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Si—S Internal Conversion in Ketene. 1. The Role of Conical Intersections
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The role of conical intersections in the internal conversion{5S;) of photoexcited ketene @&CO) is
analyzed. The energy-minimized projection of a portion of thHéAS)—S,(*A’) seam of the conical intersection

near the minimum energy-crossing point is studied as a function of the key internal coor{@+teS) and

OCCO. The characteristic parameters of the conical intersection points are used, to identify the two modes
that evince the conical nature of the intersection, to determine the energy and singular part of the derivative
coupling near the conical intersection, and to construct a transformation to diabatic states that rigorously
removes the singularity in the derivative coupling. From the Frai@éndon region of theS— S; excitation,
barrierless paths were identified on IBading toR.(A'A"), the equilibrium geometry of :ketene, and to

Rmex the minimum energy point on the-SS; seam of conical intersection. Following internal conversion
onto S nearRney the barrierless paths leadingRa(X*A,), the equilibrium geometry of ground-state ketene,
were found.

I. Introduction recent methodological and formal advances in the description
of conical intersectior$s10 that emphasize information obtained
on the seam of conical intersection itself, gains important
1 . computational advantages when compared with previous tech-
H,CCO(§ = X"A) + hv —H,CCO(§ ="A") —~ H,CCO niques for generating these data. Demonstrating the utility of

(S, — H,CCO(T, = *A") — *CH, + CO(X'=") (1) these generally applicable techniques for describing conical
intersections in polyatomic molecules (with more than three
atoms) is a second key aspect of this work.

The photodissociation of ketene

has been the object of considerable experimental intérést. o L .
This interest is due in part to the opportunity to observe a . Here the energy m|n|m|;ed projection of the seam of conical
specifically quantum mechanical effect, the stepwise increase Ntersection is determined in the region of the minimum energy
in the rate constant with increasing energy, in the unimolecular point on the_ seam. 'F‘ the vicinity of this portion of the seam,
decomposition of an optically prepared reactaimtan attempt ﬂLe adiabatic energies, (R), and the derivative coupling,

to reproduce the detailed steplike structure observed in thef:(R) = TFi(r;R)I(3/07)¥y(r;R) [} where Wi(r;R) is an adia-
experiments, the microcanonical dissociation rate constant for Patic electronic state and is an internal coordinate, are
vibrationally excited ketene on;Twas determined.These dedtermlned and an approximate diabatic representation,
calculations, which utilized a novel mettidr calculating the W (r;R), which rigorously removes the singularity in the
cumulative reaction probability, did not prove successful. This derivative coupling, is developed. The complete elimination of
has motivated theoretical studies of the factors governing the the singularity in the derivative coupling at the conical intersec-

microcanonical analysfsincluding the nonadiabatic processes tion is essential if the diabatic basis is to be of practical
that precede dissociation on.T computational value. These computed quantities are compared

We will consider the electronic structure aspects of the with the analogous results deduced from the characteristic
internal conversion, S— S, focusing on the §S, seam of parameterbof a point of conical intersection. The characteristic
conical intersection, likely the key region for the internal Parameters enable, identification of the two modes that evince
conversion. Knowledge of the energetics and interstate couplingsthe conical nature of the intersection, determination of the energy
in the vicinity of the seam of conical intersection is essential @nd singular part of the derivative coupling near the conical
for a reliable treatment of the internal conversion. The precise intérsection, and computation of a transformation to diabatic
determination of these quantities represents the most significantStates that rigorously removes the singularity in the derivative
contribution of this work. The §— S internal conversion has ~ coupling. These calculations are an essential prerequisite to
been considered previouslThe present investigation extends developing coupled potential energy surfaces to describe the
and complements that study, providing a more precise picture'memal conversion _and_represe_nt, to our knowledg_e, the flrs_t
of the nonadiabatic interactions in the vicinity of the seam of time a seam of conical intersection has been described at this
conical intersection. These electronic structure data can be usedevel of detail in a molecule of this size.
to describe the dynamics of the internal conversion. Previ-  Section Il outlines the electronic structure treatment. Section
ously!112ab initio electronic structure data concerning conical |l presents the results of the calculations, principally the locus
intersections have been incorporated into the description of of the seam of conical intersection, and the analysis of that seam
nonadiabatic dynamics. The present approach, by exploiting based on the characteristic parameters. Also presented are the
energetics along pathways leading to the seam of conical
* Supported in part by DOEBES Grant DE-FG02-91ER14189. intersection and the possible outcomes of a conical intersection
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o oxygen 2s correlation are limited. The sequel to this work will
. consider § and § over a more extended range of nuclear

coordinates. That treatment will include the oxygen 2s correla-
i tion and a larger contracted Gaussian basis set.
All points on the 1A—2A surface of the conical intersection

ot = are degenerate ts1 cn ! and were determined at the SOCI
O level using an analytic gradient driven algoritAfmin which
O some geometrical parameters are constrained and the rest
optimized to minimize the energy at the crossing. Unless

otherwise noted, energy minimizatiewhich need not preserve
Cs symmetry-was achieved through the use of a quasi-second-
H {:} order procedure described previoukly8

Figure 1. Planar ketene with atomic labeling as in the text. Ill. Results and Discussion

A. Comparison with Previous Results.The equilibrium
geometry of the XA, state R«(X'A1), which hasC,, symmetry
and that of the AA" state which has onlyCs symmetry,
Re(AA"), are reported, in the first two rows, in Table 1. See
also Figure 1. FORg(X!A1), R(C—0) = 1.165(1.160) ARe
(C—C)=1.322(1.312) AR(C—H) = 1.079(1.076) A, andl¢-
HCH = 121.7(121.8), in good accord with very high level ab
initio results given parentheticallf.For R(AA'"), R{(C—0)

A. Electronic Structure Treatment. The electronic structure = 1.194(1.194) AR{(C—C) = 1.440(1.426) A, anl.CCO=
calculations reported in this work were carried out @3 128.8 (130.6) in good agreement with previous equations of
symmetry for the 1, states. Although important portions of  motion coupled with cluster singles and doubles (EOM-CCSD)
the seam of conical intersection considered here h@ye  determinatiohagain given parenthetically. CompariRg(X'A;)
symmetry (all atoms coplanar, Figure 1), G symmetry andR(A!A") shows that at leagiCCO andR(C—C) must be
treatment is required to describe the conical nature of the considered in any model of the internal conversion. On the other
intersection. In this workCs symmetry will refer to configura- hand, for CO(X="), R(C—0) = 1.1283 A2 and for CH-

induced internal conversion. The detailed representation of the
seam of conical intersection and the local diabatic basis in terms
of the characteristic parameters is presented in the Appendix.
Section IV summarizes and discusses directions for future
investigations.

