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We report the temperature and pressure dependence of the dynamics at short residence times of a fuel-lean
hydrogen-air mixture in an isothermal continuous-flow stirred tank reactor. The reaction between hydrogen
and oxygen is modeled by a set of twenty reversible reactions involving nine species over the temperature
and pressure ranges 300-1100 K and 10-3-10 bar, respectively. Boundaries of dynamically distinct regions
in a complete pressure-temperature diagram are calculated with a path-following algorithm based on pseudo-
arclength continuation. We find a region of birhythmicity, thus showing that chain-branching alone can account
for the coexistence of stable oscillatory states, and a region containing a periodic-orbit isola, a new feature
for this system. Although infinite-period orbits exist just a few degrees below the ignition curve, oscillatory
ignition does not occur under the conditions of our simulations.

Introduction

Combustion is among the oldest fields of science. The
unabated need to generate energy while concomitantly reducing
pollutant emissions has motivated significant progress in our
understanding of combustion chemistry. Still, our knowledge
of combustion processes and our ability to control them are often
limited by their strongly nonlinear dynamics. Events that are
desirable under some circumstances must be avoided at all costs
in other situations. For example, while ignition of fuels is an
essential step in starting burners, internal combustion engines,
and turbines, accidental ignition of a fuel can have catastrophic
consequences. Since ignition results from an abrupt change in
reaction dynamics, predicting bifurcation features of a reaction
model is an integral part of combustion research. Systematic
identification of the minimal subsets within a complex reaction
network that lead to instabilities can be beneficial both in
controlling ignition (by either thermal or kinetic means) and in
refining the reaction network. Bifurcation analysis is particularly
suited to this task as well. With these factors in mind, we present
for the first time a complete two-parameter bifurcation map of
a combustion reaction modeled with a detailed kinetic scheme.

The H2 + O2 Reaction. The gas-phase reaction between
hydrogen and oxygen is one of the most thoroughly studied
reactions.1,2 Experiments have been performed in a wide variety
of reactors and modeling has been successfully carried out for
several reaction sets that differ only in their details. Because it
is the simplest system exhibiting chain-branching, the H2 + O2

reaction is archetypal. That the elementary steps used in
modeling the overall reaction are part of all detailed kinetic
schemes describing hydrocarbon oxidation further underscores
the significance of this reaction. Owing to the wealth of
experimental data and well-developed sets of elementary
reactions that are available, the H2 + O2 reaction can serve as

a test bed for sophisticated numerical methods; any method that
fails when applied to this reaction is unlikely to be useful in
the analysis of other combustion reactions.

Experimental observations of oscillatory and steady ignition,
coexistence of large- and small-amplitude oscillations (birhyth-
micity), complex oscillations,3,4 and chaos5 have been reported
for the H2 + O2 reaction in a continuous-flow stirred tank reactor
(CSTR). Numerical studies of the H2 + O2 reaction have
consistently sought to discern the origins of these dynamical
features: are they kinetic or are they are thermokinetic? That
is, are they a result of chain-branching alone or of chain-
branching and the autocatalytic effect of thermal feedback on
reaction rate? Of the reported phenomena, all but oscillatory
and steady ignition are thought to be thermokinetically driven.3,4

Thermokinetic effects are suppressed under isothermal condi-
tions, but strict maintenance of isothermality cannot be experi-
mentally realized for fast reactions such as H2 + O2, thus making
numerical studies an indispensable tool for identifying the source
of these dynamical features.

In common parlance ignition is associated with a sudden
increase in reaction rate. In a CSTR, this rapid increase in
reaction rate is typically linked to loss of stability of a state
essentially identical in chemical composition to the mixed but
unreacted inlet stream. However, ignition in a CSTR is defined
only in part by saying that it is the loss of stability of a state in
which there is a negligibly slow rate of conversion of reactants
to products. Of equal importance is a description of the state to
which the system evolves, and this requires knowing both the
types and the stabilities of the states that remain upon disap-
pearance of the extinguished state. In addition to the familiar
hysteretic transition between the extinguished state and a steady
state of high conversion (steady ignition), other examples of
ignition are transition to an oscillatory state with a frequency
on the order of the residence time and transition without
hysteresis to an oscillatory state of large amplitude and very
long period (oscillatory ignition).3,4* Corresponding author.
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Sharp bursts of reactivity separated by long intervals during
which the extent of reaction is nearly zero characterize oscil-
latory ignition. Unfortunately, if these characteristics alone are
used to define oscillatory ignition, it is then not possible to
identify the ignition event with a single type of solution to the
rate equationssthe characteristics of the final state must be
combined with loss of stability of the extinguished steady state.
The term oscillatory ignition is not always used in the restricted
sense we adopt here. For example, Figure 1 of ref 6 describes
an oscillatory state having a period approximately equal to the
residence time as oscillatory ignition. More recently, oscillatory
ignition was identified with a saddle-node homoclinic bifurca-
tion. This scenario, in which the steady state on the homoclinic
orbit undergoes a saddle-node bifurcation, was verified by the
absence of hysteresis between the extinguished steady state and
the long-period, large-amplitude oscillations and by the way in
which the period scaled with the distance from the point at which
the steady state lost stability.4

Adopting a more restrictive and mathematically formal
definition has the advantage of sharpening the goals of a
computational study. On the other hand, when considering
practical matters such as reactor safety, it may seem like we
are making a distinction without a difference. We aim to show
that by ascertaining whether oscillatory ignition occurs in the
restricted sense, we are able to address the basic mathematical
questions with no sacrifice in our ability to discuss practical
aspects of reactor dynamics.

