling
effects generate good agreement with experimental kinetic
isotope effects.

7. Appendix

Figures 8-13 show additional comparisons of SES and ESP
reaction path quantities as calculated by the HF||AM1-SRP
method. Comparison of Figures 9 and 11 shows that the changes
in the CDS contributions to the free energy of solvation follow
more from changes in atomic surface tensions than from changes
in exposed areas.
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