Il. Theoretical Approach

tions with all atoms coplanar, although noncopla@arsym- (2A"), R(C—H) = 1.08 A anddHCH = 102.7°,2! suggesting

metry configurations with two equivalent hydrogens also exist. that at least the €0 and G-H bond distances will not be
Each adiabatic wave function is expanded#Hgr;R) = crucial to the dynamics.

Z:isf c (R)y«(r;R) where thec'(R) satisfy H(R) — Ei(R)]c™- The computed vertical excitation energy of ketene,

(R) = 0 andH(R) is the electronic Hamiltonian matrix in the — Exa(Re(X*A1)) — Exa(Rd(X*Ay)), is 4.05 eV, while the
Ya, configuration state function (CSH,basis. TheW (r;R) adiabatic excitation energiia(Re(AA")) — Exta(Re(X!A1)),
were approximated by second-order configuration interaction is 2.664 eV. These results are in satisfactory accord with the
(SOCI}® wave functions-linear combinations of all CSFs  vertical (adiabatic) excitation energy, 3.92(2.73), 3.98(2.81), and
arising from zero-, one-, and two-electron excitations from the 3.56(2.44) eV, obtained at the EOM-CCSD/6-31G(d,p), EOM-
active orbitals to all the virtual orbitals using the following CCSD/PVTZ, and CASPT2/6-31G(d,p), levels respectively.
partitioning of the molecular orbitals, [*&ta; 8]{5a—12a; 14, See ref 7 for computational details. The adiabatic excitation
orin Cssymmetry [1&-44d; 8] {5d—104d, 1d'—2d’ ;14}. Here energy is also in good accord with the experimental upper bound
the square brackets [ ] denote the core orbitals, the 1s orbital of To(*A"”) < 2.64 eV23In this work, all energies will be reported
the carbons and of the oxygen and the 2s orbital of oxygen, relative toE;ia(Re(AA")) = —152.007 819 0 au. Distances will
kept fully occupied in the SOCI expansion; the curly brackets be expressed inpaunless otherwise noted.

{ } denote the active orbitals; and the number of electrons in Rmex the minimum energy point on théA — 2'A surface

the corresponding molecular orbital set follows the semicolon. of conical intersection in the near ketene region, is given in
In the ketene region the ground; state is dominated by the ~ Table 1. AtR ey, R(C—0) = 1.189(1.215) AR(C—C) = 1.538-
closed shell configuratiofi5d—94d, 1d'—24d’; 14} and thex (1.528) A, OCCO = 116.2 (115.8), and Eja(Rmey) =

— o* excitation, 24 — 104, leads to the AA" state. Ezta(Rmey=Ex(Rmey = 0.21(0.22) eV in good accord with the
The molecular orbitals were determined from a complete results of ref 7 given parenthetically.
active space (CASj state-averaged multiconfigurational self- The above comparisons support the reliability of the present

consistent field (SA-MCSCH) procedure. To facilitate con-  approach. Further comparif@mes Re(AA"), and Rg(XAj)
vergence of the SAMCSCF procedure, the core and active confirms thatR(C—C) and JCCO must be included in any
spaces were redefined, for the orbital optimizations only, using description of the internal conversion.
Cs symmetry notation, as [la7d]** {8d—104d, 1d'—24d'}8. We now consider the qualitative or mechanistic description
With an eye toward photochemical processes involvipgirs of the internal conversion. In successive subsections, we consider
the SA-MCSCF procedure thréA states were averaged with (i) the locus of the seam of conical intersection, (i) a description
weights 0.51, 0.5, and 0.49. Standard Dunnrihtyzinaga of the energetics and interstate couplings in the adiabatic and
double-¢ plus polarization (DZP) basi% sets, C[9s5pl1d]/ diabatic bases in the vicinity of the conical intersection seam,
(4s2pld), O[9s5p1d]/(4s2pld), and H[4s1p]/(2s1p), were used,(iii) the initial motion on S following (vertical) excitation from
yielding a SOCI treatment consisting of 666 450 CSFs. S and the accessibility of the seam of conical intersection, and
This SOCI expansion excludes the oxygen 2s correlation. As (iv) the motion on $following internal conversion. These data
shown below, it is adequate for this treatment, which focuses represent an essential first step in constructing a reduced
on the near ketene region, where the effects of the differential dimensionality model of the internal conversion. We begin by
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TABLE 1: Energetics from SOCI Wave Functions

0cco R(CO) R(CC) R(C2HY) R(CH?) OHCH OHCC OHCCO OH2CC E(eV) gxIf
1A”
180 2.201 2.498 2.040 2.040 121.7 119.4 13386
128.8 2.256 2.721 2.041 2.053 120.5 119.4 a0
11A—-21A
116.2 2.247 2.906 2.053 2.047 120.1 118.9 0.1 121.0 0.206 0.247Y
118.7 2.241 2.960 2.054 2.053 126.3 123.7 0.4 123.7 0.294
119.2 2.241 2.955 2.068 2.052 124.4 109.1 0.8 109.1 0.325 0.256?
1'A—2!A R(C—C) Constrained
104.2 2.331 2.35 2.057 2.064 115.6 122.6 27.3 120.1 2.273 0.174
106.0 2.306 2.45 2.057 2.061 116.0 121.2 21.4 119.4 1.533 0.191
108.0 2.289 2.55 2.058 2.058 116.2 120.2 16.7 119.2 0.977 0.204
109.0 2.284 2.60 2.058 2.057 116.4 119.9 14.7 119.4 0.763 ®.208
110.0 2.279 2.650 2.058 2.056 116.7 119.7 12.8 119.7 0.581 0.214
111.0 2.272 2.700 2.057 2.055 117.1 119.5 11.0 120.0 0.442 0.227
111.9 2.267 2.75 2.057 2.053 117.6 119.4 8.7 120.7 0.341 0.233
112.0 2.260 2.80 2.056 2.053 118.0 119.5 1.8 122.5 0.274 ©@.202
116.0 2.240 2.9 2.054 2.047 120.0 118.9 0 121.1 0.206 0.246
120.0 2.225 3.00 2.051 2.043 122.2 118.0 0.2 119.8 0.252 ®.283
123.7 2.230 3.1 2.048 2.039 124.6 1171 0.1 118.3 0.375 0.306
125.3 2.223 3.15 2.046 2.037 126.1 116.3 0 117.6 0.473 0.307
126.5 2.220 3.2 2.045 2.035 127.3 115.7 0 117.0 0.584 0.311
128.3 2.205 3.3 2.042 2.035 129.7 113.5 1.0 116.7 0.835 0.340
129.4 2.193 3.40 2.041 2.032 132.0 113.2 0 114.8 1.104 340
129.9 2.189 3.500 2.040 2.031 134.3 112.1 0.1 113.6 1.337 0.354
1!A—2'A JCCO Constrained