Numerical Bifurcation Analysis of the H2 + O2 Reaction.
To analyze the rate equations, we adopt an approach that draws
on multiparameter bifurcation theory to explain both local
dynamics of steady states and periodic orbits (including the role
of distinguished parameters) and global dynamics.7-9 Viewing
the classical pressure-temperature (p-T) ignition diagram as a
two-parameter cross section of the whole of parameter space,
we expect to find curves of codimension one bifurcations and
isolated points at which codimension two bifurcations occur.
The theory of unfolding of degenerate bifurcations is an essential
component of numerical bifurcation analysis. Anyp-T diagram
we obtain must be vetted by exhaustively comparing one-
parameter cross sections to unfoldings described in the dynami-
cal systems literature. Reference 9 is an especially valuable guide
to heuristic unfoldings of multiparameter global bifurcations.

Numerical bifurcation analysis has proven itself to be an
effective tool in the study of ignition and extinction in both
spatially homogeneous and distributed systems.10 Solutions to
the steady-state rate equations are calculated as one of the model
parameters is varied. The stability of the solution is immediately
assessed via eigenvalue analysis, so accurate detection of
bifurcations is an integral feature of the calculations. If
bifurcations are detected, additional analyses such as calculation
of one-parameter curves of periodic orbits and two-parameter
curves of bifurcation points can be undertaken. This should be
contrasted with numerical integration of the rate equations using
software for initial-value problems. In this case the presence of
bifurcations is inferred from inspection of the resulting time
series, a potentially error-prone procedure. AUTO8611 is a robust
collection of subroutines that adopts the former, more direct of
these two approaches.

In what appears to be the first application of numerical
bifurcation analysis of any sort to a detailed kinetic scheme for
a combustion reaction, a parent set of 35 reactions for the air
oxidation of H2 was reduced to sets of 10 and 13 reactions and
the dynamics in a CSTR of these reduced sets was analyzed
using a hybrid approach based on AUTO86 and numerical

integration.12 Curves of steady states were computed by
AUTO86. Ignition was found to occur at a transcritical
bifurcation; this is puzzling because a transcritical bifurcation
is not a generic scenario in one-parameter families of equations.
Inspection of the mass balance equations under consideration
confirms that they do not possess a trivial solution for which
the species' concentrations in the reactor are equal to those in
the feedstream. Direct calculation of two-parameter curves of
steady-state bifurcations and one-parameter curves of periodic
orbits proved elusive, so the portion of thep-T diagram
corresponding to various ignited states was completed via
numerical integration. Direct calculation of two-parameter
saddle-node and Hopf bifurcation curves and of curves of
periodic orbits near Hopf bifurcations using the full set of 35
reactions was reported subsequently.13

A hybrid approach (albeit one shifted markedly toward direct
methods) has likewise been adopted in a series of recent
papers.14-16 Software written specifically for modeling combus-
tion reactions was used to calculate curves of steady states,
detect saddle-node and Hopf bifurcations, calculate two-
parameter saddle-node curves, and perform sensitivity and quasi-
steady-state analyses along the saddle-node curves. Two-
parameter curves of Hopf bifurcations were constructed by
extracting the bifurcation points from a series of one-parameter
calculations and oscillatory dynamics was investigated by
numerical integration. The net result is a fuller account of steady-
state behavior and a partial characterization of the oscillatory
states. Birhythmicity was detected, but the fate of long-period
oscillations remained an open question.14

We seek firm numerical evidence for oscillatory ignition and
further elucidation of the role of thermal feedback in the H2 +
O2 reaction. Developing ap-T diagram that is consistent in all
respects with local and global two-parameter bifurcation theory
is integral to reaching these goals. Since AUTO86 was able to
compute complete curves of periodic orbits for liquid-phase
reactions in an isothermal CSTR,17,18 a reexamination of its
capabilities for gas-phase reactions is warranted. Following a
description of the model we have adopted and further informa-
tion about the numerical methods we have used, we present
several new aspects of the oscillatory dynamics of the H2 + O2

reaction, discuss ignition and extinction dynamics, and propose
experiments that would test the computations.

Model and Methods

For a reaction involvingn reactive species in an isothermal
CSTR, each speciesi obeys the mass balance equation19

wherewi is the mass fraction of speciesi, Ri is the net rate of
change of the amount of speciesi due to chemical reaction per
unit volume,Mi is the molar mass of speciesi, F is the mass
density calculated assuming the gas mixture behaves ideally,
wi

0 is the mass fraction of speciesi at the reactor inlet, andτ is
the residence time. By choosing isothermal conditions, we are
able to identify those aspects of the dynamics that are due to
kinetic rather than thermokinetic effects. Since there are one
fuel and one oxidant in the feedstream, the inlet mass fractions
can be expressed in terms of a single parameter. For this purpose
we define the equivalence ratioφ as

dwi

dt
)

RiMi

F
-

wi - wi
0

τ
, i ) 1, ...,n

(nfuel/nair)inlet/(nfuel/nair)stoichiometric
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Taking the volume fractions of N2 and O2 in air to be 0.79 and
0.21, the volume fraction of H2 in a stoichiometric mixture is
0.296. The four experimentally accessible parameters areτ, φ,
the reactor temperatureT, and the pressurep.

