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Several non-phenomenological density matrix treatments of electron-transfer (ET) reactions in condensed
phases are developed and examined. The methods consider the donor and acceptor system (the solute) under
the influence of the surrounding fluctuating solvent. The main emphasis is placed on semiclassical methods,
where the starting point is the Hamiltonian of the quantum mechanical electronic states of the solute. The
diagonal elements of the Hamiltonian include the fluctuations of the solute electronic energies as a result of
the interaction between the solute and the field from the classically moving solvent molecules. The fluctuating
Hamiltonian is used to construct a Liouville equation, which is treated by three approaches. The first method
is based on a direct numerical integration of the relevant Liouville equation. The second involves the use of
a second-order Liouville equation, and the third involves the use of a Redfield type equation. The methods
are examined by simulating electron transfer between two sodium-like atoms that areadlé\aeparation

in water. The simulations generate the fluctuations of the electronic energies of the states that are involved
in the electron-transfer process. The fluctuating energies are then used in evaluating the rate constant of the
reaction as a function of its assumed free energies. The results of the three approaches are similar to the
corresponding results obtained from the Marcus equation. However, the Redfield equation converges much
more quickly than the direct Liouville equation and its second-order version. The problems associated with
the semiclassical treatments are briefly considered, emphasizing the approximation involved in treating the
solvent motion classically. Some of these problems can be overcome by a previously developed density matrix
approachthat uses classical simulations to evaluate the Frafdndon factors of the solvent vibronic states.

This vibronic density matrix treatment is briefly described and used in simulating an electron-transfer reaction
in the reaction center frorRps.viridis.

I. Introduction guantum mechanically and the solvent motion classically can
) ) ) result in density matrix treatments that violate the rule of
Many fundamental processes in chemistry and biology microscopic reversibility. Another problem may be associated
involve charge-transfer reactions in condensed pt?g@m:ler- ~with the description of the solutesolvent coupling. Some
standing such processes on a detailed microscopic level is ofgensity matrix treatments may not reproduce correctly the effect
great current interest,® and significant progress has already of the change of the solute dipole moment on the solvent
been made by computer simulation approactés!? This “reaction field”. Furthermore, semiclassical density matrix
inC|udes the Simu|ati0ns Of eleCtrOn transfer (ET) |n the dlabatIC approaches cannot pro\”de exact quantum mecharuca' results
and adiabatic limits'®*2and simulations of proton transfer (PT)  for transitions between electronic states due to the classical
and other processes in the adiabatic lifrt.*° Yet simulations description of the solvent modes. Trying to treat the solvent
that deSCI’Ibe COﬂSIStenﬂy the t|me eVOIutiOn Of more than two modes quantum mechanica”y |eads to major problems W|th
electronic states in solutions in the diabatic, adiabatic, and theregards to the evaluation of the relevant relaxation fimthat
intermediate limits have not been fully developed and examined. gescribes the vibrational relaxation within each electronic state.
Such approaches are clearly needed for systems with intermedi-That is, in simpler problems, such as vibrational relaxation of
ate coupling, and a good example is the case of the primary diatomic molecules in solution, it is quite easy to obtain The
charge separation in bacterial reaction centers. This case involve$or transitions between the solute vibrational levels from MD
three electronic states with Coupling whose exact magnitude iSSimu|ati0ns by considering the perturbation of the solute
unknown, but its estimates are in the upper end of the diabatic vibrational level by the solvent fluctuations. However, it is not
limit. clear how to do so in simulations of charge-transfer processes
In the search for an effective approach for simulating multi- when T, describes transitions between the solvent vibrational
level crossing processes in dissipative systems, it is temptinglevels to themselves. In such cases, the solvent is both the
to explore the density matrix approach. This approach has beernrelaxing system and the system that causes the relaxation.
developed to what is perhaps the most powerful tool for studying  The present work develops, examines, and compares different
relaxation processes on a phenomenological [Ev&$.23-28 |t ways of combining MD simulations with density matrix
is not obvious, however, how to incorporate microscopic simu- treatments. The focus of this work is on semiclassical treatments
lations of charge-transfer processes in density matrix treatmentswhere the electronic states are described quantum mechanically
For example, semiclassical models that treat the electronic stategnd the solvent nuclear motions (vibrational states) are treated
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classically. Nevertheless, a quantum mechanical treatment ofsolute and the fluctuating solvent molecules. In cases wihere

the solvent vibrational modes is also considered. is large it might be required to move to the adiabatic representa-
' . . tion in order to get stable time-dependent integration. This
Il. Semiclassical Theoretical Treatments requires diagonalization of the Hamiltonian in every time step