97.2 2.340 2.534 2.023 2.026 120.4 123.5 0 116.1 1.672 0.0847
100 2.326 2.574 2.024 2.032 120.7 121.3 0 118.0 1.283 0.0861
102.5 2.313 2.615 2.027 2.036 121.1 119.4 0 119.5 0.971 0.0982
105 2.304 2.664 2.032 2.040 121.5 117.8 0 120.7 0.703 0.118
108 2.291 2.725 2.039 2.043 121.4 116.9 0 121.7 0.445 0.171
110 2.271 2.769 2.044 2.045 121.0 116.9 0 1221 0.333 0.176
112 2.268 2.814 2.048 2.046 120.7 117.3 0.2 121.9 0.260 0.198
115 2.252 2.880 2.052 2.047 120.4 118.2 0.9 121.4 0.211 0.234
120 2.236 2.973 2.058 2.051 119.0 121.1 2.3 119.2 0.239 0.291
125.2 2.221 3.040 2.065 2.054 116.6 123.5 34 115.1 0.355 0.362
135 2.257 3.166 2.079 2.069 109.5 130.7 1.8 106.0 0.833 0.480
142 2.266 3.289 2.094 2.076 105.9 139.3 -6.7 101.4 1.428 0.624

aResults aR(X!A;) above those aRo(AA"). P Rmex @aboveRy,, Ry, the points on a surface of conical intersection reached using the damped
crossing search (see text) froRy,, andR,,, respectivelyR,,, aboveR,,,. Number in parentheses at right hand side labels the entry in Table 2.
¢ Multiplied by 100.

considering the locus of the seam of conical intersection, in branch (e.g., A’ — 225t1A"), These branches in turn intersect
terms of the essential nuclear coordind®6—C) andJCCO. at a single point wittC,, symmetry? Related confluences have

B. Seam of Conical Intersection.(i) Symmetry Consider-  been found in the 2’ state of Li?” and of Na.?® The seam
ations.For a general polyatomic molecule, the seam of conical described below contains both accidental symmetry-allowed and
intersection may have dimensidi" — 2, whereN"t = 3N — same symmetry portions. Thus, the question naturally arises as
6 andN is the number of atoms. Here then the seam may have to whether the locus reported here represents a single isolated
dimension 7. In the region under consideration, for planar seam or contains portions of two branches that intersect. To
structures, the A and 2A states havéA’ andA” symmetry. distinquish between these alternatives, the magnitude(Bf,)
For these planar structures, there &f#d = 7(Nnt& = 2) = g”(RY x hY(R,), will be monitored where
internal modes of'gd") symmetry so that restricted to the planar
structures the intersection seam has dimenbiéi — 1 = 6. 1J | 3 HR), , 3
These intersections are not conical@g symmetry since the grRI=CR)—c (Rx))T o CRI+Cc(RI) (23)
1IA" and!A" states are not coupled by purelyraodes. These

surfaces intersect conically in the full coordinate space. The Urmy +OH(R) 4
conical topology exists in a space of dimension 2 consisting, hr(R) =c(Ry) or (R (2b)
for Cs structures, of one'anode and one'amode. Finally
observe that since fdZs structures the seven internal directions | = 11A and J = 2!A. t9(R,) = 0 whenRy is located at the
orthogonal to the seam consist of sbngodes and onée'amode, intersection of two (or more) seams of conical intersectfon.
the Cs portion of the seam of conical intersection continuously jii. Numerical Results.The following analysis considers
connects with a no-symmetry portion. displacements alon&(C—C) and ICCO from Rmex. These

ii. Intersecting Seam&ecently, an unexpected locus of points displacements preserv€s symmetry; however, the energy
of conical intersection has been found in M 25 molecules. minimization need not. In this region for coplanar geometries,

For these molecules, the seam of conical intersection consiststhe seam of conical intersection is accidental but symmetry-
of two branches, an accidental symmetry-allow€g ) branch allowed and eithefJCCO orR(C—C) can be used as the seam
(e.g.,>5™A; — 25t1B,) and an accidental same symmet@g)( parameterj; that is, Ry becomesR,[A], with the remaining
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Figure 2. OCCOJB] and E((R{B]) plotted vsR(C—C)[f], with f =

OCCO (solid line, open markers) and wijth= R(C—C) (dashed line,
filled markers).

geometrical parameters optimized to minimiz¢m&[/3]). Table Figure 3. h, g", andz* for Reo

1 and Figure 2 repoRR,[5] and E(R[/]). The results are quite
illuminating. For 2.8< R(C—C) < 3.0 and 110 < JCCO <
120, nearRnyex, €quivalent results are obtained wjth= R(C—

C) and = OCCO. [The difference of 0.014(0.013) eV at
0OCCO = 112( 120) is attributed to convergence issues.]
However, significant differences are evident for 2:8R(C—

C) orR(C—C) > ~3.2. From Figure 2, it is seen that the optimal
solutions for 3 = R(C—C) have a much smallefICCO
dependence immediately outside this region than those mandate
in JCCO whendCCO is the parameter. Hence, the solutions
for RIC—C) > 3.0 andR(C—C) < 2.8 diverge from those with
OCCO as the parameter. FGCCO significantly less than 108

or 120 =< JCCO < 137", the ICCO parameterized curve is (d'(Ry) + g’(Ry))/2 for each conical intersection poiiR,. Here

clearly following a local minimum. (R = AR (H(RYIA(RY), 7 = 1 — N™. The appendix

For RIC—C) < 2.8 or OCCO > 12, the molecule is tabulates the ch reristi ters f tai int
nonplanar. See Table 1. In this regard, note that our results atoan ltjhi essean? characteristic parameters for representative points

5 X?Fgld(zf%rzsﬁ) chlgc:lcz)e ;(132'50()3 éﬂcé\l ih1R1(5c ;8)1;) The above observations concerning the derivative couplings
aﬁdE (R. [8) — EdRme) = O 384(0 é?O) eV are in gbod accord are reflected in the adiabatic-to-diabatic states transformation
X X| X! mex) — Y. .