The Ri are calculated using a set of elementary steps
comprising twenty reversible reactions of the nine species H2,
O2, H2O, H, O, OH, HO2, H2O2, and N2; the 20 reactions are
taken from a comprehensive reaction set for H2/O2/N2 combus-
tion chemistry.20,21 Although N2 is assumed to be unreactive
over the temperature range studied here (300 K< T < 1100
K), it does enter the rate equations as a third-body species. The
forward rate constants are given by modified Arrhenius expres-
sions with temperature-dependent preexponentials (see Table
1). Equilibrium constants are computed using the CHEMKIN
thermodynamic database22,23 (beginning from

conventional enthalpies and entropies of each speciesi are
calculated to account for the temperature dependence of the
equilibrium constants). Reverse rate constants are determined
by the equilibrium constants and forward rate constants.

Much of the earlier strategy for using AUTO86 to analyze
liquid-phase reactions17,18was carried over without modification.
One important alteration we adopted in this work was tracking
the curves of steady states “backwards” from higher to lower
extents of reaction. In general, convergence tolerances were less
stringent for two-parameter continuations than for one-parameter
continuations and for periodic-orbit continuations than for
steady-state continuations. Usually all the user-specified toler-
ances were equal, with typical values being 10-10 for one-
parameter steady-state continuation, 10-6 for two-parameter
continuation of steady-state saddle-node or Hopf bifurcations,
10-7 for one-parameter periodic-orbit continuation and two-
parameter continuation of orbits of fixed period, and 10-3 for
two-parameter continuation of a periodic-orbit saddle-node
bifurcation.

Despite the rather loose tolerances for two-parameter continu-
ation of periodic-orbit saddle-nodes, we found that these curves
were in proper registry with individual bifurcation points located

to higher precision in corresponding one-parameter continuations
of branches of periodic orbits. Computation of an orbit having
truly infinite period is not possible using AUTO86. As a
consequence, curves of homoclinic orbits were approximated
by two-parameter curves of very long period orbits (the period
is 2000τ in the figures that follow). Both the tolerances and the
stepsize along the branch were decreased when attempting to
detect bifurcations of periodic orbits near codimension two
points. Tolerances were also decreased in the recalculation of a
two-parameter continuation of periodic-orbit saddle-nodes when-
ever spurious behavior was suspected (insufficiently strict
tolerances occasionally caused curves of long-period orbits to
coincide with curves of periodic-orbit saddle-nodes). Periodic
orbits were typically discretized on a 400 point mesh, with
increases in the density of mesh points by up to a factor of 4 in
the proximity of degenerate bifurcations. The leading Floquet
multiplier often became inaccurate as the branch of periodic
orbits became nearly vertical (i.e., as the period approached
infinity rapidly); this is a known limitation of the algorithm.11

In these cases, we relied on direct inspection of the branch as
well as dynamical systems theory to reject unnecessarily
complicated scenarios. The Jacobian was approximated by finite
difference formulas throughout this work.

New Dynamical Features of the H2 + O2 Reaction.

We begin by recounting the steady-state bifurcations observed
when φ ) 0.5 andτ ) 1 ms: saddle-node (SN) and Hopf
bifurcation (HB) curves are shown in Figure 1. Comparisons
to batch reactor dynamics provide a familiar context when
interpretingp-T diagrams obtained under flow conditions. For
example, the similarity of the right-hand branch of the SN curve
to the first and second explosion limits observed in closed
vessels is noteworthy and has been discussed previously.3,14

Unlike in closed systems, the rapid reaction rates following
ignition can be sustained in a CSTR due to the continuous influx
of reactants. Moreover, as described in the Introduction, other
types of ignition may occur.

Inside the crescent-shaped region bounded by the SN curve,
three steady states exist, with either one or two of them being

TABLE 1: Reactions and Associated Kinetic Parametersa,b

ko/(mol1-mi

cm3mi-3 s-1) â Ea/(cal mol-1)

R1: H2 + O2 a 2OH 1.70× 1013 0 4.778× 104

R2: H2 + OH a H2O + H 1.17× 109 1.30 3.626× 103

R3: OH+ O a O2 + H 4.00× 1014 -0.50 0
R4: H2 + O a OH + H 5.06× 104 2.67 6.29× 103

R5: O2 + H + M a HO2 + Mc 3.61× 1017 -0.72 0
R6: OH+ HO2 a O2 + H2O 7.50× 1012 0 0
R7: H + HO2 a 2OH 1.40× 1014 0 1.073× 103

R8: O+ HO2 a O2 + OH 1.40× 1014 0 1.073× 103

R9: 2OHa H2O + O 6.00× 108 1.30 0
R10: 2H+ M a H2 + Md 1.00× 1018 -1.00 0
R11: 2H+ H2 a 2H2 9.20× 1016 -0.60 0
R12: 2H+ H2O a H2 + H2O 6.00× 1019 -1.25 0
R13: OH+ H + M a H2O + Me 1.60× 1022 -2.00 0
R14: H+ O + M a OH + M f 6.00× 1016 -0.60 0
R15: 2O+ M a O2 + M 1.89× 1013 0 -1.788× 103

R16: H+ HO2 a H2 + O2 1.25× 1013 0 0
R17: 2HO2 a O2 + H2O2 2.00× 1012 0 0
R18: H2O2 + M a 2OH + M 1.30× 1017 0 4.55× 104

R19: H+ H2O2 a H2 + HO2 1.60× 1012 0 3.8× 103

R20: OH+ H2O2 a H2O + HO2 1.00× 1013 0 1.8× 103

a The molecularity and forward rate constant for reactioni are
mi and ki ) ki0Tâ

ie
-Ea,i/RT. b Third body efficiencies differing from

unity are denoted by wj . c wj 5(H2) ) 2.86, wj 5(H2O) ) 18.6, wj 5(N2) )
1.26. d wj 10(H2) ) 0, wj 10(H2O) ) 0. e wj 13(H2O) ) 5.0. f wj 14(H2O)
) 5.0.