This section develops and examines alternative density matrix2nd consideration of the solvent-induced fluctuations of the
adiabatic energies (for a related treatment in surface hopping

models for simulations of surface crossing processes in con- i ¢ h ) ined in th
densed phases. The models considered include a direct LiouvilleStudies see ref 8). However, the points examined in the present

treatment, a second-order Liouville treatment, and a Redfield PaPer are more conveniently discussed in the diabatic repre-
type formalism. The performance of the different models in sentation. Issues that are related to the transfer from the diabatic
studies of charge-transfer processes in polar solvents is used alo the a_d'ab,at'c I|m|ts are left to subsequept §tud|es (_see ‘."‘ISO
a validity check. discussion in section Ill). At any rate, within the diabatic

We will confine a significant part of our derivation to a simple  '€Presentation of eq 6 we can write the Hamiltonian as

model of only two electronic states, considering an electron 04 UL(t
transfer from a donor D to an acceptor A in a polar solvent. H(t) = €a o+ ) 0 0o )
However, the formulation used can be easily extended to cases €p 0 Uy(t) o0
with many electronic states. The time-independent wave function 0 N
of a two-state system can be approximated by a combination =H"+H'(t)
of the diabatic wave functions = H 4+ HU(t) + H(o)
¢h = @(D) PANYYE o= P02 ent In this work we chose to use a density matrix approach rather

. N - - than to solve eq 4. Thus, we consider the Liouville equation

¢Jb = (p(D ) QD(A) sz:olventz ¢wa§olvent (1) I I
wherey is the combined wave function of the solvent molecules P fl{ PR = H{e} h[p’H] ®
with i andj designating different electronic states of these wave
functions. Neglecting charge transfer from the solute to the
solvent, we can treat the effect of solvent excitations by
assigning classical induced dipoles to its molecules while
omitting thei andj indexes (e.g., see the appendix of ref 33).

wherepqs = C(,LC}‘f
Many times it is convenient to use the interaction representa-
tion wherep andH are transformed into the following matrices.

_ 0 RO
Thus, the time-dependent wave function of the system can be (1) = exp{ (TR)H'E} o(t) exp{ —(I/AR)H"t) ©)
approximated by H™*(t) = expl (TR)H ) H (1) expl —(I/A)H"G
WX,Q,R,t) = Cyt) 4(x) + Cy(t) ¢p(X) (2) The time dependence ¢f is obtained by solving
wherex, Q, andR are the coordinate vectors of the solute N - H*(t 10
. ; : p [p*, H™(1)] (10)
electrons, the solvent nuclei, and the solute nuclei, respectively. h

Here, we consider a case where both the distance between A]_
and B and the solute coordinates are fixed (if needed, we can
treat the vibrations of the solute quantum mechanically). In this
case the time-dependent wave function can be written as .

[o*(2)ig = O p*(1) ditg (12)

Wxt) = C Q) @a(X) + Cy(Q(1) ¢u(X) 3 , - -
where[Ig designates an average over the initial conditions of

The time evolution of the system can be determined by solving the system. Here, we will try first to examine a second-order
the time-dependent Scldinger equation while integrating over ~ @PProach that follows the approximations made in deriving the
the electronic wave function. This gives Redfield equation. In this strategy one avoids the direct

numerical averaging of the Liouville equation by performing
o short time averages on the second-order density matrix. That
C=.HC (4) is, for a finite but short time interval we can wrife

he calculation of the actual population of the system requires
the evaluation of the ensemble averageoiising

where the vecto€ is given by Cq(t), Cy(t)) and the effective  [p*(7)[{® = &[p*(to),HJ’*(t)] +

two-state Hamiltonian is given by 2 . .
APATCERO TG TIINEE)
Haa(Q) 0(Q) 5)
o(Q)  Hu(Q) In an explicit numerical integration we update the second-
order equation every time step, using

H(Q)=’

where Hos = [@olH|@s0) € = Hoq, and 6 = Hap. In our ,
specific case we can write Q’*(tn)@(z) — &[ p*(t, 1),H+*(t)] +

o+ VL) 7 ] 6) (ri‘l)z‘/?"’ﬁm[[p*(tnfl),H+*(t')],H+*(t)] dr] 13

o= €+ U(Q()