The characterization can be provided in either the adiabatic
or an approximate diabatic basis. Since the derivative coupling,
or its residual in the approximate diabatic basis, is a nine-
dimensional vector, tabulation of the electronic structure data
can be quite complicated. The fact that the derivative coupling
is singular in the adiabatic basis at the conical intersection would
appear to be a further complicating factor. The opposite turns
8ut to be the case since the singular part of the derivative
coupling is all that is required for all but the most precise
treatments. The adiabatic energies and the singular part of the
derivative coupling can be described analytically, in terms of a
set of characteristic parametegs(Ry), hV(Ry), ands’(Ry) =

with those of ref 7 given parenthetically. Agreement deteriorates dr. . ) )
somewhat forf = R(C—C) = 2.65(2.65), withR(C—0) = P(rR)| _ [cos® —sin® |[W(FR) 3)
2.279(2.338)[JCCO=110.0(107), JHCC = 119.7(119.5), IIig(r;R) sin® cos® [\W,(r;R)

andEx(RJ{A]) — Ex(Rmex = 0.375(0.41) eV. These differences
reflect the fact that our result f&®(C—C) = 2.65 has no spatial  Near Ry, ®(R), determined from either the characteristic
symmetry, a situation apparently not considered in ref 7. parameters or the matrix elements of a component of the electric
ComparingRmexandR(AIA") with R{(X!A1), it is seen that dipole moment operator, rigorously removes the singularity in
leaving the FranckCondon region on SR(A!A") lies “ahead the derivative coupling?1°
of” Rmex FOr noncoplanaRy, one of RiC—C) or OCCO is At eachR,, the vectorg" andh" define theg—h(Ry) plane.
closer to its value aR(X'A1), the Franck-Condon region Taking Rx as the origin, define two Cartesian axes in the
value, than toRg(A'A"). Thus, these noncoplandt, may g—h(Ry) plane byx = h¥(R/||hV(Ry)||, ¥ = g”(Ry)"Ng (R
provide alternative, direct paths to the seam of conical intersec-wheregM(R,)” = g¥(Ry) — (X-g"(Ry)X, which in turn define
tion. This point is addressed below. polar coordinatesp( 0), by x = p cosf andy = p sin 6. The
C. Characterizing the Conical Intersection Region.The importance of theg—h(Ry) plane is, as noted in the Appendix,
propensity for a nonadiabatic transition depends on the energieghat near a conical intersection the derivative coupling with
and nonadiabatic couplings in the vicinity of the conical respec? is the only singular coupling. Thus, it is the preeminent
intersection. As noted in the Introduction, determination of these mode for inducing a nonadiabatic transition. The remaimiiig
guantities, to which we now turn, is the key issue in this work. — 1 directions are largely ignorable, as they are comparatively
The mathematical basis of this presentation is summarized inineffective in inducing nonadiabatic transitions.
the Appendix. A g—h plane is illustrated in Figure 3, which presents for



6662 J. Phys. Chem. A, Vol. 103, No. 33, 1999 Yarkony

theRy denotedRy,, in Table 1, thek andy spanningg—h(Ry,,), Because of the ease with whidr” is determined away from
and a vector?, one of the seven independent vectors perpen- a conical intersection, it is a popular means of obtaining diabatic
dicular tog—h(Ry,). The significance of® is discussed below.  states. The general result

Consistent with the previous discussigi(R,)™ has (largely)

a' symmetry and represents a twisting of the € moiety out 3%@”—» fy

of the molecular plane, whileM(R,) preservesCs symmetry o

and represents a twisting of the-C moiety in the molecular  \hjch differs somewhat from previous assertiéhis therefore

plane. ) ~quite important since it guarantees the desired behavidrof
Figure 4 reports the essential aspects of our characterizationat the conical intersection.

focusing on, as typicalC,(Rx,) p = 0.05, the circle in the  pasis determined b, Figure 4d considers the energy and
9—h(Rx) plane with radius 0.05 centered B, Figure 4a  ginole moment in the diabatic basis, reportimif(R) =
reports the computed, adiabatic energigs K =_11A and ZA, WY ;R H(R)WY(rR) 7 andi = (T R)|ax(r) Wi(rR).
2Sderss|2r§i] utlg\; zfrirtsuOf :stedderk:\é?(telvaendcﬁ)lé?(l)lvr\]/? ﬁ c((:?r? aresNOte that whilqu,ﬁd is approximately constarit-l,dJ(R) exhibit a
perscrip PP n1 pl o P cos@ + oy5) dependence. Further insight into these results is
them with the perturbative results,” andf ;" , requiring only obtained from Figure 4e, which repor&(R), T, f #Y, and
the characteristic parametérand the higher order estimate HY(R) . Note the good a ,reement betwd rar%d?’(pl)edés ite
fzz. See egs Al and A3 in the Appendix. The agreement thlé Iar.e i sizg 3’0Ncg)te 100 thatE (R)gand HdB(R) a ?ee
betweenE, and E™ and betweeriy andf 5" is quite good and exce tgwr?ere‘ s Targe. that is. ford N L o arlﬁj 1579 n
improves forfy and fzz. However, determination of the higher th P . 0th Ig lbld R ’ dH (R itch L i
order estimatd ?? requires data in the vicinity of, not just at ose regions, the roles bf;,(R) andH;,(R) switch, owing to
the conical inte(;section ' ' the avoided intersection of the adiabatic curves. Parts d and e
The data in Figure 4{;1 exhibi. symmetry centered around of Figure 4 illustrate the formal result (see Appendix) that, as
Y s SY y for the derivative couplingsthe adiabatic-to-diabatic states

znzlfGi?; n?;;;[rtl:; gg%ﬁnﬁgtz%r:gg#gﬂ; ?/gztréisnéaﬁwgi"ﬁn S transformation and the associated energetics indieinity of
0 : 9 PGS the conical intersection are obtained using only the character-

ggfur_r];)éstgegls Slttr:C;l:;esinsigrzrt]ggi?s%lrllitﬂic?g ?r:gu?r? uent istic parameters and the matrix elements of a property operator
' q at the conical intersection.

assumption that in this region the largest coupling is due to a Finally note from Table 1 that although¥(R{CICCO])

pure & mode?_ln any case, at least 0“‘? d_egree fo_r f_reedom . decreases with decreasifigCCO, no intersecting seams, at
needs to be incorporated into a realistic description of this reasonable energies, are indicafed ’

process. X Un : .
X , D. Motion on the 2*A" Potential Energy Surface.Following
Figure 4b reportd, andfz, the largest of thd,. The key the initial excitation, $— S, the system evolves on théA&