Cp,i ) a0,i + a1,iT + a2,iT
2 + a3,iT

3 + a4,iT
4

Figure 1. Steady-state bifurcations. Saddle-node (s,SN) and Hopf
(- - -,HB) curves are shown as a function of pressure and temperature
for φ ) 0.5 andτ ) 1 ms. Only those regions in which there is not a
unique, stable steady state are labeled, and insofar as possible labels
are assigned from top to bottom and left to right. A unique steady state
coexists with one or more periodic orbits in region III.
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stable. Outside this region, the steady state is unique, and in
the unlabeled portion of thep-T diagram, it is stable. Suppose
that pressure is fixed between the lower and upper cusp points
and an initial temperature to the left of the crescent is selected.
As T is increased past the right-hand branch of the SN curve,
relatively slow reaction gives way to rapid reaction and the
composition of the outflow of the reactor shifts abruptly toward
product (here H2O) from reactants (here H2 and O2). For this
reason, we designate the initial state and its extension up to the
discontinuity as theextinguishedor low-conVersion state. In
addition to rapid reaction rate and increased product concentra-
tions, states existing past this bifurcation are characterized by
significant concentrations of reactive intermediates, and we label
such states asignited or high-conVersion.

In the absence of the HB curve, crossing the right-hand branch
of the SN curve in the direction of increasing temperature leads
to steady ignition. In the presence of the HB curve, this cannot
be true on the segment delimited by the two HB/SN intersec-
tions. Crossing the right-hand branch of the SN curve in this
pressure range puts the reactor in region III, where the unique
steady state is unstable due to the Hopf bifurcation. This implies
that ignition to an oscillatory state takes place (the only stable
states are oscillatory). Depending on the way in which the stable
oscillatory states disappear in this region, ignition to an
oscillatory state may occur over an even larger pressure range.
To say something more definite about this, we now turn our
attention to bifurcations along branches of periodic orbits.

The HB curve begins and ends at Takens-Bogdanov (TB)
points on the left-hand branch of the SN curve. Curves of saddle-
loop (SL) bifurcations must emanate from these two points.7

At the TB points, the Hopf and saddle-node bifurcations occur
simultaneously. The bifurcations on the left-hand branch of the
SN curve have traditionally been associated with extinction. If,
as temperature is lowered, the reactor remains in a reactive state
until reaching the left-hand branch of the SN curve, aclassical
extinctionoccurs as this branch is crossed. However, as the Hopf
and saddle-node bifurcations separate and the Hopf bifurcation
moves to higher temperatures on the ignited branch of steady
states, the reactor may extinguish at the Hopf bifurcation rather
than at the saddle-node bifurcation. This is an example of
premature extinction. Premature extinction, first noted in ref
14, is put in a fuller context in the next section. By calculating
branches of periodic orbits near the TB points, we learn that
close to both endpoints of the HB curve, the Hopf bifurcation
is subcritical (i.e., unstable orbits emanate from the bifurcation
point), while further from the TB points, the Hopf bifurcation
is supercritical. This suggests the presence of at least two
degenerate Hopf (H10) points on the HB curve.7,8 Continuing
periodic-orbit branches from the Hopf bifurcation to the saddle-
loop bifurcation confirms that near the TB points the infinite-
period orbits are unstable, as predicted by the unfolding of the
TB point.7 Similar calculations at some distance from the TB
points disclose that the infinite-period orbits are stable at their
disappearance. This suggests the presence of at least two trace-
zero saddle-loop (TZ) points on the SL curve.9

If a curve of periodic-orbit saddle-node (SNP) bifurcations
connects an H10 point to a TZ point in each instance and the
TB points are connected by a single SL curve, ap-T diagram
that is consistent with dynamical systems theory results. This
prediction is correct as far as it goes, but filling in the details
adds some interesting twists. SNP and SL curves as well as the
SN and HB curves near each TB point are shown in Figures 2
and 3. Thep-T diagram has 26 codimension two bifurcation
points (see Table 2) and 13 regions with trajectories that are

topologically distinct from those in adjacent regions (see Figure
4). Temperature is the distinguished parameter in the reported
experimental studies, so we confine the remainder of our
discussion by making the same choice.

The saddle-loop curve has a maximum (quadratic fold) at
TSL; this leads to bifurcation diagrams in which two stable orbits
disappear through infinite-period bifurcations. The SNP curve
at lower pressure includes a cusp and meets the SL curve at
TZ1. The most striking feature of the completep-T diagram is
the SNP curve joining the H10 and TZ points at higher pressure.
This curve possesses two quadratic folds and a cusp. The
implications of these three codimension two points are made
plain by a series of well-chosen bifurcation diagrams. Taken
together, these points give rise to the appearance and disap-
pearance of a periodic-orbit isola (i.e., a branch of periodic orbits
not connected to the branch of steady states) and to the existence
of intervals of birhythmicity (i.e., intervals in which two stable
periodic orbits coexist) for certain values of pressure.