Egbnt”r!n SFé%l;reit:&;S rtggmuip |f‘%rmllr3l/ fzgafl:o\r/r?ltieesogintgt?a se potential energy surface until it makes the nonadiabatic transition
ping P P Y ' onto the 1A potential energy surface. While bofpa(Rmey)

tsﬁgsli’ggj m:n;mll\]l?tevg::tea%frcedygirlz dfr;r Isr?ner; thanwag;/o)of andExia(Re(AA")) are exoergic relative to the initial excitation,
piNgs. d y Symméx, the barrier(s) on theA potential energy surface may make

;u%trlgttsrtﬁsetmrgelzezziﬁ Iasrgrilr{]gp aar:gltjiiss\?vrr\lli?r? tgr(;r?i?t];:jmcﬁnl one or both of these regions inaccessible. To address this point,
P g sy ry Y P Y the following series of calculations, which is also useful in

gggpéiltenlﬁgi;gtCt(r)]gtt”tal:zttgtégeiIflgggls?iz)?\e::/éig\f/:ngqiwmg’ determining the geometric parameters essential for the descrip-
bl tion of this process, was performed. Starting~@®.(XA;), a
symmetry a.tRX' The good agreement bgtween lfgeandf 0 gradient directed patiR,—the path obtained by following the
and small size of the remaining der|_vat|_ve coupl_lngs demon- (scaled) energy gradiegt—was followed on the A potential
strates that as a practical matter thexivative couplings need o000 '\rface. See parts a and b of Figure 5. The oscillations
not be computed in theicinity of a conical intersection point in, for example,R(C2—H) are the result of the scaling of the

provided the characteristic parameters are known gradient and do not, in this work, affect the conclusions. From
The analysis in the next three figures is central to this work (o octeq points on the patRy, | = 20 and 44, a search was
since it considers the diabatic basis determined from the matrix performed for a point on p{he 1A—2IA sea;n of conical
elements mole_cula)\(r property opAera%brFlgure 4c beglrjs the intersection Ry, with the energy minimization implicit in the
analysis reportingy; = [(W\(r;R)|ax(r)Ws(r;R)L, whereji(r) algorithni8 heavily damped. The goal of this procedure is to
is thex component of the electronic part of the dipole moment |5cate g “nearby” point of conical intersection without having
operator and compares it with the corresponding perturbative (5 map Jarge portions of the intersection seam. Rhei = 20

result . See eq A9. Also reported in that figure adéeV and 44, obtained in this manner are reported in Table 1. Linear
and @, the @ determined from the characteristic parameters synchronous transit paths betweRg andR,, were computed.
using eq A6 and fromx; using eq A8, respectively. Since A second gradient-directed path chosen to initially sample
noncoplanar structures was determined. See parts ¢ and d of
f(g")sg%qf’”ﬁfe Figure 5. Finally note that the “location” of the “vertical”

excitation onto $ may depend on the photon energy so that
this analysis is no substitute for a careful treatment of the nuclear
dynamics.

From parts a and b of Figure 5 and Table 1, its seen that the
gradient directed path on; Starting fromRe(X*A1) leads to
Re(AIA"), rather than to the seam of conical intersection. This
a%q)‘ux s result is rationalized by noting th&,, andRy,, are quite similar

0 and differ little from Rmex For theseRy, R(C—C) is ~ 0.2a

the agreement betwedp(P) and®** (see also Figure 4e below)
illustrates the formal result that the transformation to diabatic
states generated bg/* removes the singular part of the
derivative coupling?10

p—0
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Figure 4. For Ry, o = 0.1 ()Exa (open circles)Exa (open squares), (d)fy (open triangles), compared witELPA (filled circles), (1fo)f 5*
(filled triangles), (1p)f 22 (filled diamonds); (b)f, (open circles, solid line) anflz (open squares, dashed line) compared with the results of a
perturbative fit (filled markers); (c)}; (filled circles) and®* (filled squares), compared with the analogous results based on the perturbation
theory using the characteristic parametaﬁg’,) and ®~®) (open markers); (db-lfj, 1J = 11 (open circles), 22 (open triangles), 12 (open squares);
andﬂﬁ, 13 = 11 (filled circles), 22 (filled triangles), 12 (filled squares); &) (open circles)Ezia (open squaresfy (open triangles)t 51 (filled
triangles),H}’J, 13 = 11 (filled circles), 22 (filled squares), 1].
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Figure 5. Gradient-directed path on thé&2potential energy surface fro¢(X*A;) to R«(AA"). Shown in (a) ardx 4 (open squaresR(C—C)
(open triangles), anB(C—O) (open circles) and in (b) a(C?>—H?) (open triangle)[1C2C!O (open circle), andlHC?H (open diamond). Foxzo
andxus on the seam of conical intersection, the value&sf (filled squares)R(C—C) (filled triangles),R(C—O0) (filled circle), R(C?>—H?) (filled
triangle), OCCO (filled circle), andOHC?H (filled diamond). For the noncoplanar path shown are inEg) (open squares)]C?C'O (open
triangles), andJHC?C!O (open diamonds) and in (&(C—C) (open triangles) an&(C—O) (open circles).
greater and1CCO is~10° smaller than folR(AA") so that from the Franck-Condon region;- Rg(XA1) to Re(AA") are
Re(A'A") lies “ahead of’Ry on the gradient-directed path. quite reasonable, alternative results were possible. In an
However, motion in directions perpendicular to thisﬂpath may analogous treatment of the first excited state of,0H the
access the conical intersection seam prior to readRiGg'A’). gradient directed path lead directly to the seam of conical
In this regard, Figure 6 considers linear synchronous transit intersectiors#
pﬁgé’ é:gn?tructsd n %aétes?réc%\)lr;\j!,nates, pl?.tte(lj e;z; function g Motion on the 1'A potential energy surface following
'cl)'h ; ' :tom onb?inh tﬁw _xi ‘;‘[( N )]{esger(:rilvrtlay XZ'[Oh fr internal conversion. On the upper surface, the conical intersec-
€se results establish the existence of a barneriess path, o, acts as a funnel, drawing the molecule toward its vertex.
P20 OF s, 10 Xz0. . L However, on the lower surface, it has the opposite effect
From parts ¢ and d Figure, it is seen that the non-coplanar .~ """ ! o . ’
directing the molecule to potentially distinct regions of coor-

radient directed path, which was effectively started with a . o B .
gihedrall]chCO or;~67°, also leads t(Re(AlA'y). This result dinate space. This point is addressed in Figure 7 and Figure 8.