Just as the presence of the HB curve outside the region of
steady-state multiplicity guarantees that oscillatory states will
be observed in region III of Figure 1, the presence of a segment
of the SNP curve outside both the region of steady-state
multiplicity and the region enclosed by the HB curve enlarges
the area in which oscillatory dynamics is guaranteed. Further-
more, the concurrent presence of the SNP curve and absence
of the HB curve nearp(TIO) signal the existence of isolas of
periodic orbits. Figure 5 is a representative bifurcation diagram
near this upper pressure limit. As pressure decreases, the isola
grows. First, the lower temperature limit of the isola (the left-
hand SNP bifurcation) crosses into the interval of steady-state
multiplicity, making ignition to an oscillatory state possible. Two
Hopf bifurcations and the branch of stable periodic orbits
connecting them appear as the pressure decreases pastp(H10,1).
Eventually, the upper temperature limit of the isola (the right-
hand SNP bifurcation) exceeds the temperature at the leftmost
Hopf bifurcation. Figure 6a shows the resultant birhythmicity.
With further decreases in pressure, the amplitude of the periodic
orbits continues to grow and the interval of birhythmicity

Figure 2. Completep-T diagram. Figure 1 is completed by including
saddle-loop (‚‚‚,SL) and periodic-orbit saddle-node (-‚-,SNP) curves.
Each SNP curve joins a trace-zero saddle-loop point (9,TZ) to a
degenerate Hopf point (b,H10). There are no new features at pressures
below 0.5 bar. The enclosed areas are redrawn on a larger scale in
Figure 3a,b.

Air Oxidation of Hydrogen in a CSTR J. Phys. Chem. A, Vol. 103, No. 40, 19997993



lengthens. Atp(TSO) the two branches of orbits merge. Between
p(TSO) and p(C1

0) there are four SNP bifurcations and two
intervals of birhythmicity on the branch of orbits (see Figure
6b).

Ignition and Extinction: Interpreting the p-T Diagram.
Having calculated a detailedp-T diagram, we are able to

predict the bifurcation diagram that will be observed for a
specified variation of parameter(s). As each bifurcation curve
is crossed, the reactor enters a new region of thep-T diagram;
the effect of a bifurcation on the state of the reactor is
determined by examining the phase portraits before and after
the bifurcation (see Figure 4). Before attempting to explain

existing results or anticipate new results in light of Figures 2
and 3, we must adopt several guidelines: (G1) the system
behaves as if it were two-dimensional; (G2) a transition between
states occurs only if the state in which the reactor existed before
a change in parameter does not exist afterward; and (G3) the
result of loss of stability of an oscillatory state is determined
by the effect of the bifurcation on the basins of attraction of
the stable steady states.

Assumption G1 was used in drawing the phase portraits of
Figure 4. One of the implications of G2 is that if the reactor
begins in the extinguished steady state, it will remain there until
reaching the right-hand branch of the SN curve (see Figure 1).
Consideration of the disposition of the stable and unstable
directions of the unstable steady state in Figures 4a-c illustrates
an application of G3. These directions do not cross on going
from 4b to 4a, so it is plausible that the reactor follows a
trajectory spiraling into the ignited steady state when the
oscillatory state disappears. Conversely, they do cross on going
from 4b to 4c, and the ignited steady state is sequestered by
the unstable limit cycle, so it seems most reasonable to postulate
that the reactor exhibits one or more bursts of reactivity as it
spirals away from the unstable limit cycle to the extinguished
steady state.

We refer to observations made when the reactor temperature
is increased from an initially low value as ignition dynamics.
Due to G2, ignition is always associated with the right-hand
branch of the SN curve; however, the new state of the reactor
varies with pressure. Abovep(×1) and belowp(×8), the only
remaining stable state is the ignited steady state, so we can
assign the pressure intervals fromp(×8) to p(C2

S) and from
p(C1

S) to p(×1) as steady ignition. Betweenp(×1) and p(×8),

Figure 3. Magnifications of thep-T diagram. Region III of Figure 1
(now partitioned into subregions IIIb and IIIc) and subregions IIIa and
IIId (the areas bounded by the SN, HB, and SNP curves) comprise the
new region III. The most notable features of the SNP curve in (a) are
the two extrema (quadratic folds) and the cusp. The SNP curve in (b)
reverses direction at a cusp that, due to its proximity to the SL curve,
is not as prominent as the cusp of (a). Although the SNP and SL curves
appear to coincide as they approach the TZ points, there is a sliver of
region Ib between the SNP/SL pair near TZ1 in (a) and the whole of
region IVb is between the SNP/SL pair near TZ2 in (b). Note that region
IVb is not visible on the scale shown in (b).