can be attributed to the affinity of thel® potential energy ~ Figure 7 illustrates the energetics andpjly and (1p)f * on

surface for coplanarity evidenced in Figure 5c. Co(Ryo) for p = 0.25. Note that here the agreement between
Figures 5a5d confirm the importance oR(C—C) and (L/p)fe and (1p)f 2’1) is less satisfactory than in Figure 4a, as

JCCO for nuclear motion S While the paths on Sleading expected owing to the larger radius. From this circle, three
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i ) 1 = 150, ¢! = —90°, andqgs,? = 60°.
041 129 system evolves on;30 Rg(AA"), forming an intermediate
i . complex which then ultimately internally converts via the seam
0.2 128 of conical intersection. Three coordinates are essential to
1 describe the internal conversid(C—C), OCCO, and an'a
ol 1.7 mode likez® at Ry,
< I ] Following internal conversion ontopSthe situation may
et o2k a6 resemble that found in the standard intermediate complex
i T3 model3>36 The ground state minimum of ketene permits the
1 £ molecule to repeatedly encounter the-$; surface of intersec-
04 128 tion, leading to dissociation t8CH, + 1CO.
L To determine how the excited wave packet flux is partitioned
0.6 I 724 among these possibilities, a full treatment of the dyamics is
i ] required.
-0.8 - 123
I IV. Summary and Conclusions
H The mechanism of FA") — So(*A") internal conversion in
-130 -128  -126  -124 -122  -120  -118 ketene, facilitated by the!A —2A seam of conical intersection,
~£CCO(deg) was considered. Exploiting recent formal and computational
Figure 6. Linear Synchronous transit paths mzo from (a) Rp20 and advances in the Chal’aCterizatiOI’] Of Conical intersections, thIS
(b) Re(AA"). Direction of motion indicated by arrow at the top of work presents a detailed but compact representation of this seam
each figure. of conical intersection. This analysis provides the basis for the

determination of a coupled diabatic states representation of the

distinct points were chosen as the origin of gradient directed portions of the 1A and ZA states relevant to the intersystem
paths,qg; which corresponds to a maximum in the derivative crossing, a work currently in progress, or it can be used to refine
coupling and is as discussed earlier a no-symmetry nuclearother representations to these potential energy surfaces.
configuration, andj, andgs which correspond to high- and low- Energy-minimized projections of the seam of conical inter-
energy points. While no substitute for a careful dynamical section with eitherR(C—C) or OCCO held constant were
treatment, this analysis serves to identify potentially important determined. FolR(C—C) > 2.8a ,which includesRmex the
aspects of the local topology of the lower potential energy minimum energy point on the;SS, seam of conical intersec-
surface. tion, the energy-minimized seam Hassymmetry with all atoms

From Figure 8, it is seen that from poirgg-gs the system coplanar. However, foRR(C—C) < 2.80, deviations from
evolves on §to the region ofRe(X!A1). As previously, the coplanarity exist.
oscillations observed in the bond distances do not affect these It is the immediate vicinity of the conical intersection seam,
conclusions. the key region for inducing a nonadiabatic transition, that is

F. Mechanistic Implications. The preceding analysis sug- the focus of this work. A compact representation of the energies
gests two possible mechanisms for the internal conversion. Inand the largest part of the derivative couplings is efficiently
the first case, motion perpendicular to the gradient directed pathdetermined from the characteristic parameters. In particular, by
transports the system to the region of the conical intersection using the characteristic parameters, one can identify the two
at which point internal conversion occurs. Alternatively, the modes, one 'aand one amode when the molecule ha&;
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symmetry, that yield the singular part of the derivative couplings;
determine the local energetics; and obtain a transformation to
diabatic states that rigorously removes the singularity in the
derivative coupling. In the past, the vibronic structure of
moderate sized molecules including furan, pyrrole, thiogéne,
and pyrazin& has been treated with the effects of conical
intersections described using ab initio electronic structure data.
While a description of these complicated vibronic processes was
highly successful, the electronic structure treatments required
calculation of the wave functions at many points in the
immediate vicinity of the conical intersection. The techniques
employed in this work, which require information only at the
conical intersection, provide significantly enhanced capabilites
to incorporate reliable ab initiio data into such treatm&nté
vibronic effects in molecules.

The existence of barriers separating key regions of nuclear
coordinate space is a matter of considerable importance. A
qualitative representation of the potential energy surface topol-
ogy for S and S, in regions relevant to the internal conversion,
was obtained by following gradient directed paths, that is, paths
generated by following the (scaled) energy gradient in a stepwise
manner. Using this procedure, barrierless paths were identified
on S from the Franck-Condon region of theS— S; excitation,
leading toR«(AA") and Rmex. These results demonstrate that
the seam of conical intersection is accessible following excitation
from S. Following internal conversion ontgy®earRmex the
gradient directed paths lead Ry(X!A;).

Related questions arise in the photodissociation of isovalent
HNCO,

HNCO(S, = X'A") + hv — HNCO(§ = 'A"") —
HNCO(S) — H + NCO(X’II) (4a)

HNCO(S, = X'A") + hv — HNCO(§ ='A"") —
HNCO(T, = 3A") — HN(X32") + CO(X'=") (4b)

which also has been the object of both theoretical and
experimental investigatior#§:3° In future work, a similar
analyisis of the internal conversion will be performed for this
system.

Appendix

The energies and derivative couplings n&r a point of
conical intersection of staté®ndJ, can be concisely expressed
in terms of the characteristic paramefeg8(Ry), hY(Ry), and
PRy = (G(Ry) + d'(RY)/2 (see eq 2 in the text). Ne&y, it
is convenient to use the generalized cylindrical polar coordinates
o, 0, andZ with p and 6 defined in section I1IB and the unit
vectorsZ' spanning the space of dimensioN 3- 8 orthogonal
to theg—h(Ry) plane. In this work, th& are defined in terms
of an atom centered cartesian coordinate basis.

i. Energies. In this coordinate system, through first order
displacementsdR) from Ry

E.(R) ~ EPY=E(R) + " (R)"0R £ pq(t) (A1)
where— corresponds td, + corresponds td,

q(6)>=h? cos 6 + (g, cos6 + g, sin0)” = h* cos 6 +
o?sin(6 + B) (A2a)

cosA(8) = [h/q(H)] coso
sinA(6) = [g/q(A)] sin (6 + B) (A2b)
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TABLE 2: Characteristic Parameters for Points on the Seam of Conical Intersection