TABLE 2: Codimension Two Bifurcations in Order of
Decreasing Pressurea

bifurcationb symbolc,d (T/K, p/bar)

steady-state cusp C1
S (1013.3, 6.44)

orbit isola center TIO (1013.0, 3.98)
SNP1/SN crossing ×1 (1001.0, 3.83)
Hopf fold TH01 (1053.4, 3.610)
SNP1/HB crossing ×2 (1046.5, 3.606)
simple orbit bifurcation TSO (1043.8, 3.589)
orbit cusp C1

O (1049.45, 3.581)
saddle-loop fold TSL (992.5, 3.528)
saddle-loop fold pSL (992.6, 3.520)
degenerate Hopf bifurcation H10,1 (1009.2, 3.48)
Hopf fold pH01 (1075.6, 3.374)
HB/SN crossing ×3 (996.37, 3.363)
SL/HB crossing ×4 (990.20, 3.28)
trace-zero saddle loop TZ1 (983.0, 3.17)
Takens-Bogdanov TB1 (979.3, 3.03)
degenerate Hopf bifurcation H10,2 (1055.6, 2.75)
HB/SN crossing ×5 (943.9, 1.44)
SL/HB crossing ×6 (938.1, 1.39)
trace-zero saddle loop TZ2 (929.2, 1.246)
SNP2/SN crossing ×7 (931.1, 1.226)
SNP2/SL crossing ×8 (921.5, 1.152)
orbit cusp C2

O (921.3, 1.151)
Takens-Bogdanov TB2 (798.0, 0.49)
steady-state isola center pIS (744.9, 0.13)
simple steady-state bifurcation pSS (779.6, 0.081)
steady-state cusp C2

S (967.5, 0.0080)
a Pressures reported to more than three digits of precision reflect a

narrow range of existence for a particular bifurcation diagram due to
the presence of another nearby codimension two point.b SNP1 and SNP2
are the periodic-orbit saddle-node bifurcation curves at high and low
pressure.c If necessary, a distinguished parameter is identified with a
left superscript ofT or p. Right superscripts S and O indicate
bifurcations involving steady states and periodic orbits.d The designa-
tion of two-parameter degenerate Hopf bifurcations by H01 and H10

follows ref 27. A discussion of the hypotheses of the Hopf bifurcation
theorem that are violated at such points can be found in ref 18.
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ignition to an oscillatory state takes place. This follows from
G1 because to get to the ignited steady state, the reactor must
pass through the stable oscillatory state, which is not possible.
Figure 7a shows the relationships between the types of ignition.
At lower temperatures, the reactor is extinguished. Oscillatory
states are observed in the enclosed area, and steady ignition is
observed at higher temperatures. As Figure 7b illustrates, the
periodic orbit is not homoclinic to the steady state that disappears
upon ignition. This demonstrates that existence of relaxation
oscillations is not synonymous with the prevailing definition
of oscillatory ignition.

We are likewise able to catalog the extinction dynamics
observed when the reactor begins in an ignited steady state and
temperature is lowered. Extinction dynamics has received
attention primarily as a means of detecting hysteresis. For
example, if the point at which the extinguished steady-state loses
stability as the temperature is increased differs from that at which
the reactor returns to the extinguished state as the temperature
is decreased, occurrence of a saddle-node homoclinic bifurcation
can be ruled out. Ultimately, the reactor must return to the
extinguished steady state, but this return can take place either
from an oscillatory state or from the continuation of the initial

ignited steady state. Oscillatory states can appear and disappear
on the ignited branch and can undergo discontinuous changes
in amplitude.

By analogy with the classical explosion limits, we define the
first and secondextinction limitsas the segments of the left-
hand branch of the SN curve below and above the fold. Along
the entire first extinction limit and up top(TB2), the only
possible transition is from an ignited to an extinguished steady
state, so we restrict our attention to pressures greater than
p(TB2). Figure 8a,b summarizes extinction dynamics found at
pressures between 1 and 4 bar. As pressure increases beyond
p(TB2), a Hopf bifurcation destabilizes the ignited steady state
before the left-hand branch of the SN curve is reached. Because
the only stable state between TB2 andC2

O is the extinguished
steady state, premature extinction takes place at the Hopf
bifurcation. Stable oscillatory states do exist abovep(C2

O), but
extinction of the ignited steady state continues to occur along
the HB curve until the reactor passes through regions IVc and
IIb in succession (see Figures 3b, 4b, and 4f). This happens
when the Hopf point is found at higher temperatures than the
saddle-loop point (i.e., at pressures abovep(×6)). Then loss of
stability of the ignited steady state causes the reactor to evolve

Figure 4. Phase portraits. Stable and unstable steady states are denoted by sss and uss. Stable and unstable periodic orbits are drawn as solid and
dashed closed curves and denoted by spo and upo. The unstable states are more properly described as saddles because they have both attracting and
repelling character. The number of unstable “directions” associated with these states is given in square brackets. The reactant mole fraction increases
in the vertical direction, so in phase portraits with multiple steady states, the ignited steady state is at the lower right.
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to an oscillatory state having large amplitude; extinction from
this oscillatory state occurs when the SL curve is crossed. This
form of extinction persists top(TSL), but the amplitude of the
periodic orbit at the onset of oscillation decreases asp(H10,1) is
approached. Beyondp(H10,1) the amplitude grows in smoothly
from zero. For a narrow range of pressures abovep(TSL), the
temperature interval on which oscillatory states appear is
bracketed by intervals in which the reactor is in the ignited
steady state. Extinction once again occurs upon reaching the
left-hand branch of the SN curve. At first the oscillations grow
in smoothly and disappear with large amplitude. At slightly
higher pressures, a small, but discontinuous, increase in
amplitude due to the presence of the C1

O point occurs at
relatively high temperature (see Figure 6b), but the way in which
the oscillatory state disappears is unaltered. A further slight
increase causes the pressure to exceedp(TSO). This leads to the
formation of an isolated branch of periodic orbits: the oscil-
lations grow in from and return to zero amplitude over a
temperature interval of steadily diminishing size and large
amplitude oscillations are not observed if the temperature is
simply ramped slowly downward (see Figure 6a). For pressures
betweenp(TH01) andp(C1

S), classical extinction is observed.