R h 29 S
X y z X y z X y z X y z
(1) (116.2, 2.90557)

0.5219 2.1853 0.0087 —0.0004 0.0001 0.0096 —0.0360 0.0062 —0.0004 —0.0378 0.0065 0.0001
—2.8335 —0.6450 —0.0022 —0.0006 0.0002 0.0287 —0.0524 0.0212 —0.0015 —0.0553 0.0225 0.0000
0.0000 0.0000 0.0000 0.0012 —0.0002 —0.0195 0.1040 -—0.0231 0.0008 0.1096 —0.0242 —0.0002
—4.2020 0.8857 0.0014 —-0.0001 0.0000 -0.0147 —0.0102 —0.0027 0.0008 —0.0107 —0.0029 0.0000
-3.4698 -—2.5911 —0.0001 —0.0001  0.0000 -0.0041 —0.0054 —0.0017  0.0003 —0.0057 —0.0018  0.0001

w11 = —1.056 1541, = 0.024 002, = —0.074 61
(2) (119.2, 2.9549)
—1.7501 1.3952 0.0942 0.0026 0.0036 0.0102 0.0198 0.02540.0056 —0.0194 —0.0269 0.0014
—0.4699 —2.9236 —0.0249 0.0055 0.0044 0.0294 0.0409 0.0379-0.0118 —0.0599 —0.0566 0.0001
0.0000 0.0000 0.0000 —0.0076 —0.0095 —0.0210 —0.0581 —0.0808 0.0109 0.0730 0.0912 —0.0023
1.3525 —3.8703 0.0052 —0.0002 0.0004 —0.0030 —0.0014 0.0056 0.0001 0.0104 0.0088 0.0011
—2.3059 —3.8710 0.0144 —0.0003 0.0012 -0.0155 —0.0011 0.0118 0.0063 —0.0041 —.0166  —0.0003
u11=0.123 00412 = —0.001 6442, = 0.047 09
(3) (109.0, 2.60)

0.1835 2.2149 0.8258 0.0083 —0.0020 —0.0092 —0.0538 —0.0129 —0.0135 —0.0672 —0.0083 0.0050
—2.5024 —0.5661 —0.1212 0.0183 —0.0044 —0.0069 —0.0404 0.0301 —0.0331 0.0463 0.0643 0.0023
0.0000 0.0000 0.3000 —0.0306 0.0050 0.0115 0.0988 —0.0240 0.0223 0.0331 —0.0599 —0.0215
—3.8643 0.9513 —0.4026 0.0019 0.0019 0.0080 —0.0053 0.0044 0.0140 -—-0.0088 0.0005 —0.0022
—3.2564 —2.3600 0.5451 0.0021 —0.0005 —0.0034 0.0007 0.0025 0.0102 —0.0034 0.0035 0.0165
w11 = —0.710 9310 = —0.421 T4u» = —0.421 41
(4) (112.0, 2.80)

0.3716 2.2292 0.3166 0.0028 0.0006 0.0070—0.0343 0.0039 —0.0010 —0.0485 0.0051 —0.0036
—2.7193  —0.6056 0.0193 0.0006 —0.0008 0.0257 —0.0515 0.0190 —0.0016 —0.0314 0.0356 —0.0054
0.0000 0.0000 0.3000 —0.0056 0.0012 —0.0158 0.0988 —0.0199 0.0062 0.0982 —0.0369 0.0092
—4.0797 0.9222 -0.1907 0.0017 -0.0007 -—0.0122 -0.0077 -—0.0012 -—0.0035 —0.0110 -—0.0016 —0.0013
—3.4357 —2.5280 0.0992 0.0005 —0.0002 —0.0047 —0.0052 -—0.0017 —0.0001 —0.0073 —0.0022 0.0011
pa1 = —1.037 9811, = —0.020 2812, = —0.106 59
(5) (120.0,3.00)

0.6451 2.1297 —0.0219 0.0055 —0.0018 0.0112 —0.0349 0.0096 0.0080 —0.0285 0.0090 0.0017
—2.9204 —0.6839 —0.0423 0.0079 —0.0043 0.0296 —0.0487 0.0215 0.0185 —-0.0728 0.0107 0.0025
0.0000 0.0000 -—-0.1000 —0.0152 0.0047 —-0.0213 0.1017 -—-0.0260 —0.0166 0.1158 -—0.0151 —0.0047
—4.2673 0.8590 0.0606 0.0011 0.0011 —0.0158 —0.0121 —0.0035 —0.0084 —0.0096 —0.0031 0.0001
—3.5058 —2.6408 —0.0759 0.0006 0.0003 —0.0037 —0.0059 —0.0016 —0.0016 —0.0048 —0.0014 0.0004
Uil = —1.050 62#12: —0.120 90#22: —0.067 52
(6) (129.4,3.40)

0.9419 1.9807 —0.0555 —0.0044 0.0172 0.0134 -0.0141 0.0508 —0.0156 —0.0029 0.0115 0.0005
—3.2984 —0.8219 —0.0287 0.0004 0.0100 0.0306 —0.0028 0.0331 —0.0414 —0.0875 —0.0145 0.0021
0.0000 0.0000 —0.1000 0.0142 —0.0246 —0.0240 0.0430 —0.0733 0.0280 0.0966 0.0049 —0.0028
—4.5299 0.8030 0.0702 —0.0069 —0.0021 —0.0157 —0.0175 —0.0086 0.0226 —0.0041 —0.0016 0.0001
—3.6814 —2.8165 —0.0932 —0.0033 —0.0005 —0.0043 —0.0087 —0.0020 0.0064 —-0.0021 —0.0003 0.0001
u11= —0.743 545 281, = 0.278 137 1942, = 0.03929390
a(JCCO,R(C—0C)).
lw = IF(Ry)W for w = x, y, zandI? = g9, h¥, $9. From eqs di _ ghsin@ + 7/2) (A4)
Al and A2, we have the important result that greh(R,) plane de q2(9)
contains all the linear part of the energy differenee(R) —
E-(R). Ku
P . . . . . _ by _ Jl _
ii. Derivative Couplings and Diabatic States NearR,, the m,(0) = [a"p(0) + b'p’"(0)] = qO)f, w=zorp
leading terms in a perturbative expansionftfR) are'o-8 = (A5a)

1R = |12 L) + 2L )
T de 2.d6\ q(0)
: (0)
g% —m:w = fPV(R) + F PPV(R) =1 PV(R)
(A3a)
f2(R) = m,(0)/(2q(0)) = f P'(R) (A3b)
fF2(R) = m,(0)/(29(0) = FP'(R)  (A3c)

where

K,=2,K,=3,

P =cos A sin@sinA(d)  p¥=cos 6 sin 6 cosA(h)

(ASb)

and (v,nl.k) = (z1,1,0) and £,2,0,1) and 4, 1,2,0), f, 2,0,2),
and f, 3,1,1).