Corroborating the Calculations: Some Suggested
Experiments

The periodic-orbit isolas and intervals of birhythmicity are
found at relatively high pressures. Dangers attendant to combus-
tion reactions run at high pressure are an impediment to
searching for these features, but our calculations minimize this
impediment by providing guidance for conducting such a search
systematically. In theory, a periodic-orbit isola like that shown
in Figure 5 is impossible to detect by varying temperature alone.
In practice, if a large step in temperature were taken on the
branch of ignited steady states, it might perturb the reactor into

the basin of attraction of the periodic orbit. However, not only
is the likelihood of such a fortuitous perturbation small, but
large changes in parameter are commonly avoided because they
yield too coarse a resolution of thep-T diagram. Suppose instead
that the reactor is in region IIIc and the pressure is raised while
holding temperature constant. The reactor will arrive at an
oscillatory state that is not isolated from the branch of steady
states ifp is the distinguished parameter but is isolated ifT is
the distinguished parameter. RestoringT as the distinguished
parameter and identifying the endpoints of the interval of
oscillatory dynamics as SNP bifurcations would verify the
existence of the periodic-orbit isola.

Detecting birhythmicity of the type shown in Figure 6a
depends on being able to find the isola. The high-temperature
birhythmicity of Figure 6b would be detected by standard means,
but the small temperature range might hinder the search. Distinct
time series have been reported for reactor temperatures separated
by as little as 1.5 K,4 so even though the intervals of
birhythmicity are only a few degrees in width, they should be
detectable. Indeed, windows of birhythmicity as narrow in width
as 2 K have been reported.5 Locating the low-temperature
birhythmicity of Figure 6b hinges on the accessibility of the
stable ignited steady states to the left of the Hopf bifurcations.
If ignition is to an oscillatory state and the reactor returns to
the extinguished state upon reaching the low temperature limit
of the branch of periodic orbits, these ignited steady states would
be relatively difficult to find. If this were the case, a sequence
of parameter changes similar to that used to reach the periodic-
orbit isola offers a method for overcoming this difficulty. Once
the reactor is on the low-temperature segment of the ignited
steady-state branch, increasing the temperature leads to the
small-amplitude periodic orbits beyond the low-temperature
Hopf bifurcation.

Figure 5. Annotated bifurcation diagram atp ) 3.90 atm (3.95 bar). Branches of stable and unstable steady states are denoted bys and ‚‚‚;
branches of stable and unstable periodic orbits are denoted by¬ and ‚‚.‚‚; and periodic-orbit saddle-node points are denoted by‚‚‚Ks. Mole
fraction rather than mass fraction is plotted on the ordinate to facilitate interpretation of the bifurcation diagram. Calculations are performed with
pressure in atmospheres to maintain backward compatibility among software modules; the corresponding pressure in bar is provided to facilitate
comparison with Figures 1-3 and Table 2.
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Even though millisecond residence times are technologically
important, perfect mixing becomes increasingly difficult to attain
as the residence time is shortened, and perfect mixing is implicit
in our use of ordinary differential equations to model the reactor
dynamics. Direct comparison of Figure 7a with extant experi-
mental data is hindered because typical experiments are done
at residence times about 1000 times longer than that of our
simulations and because of the difficulty in maintaining iso-
thermality. Bearing these points in mind, the most notable
difference between an experimentalp-T diagram such as Figure
2 of ref 4 and Figure 7a is the plateau on the curve marking the
transition from oscillatory dynamics to steady ignition. Its
presence reflects the existence of periodic-orbit isolas that are
entirely outside the region of steady-state multiplicity. Following
guideline G1, we have postulated that ignition to the isola takes

place if the left-hand SNP bifurcation on the isola is within the
region of steady-state multiplicity. If G1 is too strong an
assumption, and ignition to an oscillatory state takes place only
when the oscillatory state is the uniquely stable state, then the
plateau of Figure 7a would be found atp(×3). Preliminary
calculations at residence times up toτ ) 1 s indicate that isola
formation persists, so it would be worthwhile to undertake a
systematic experimental search for such isolated branches of
periodic orbits. In a series of experimental bifurcation diagrams,
the plateau in Figure 8 would manifest itself as a discontinuity
in the low-temperature limit of the oscillatory region and in
the amplitude of the oscillatory state at its disappearance. At
pressures above this plateau, the amplitude shrinks smoothly
to zero as the temperature is decreased; below this segment,

Figure 6. Bifurcation diagrams at 3.55 and 3.54 atm (3.597 and 3.587
bar). Hopf bifurcations are denoted by9. At the higher pressure of (a)
there is an interval of birhythmicity between the leftmost Hopf
bifurcation and the rightmost SNP bifurcation (1040.7 to 1047.4 K).
At the lower pressure of (b), there are two intervals of birhythmicity:
one between the leftmost Hopf bifurcation and an SNP bifurcation
(1035.7 to 1040.3 K) and the other between the two SNP bifurcations
at the highest temperatures (1046.8 to 1048.5 K). The inset shows the
orbit branch near the new SNP bifurcations on an expanded scale.