At Ry, only (1/p)ffc}J is singular so that the singular part of
the derivative coupling can be treated analytically. Equations
A3 and A5 enable compact expressions for the nonsingular
components of the derivative couplingRy¢ to be obtained by
fitting f'vﬂ along a small loop surrounding that poffit.

NearRy, the transformation anglel() to a diabatic basis (eq
3 in text) is approximated bp®)(R) with
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—®P(R) = 2(6)/2 + [pm,(6)/(24(6)) +
> Zm,(0)/a(6)] = —P*(R) — [@PA(R)] (A6)

The derivative coupling in the diabatic basis

PO = £ —ag’;m — O (A7)

is negligible near the conical intersectith.

iii. Diabatic States and Molecular Properties.Since only
theg—h plane, rather than the individugP andhV, is uniquely
defined?® the angle® is arbitrary up to a constant offset. This
complicates the synchronization of tleat differentRy. This
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problem can be avoided using a transformation to diabatic states (17) Yarkony, D. R. Electronic Structure Aspects of Nonadiabatic

that is uniquely defined and is equally effective in removing

the singular part of the derivative coupling Bk This is
generated byb = ®* (ref 32 ) where

AR)

A —
tan 2b"(R) = AALR)

(A8)

with Ay(R) = W (r;R)IA(NWa(r;R)I and AAL(R) = (Au(R)
— Au(R))/2. HereA(r) is any Hermitian operator for which
AA;(R) and Aj(R) do not simultaneously vanish B.32

NearRy, explicit computation oA(R) and, hence, of the wave
functions, can be avoided sinégR) is well approximated b3

APXG) = (A, + A))I2l + 6 (AA, SinL + A, cosh) +
o(AA;cosl — Ajsinid) (A9)

where g are the Pauli matrices. Th@ obtained fromA® is
denoted®A®),

Thus, knowledge of the characteristic parameters and the
relevant operator matrix elements at the conical intersection is,

Processes in Polyatomic SystemsMnodern Electronic Structure Theary
Yarkony, D. R., Ed.; World Scientific: Singapore, 1995; pp 6421.

(18) Yarkony, D. RRev. Mod. Phys.1996 68, 985-1013.

(19) East, A. L. L.; Allen, W. D.; Klippenstein, S. J. Chem. Phys
1995 102 8506-8532.

(20) Huber, K. P.; Herzberg, GMolecular Spectra and Molecular
Structure V. Constants of Diatomic Moleculéfgn Nostrand Reinhold:
New York, 1979.

(21) Klippenstein, S. J.; East, A. L. L.; Allen, W. 3. Chem. Phys
1996 105, 118-140.

(22) Andersson, K.; Roos, B. O. Multiconfigurational SEcond order
perturbation theory. IModern Electronic Structure Thearyarkony, D.
R., Ed.; World Scientific: Singapore, 1995; Vol. 2, pp-5809.

(23) Yarkony, D. R. Molecular Structure. lAtomic, Molecular and
Optical Physics HandboolDrake, G. L., Ed.; AIP: New York, 1996; pp
357-377.

(24) Kuntz, P. J.; Whitton, W. N.; Paidarova, |.; Polak,Gan. J. Chem.
1994 72, 939.

(25) Chaban, G.; Gordon, M. S.; Yarkony, D. RPhys. Chem. A997,
101, 7953-7959.

(26) Glezakou, V.-A.; Gordon, M. S.; Yarkony, D. B. Chem. Phys.
1998 108 5657-5659.

(27) Sadygov, R. G.; Yarkony, D. R. Chem. Physl1999 110, 3639
3642.

(28) Yarkony, D. RJ. Chem. Physsubmitted.

(29) Yarkony, D. R.Theor. Chem. Accl997 98, 197-201.

(30) Yarkony, D. R. Diabatic potential curves and avoided crossings
for diatomic molecules. ITheoretical High Resolution Molecular Spec-
roscopy Jensen, P., Bunker, P., Eds.; John Wiley andSons: New York,

sufficient to determine the energies, the largest part of the 1999.

derivative coupling and the diabatic states near the conical
intersection. Table 2 reports the characteristic parameters an

matrix elements ofi(r) for selectedRy in Table 1.

References and Notes

(1) Kim, S. K.; Lovejoy, E. R.; Moore, C. BSciencel 992 256, 1541.

(2) Kim, S. K.; Lovejoy, E. R.; Moore, C. BJ. Chem. Phys1995
102 3202.

(3) Morgan, C. G.; Drabbels, M.; Wodtke, A. . Chem. Physl996
105 4550.

(4) Gezelter, J. D.; Miller, W. HJ. Chem. Phys1996 104, 3546.

(5) Seideman, T.; Miller, W. HJ. Chem. Phys1992 97, 2499.

(6) Allen, W. D.; Schaefer, H. F., lllJ. Chem. Phy4988 89, 329-
344.

(31) Werner, H. J.; Meyer, WJ. Chem. Phys1981, 74, 5802-5807.

d (32) Yarkony, D. RJ. Phys. Chem. A998 102, 8073-8077.

(33) Macas, A.; Riera, AJ. Phys. B1978 11, L489-1492.

(34) Hettema, H.; Yarkony, D. Rl. Chem. Phys1995 102, 8431.

(35) Tully, J. C.J. Chem. Physl974 61, 61.

(36) zahr, G. E.; Preston, R. K.; Miller, W. HI.. Chem. Phys1975
62, 1127-1135.

(37) Koppel, H.; Domcke, W.; Cederbaum, L./&dv. Chem. Phys1984
57, 59.

(38) Brown, S. S.; Berghout, H. L.; Crim, F. B. Chem. Phy4995
102 8440.

(39) Brown, S. S.; Berghout, H. L.; Crim, F. B. Chem. Phys1995
102 8440.

(40) Matsunaga, N.; Yarkony, D. R. Chem. Physl997 107, 7825~
7838.

(41) Matsunaga, N.; Yarkony, D. RMolec. Phys.1998 93, 79-84.