Figure 7. Predicted ignition dynamics. In (a) the transition from the
extinguished state to steady ignition is indicated bys. Ignition to an
oscillatory state (-‚-) occurs at intermediate pressures. Transitions
between oscillatory states and the ignited steady state are indicated by
‚‚‚; oscillations disappear with nonzero amplitude except betweenTH01

(the fold with respect to temperature on the HB curve) and H10,1. A
representative oscillatory waveform (p ) 2.9 bar) at the ignition point
is shown in (b). The waveform is that of a relaxation oscillation, but
the period is only about 3τ andxOH remains significantly above zero
at all times, thus confirming that this is not oscillatory ignition.
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the oscillatory state has nonzero amplitude when it disappears.
Some cautionary notes related to our interpretation of thep-T

diagram are in order. The appeal of phase portraits drawn as if
the system were two-dimensional must not cause us to lose sight
of the true, larger dimension of the set of rate equations. For
sets of three or more equations, basins of attraction can be
severely tangled. If two (or more) stable states remain upon
disappearance of the state in which the reactor existed before
the change in parameter, it is generally difficult to predict its
asymptotic state. A second concern centers on the way in which
the distinguished parameter is varied. Bifurcations can be
delayed if the parameter is ramped up or down slowly.24,25 On
the other hand, large parameter changes can lead to an apparent
crossing of basin boundaries; this is due to the accompanying
large changes in the underlying structure of the trajectories and
is distinct from the preceding concerns about tangled basins of
attraction. Nevertheless, these complications do not preclude

the interpretation we have developed, and it is well established
that chemically reacting systems have small effective dimen-
sions. We are not aware of any homogeneous-phase reactions
of effective dimension greater than three (hyperchaos has been
reported in the oxidation of CO on a Pt(110) surface).26 To the
best of our knowledge, a detailed explanation for the dramatic
reduction in dimension in terms of the reaction kinetics has not
been advanced; this connection may provide useful insights into
combustion chemistry. Under the conditions of our simulations,
we have found no evidence (e.g., chaotic states or steady states
that are not “surrounded” by coexisting oscillatory states)
requiring the H2 + O2 reaction in a CSTR at short residence
times to be treated as having an effective dimension greater
than two.

While these ambiguities of interpretation must be acknowl-
edged, it should likewise be noted that they arise because of
the attempt to compare experimental and calculated bifurcation
diagrams, and experimental bifurcation diagrams are typically
obtained by systematically increasing or decreasing a parameter
such as temperature. This approach was entirely appropriate
when calculated results were acquired solely by numerical
integration, but, as we have shown here, it is now possible to
compute a complete two-parameter description of the bifurca-
tions associated with a large set of elementary reactions. In doing
so, a great deal of new information becomes available. Although
the experimental determination of ignition and extinction
dynamics will continue to be important, additional emphasis
can usefully be placed on determining phase portraits. If the
calculatedp-T diagram is complete, there is no ambiguity about
the types and stabilities of the states that exist at a particular
parameter value; comparison between experimental and calcu-
lated phase portraits over an extensive region of parameter space
is a stringent test of the reaction set.

Conclusions

We have succeeded in obtaining a detailed, completep-T
diagram for a realistic set of elementary steps modeling the H2

+ O2 reaction in an isothermal CSTR. Among the full collection
of bifurcation diagrams in which temperature is the distinguished
parameter, we find two types of birhythmicity and the first
example of periodic-orbit isolas. The sequence of bifurcation
diagrams containing periodic-orbit isolas accounts for nearly
15% of the pressure range over which stable oscillatory states
exist. Both birhythmicity and isola formation occur at the high
end of the pressure range, where the consequences of reactor
runaway are most severe. Notwithstanding these dangers,
practical processes are generally carried out at higher pressures.
If work in the high-pressure regime is being contemplated,
calculations such as ours provide valuable guidance for experi-
mental design.

Confusing the lengthy quiescent intervals comprising almost
all of a very-long-period orbit for an extinguished steady state
could have grave consequencessthe eventual burst of reactivity
might cause catastrophic failure of the reactor. A mistake of
this sort is possible because the burst of reactivity can occur
hundreds of residence times after quasi-steady operation is
erroneously identified as extinction. Such confusion is more
likely for a periodic orbit near a saddle-node homoclinic
bifurcation than for one near a saddle-loop homoclinic bifurca-
tion because the lengthy quiescent interval bears a closer
resemblance to the extinguished steady state in the former case.
Moreover, the period of oscillation increases much more
abruptly near a saddle-loop bifurcation, so the resemblance of
the periodic orbit to a steady state exists over a much narrower
parameter interval. Therefore, greater caution is required near

Figure 8. Predicted extinction dynamics. The onset of oscillations is
demarcated by-‚-. Oscillations appear with arbitrarily small amplitude
aboveH10,1. Disappearance of the oscillatory state leads either to a return
to the ignited steady state (‚‚‚) or to extinction (- - -). (s) denotes both
classical and premature extinction of the ignited steady state. The
enclosed region of (a) is shown on an expanded scale in (b).
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oscillatory ignition points and it is valuable to be able to
distinguish between the two scenarios. Two-parameter curves
of periodic orbits of very long period reliably approximate the
two-parameter curves of infinite-period orbits needed for
identification of oscillatory ignition. The saddle-loop and steady-
state saddle-node curves are separated by about 5 K (the precise
gap depends on the pressure). As a result, we predict that
oscillatory ignition does not take place at short residence times
(τ ≈ 1 ms) in a hydrogen-air mixture equimolar in hydrogen
and oxygen. We plan to explore the position of the saddle-loop
curve in relation to the steady-state saddle-node curve as
residence time is increased and as the reactant mixture is
changed from fuel-lean to fuel-rich.
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