Here, the formal expression of eq 12, which corresponds to a
whereU; represents the time-dependent interaction between thesingle time step, is replaced by the corresponding prescription
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in an iterative numerical integration. This means that

¥ @) _ o i(a—b)t
replaced byt, and p*(to) is replaced byp*(t,—1). Of course, g™ = hmpab(to) AUpt) + 055 € x

this expression is used only in numerical integration and not in X " 1 pt ., 2 diabyt x
formal one step derivations (where eq 12 is being used). (pa(to) — Por(to)](g + ?ﬁo dt' {205, € Poto) —
Next we expand eq 12 and obtain 20,00 05t — AUL(D) 0y d@be— o

[Padto) — Ponlto)][d — [LAZHte) AUp(t) AUt}

(Boa (O = E{[p*(to),Hﬂ(t)] ﬂ +
1 where @ — b) is a shorthand notation foe{ — €), AUp(t) =
— gty gt * (=Pt G(B—a)t Up(t) — Ug(t) and where we introduce the constraiUp(t)[d
H_4(t") Hp ot (tp)d e e + b a b
hzgfto{ ap(t) Hpo () 0 ()4 = 0 by choosing the propes? and ). Equation 18 will be
+ T o % (Bt j(a—p)rt _ considered in a direct evaluation of the second-order Liouville
Hap(t) Hyp (1) o (t)lg € e equation.
[Pes(to) Hip(t) Hio (D gB=pIt Bt Next we try to obtain a simpler expression for eq 18. We do
* + + i(B—P) o=y e so by manipulating the second-order Liouville equation in the
[ (to) Hop(t) Hyp(t)(g € € par (14) way used in deriving the Redfield equation. Our task is to
express eq 14 in an autocorrelation formalism. In this derivation

Here, we denoted in the exponeiatsby a andeg by . This we followed ref 17 and use for convenience the expression
simplified notation is also used elsewhéfelNe also use the
relationship” o0 . —lot—t)
P Juapp(@) = [ L) Hi 0 O (19)
* _ i(a—p)t
Haﬂ(t) =€ Haﬂ(t) (15) We start by noting that eq 14 has terms of the form
() = e p it o Yt (B
paﬁ() Paﬂ() ; fot dt' [H-Izﬁ(t') H;av(t) g i(a=pt t)@ ga—ptp —ant

In the explicit expansion of eq 14 we will use the relationship
_ ;%‘”Hzﬁ () H;;a.(t) g (A1) dr'yg gla—pp—o)t

U u _
[ HV|B0= Hyy = 045U, (16) (20)

[ |H’|p0= Hop = a- 5aﬂ)%ﬂ _ %g j:,dt' [H-I;rﬁ(t') H;;a.(t)@ o (@A) gla—prp—a)t

[ap(0) Hys(1)d = 00, [U (1) U, ()14 _ o
where we extend the integration limit to infinity, since the

Rather than continuing with this general equation, we focus here autocorrelation is assumed to decay in a relatively short time.

on the simplest case of the two-state system where we can write Following ref 17 we assume that the complex parts are
negligible so that

Bl = itk — Ol )3 —

1 o T
1 t ] ) E; ‘/:mdtr I:H'lzﬂ(t') HEQ'(t)Q e i(a—p)(t—t") eI(CL BB —a')t
52 JpH () HT R — AT p(t) H™ — ’

H™ p*(t) A + A H™ pX(t} [t (17) %E [ dr B0 H/?w(t')@(%{ g (M0 4
i *
P> = ﬁ[ﬂp;b(to) AUp1) + dapadto) — pou(to)lld — ei(aﬂ)(tt’)})] =) (59
LA H R — A (i H )
MO P A AR ) G = ) Doasp (@7 )+ g = e
whereH and H designate the Hamiltonian at tinteand t', Thus, for example,
respectively.
After some manipulations we obtain 1 pe dt’ THE (1) H ()] e (@ D-t) dabr —
2,[—00 alt) Hy(t)ld e € =
1 . . l 00 —ifa_ 4t A\
| % — % - =+ ' i(a—b)(t—t') Li(a—b)t
@;Jt)g(a — Empab(to) Obael(b at __ pba(to) Oap el(a b)t)@ _ Zf—mdt @Ub(t)@ e e (22)
1 ot oo 2raiab)—t) | A(b-a)t—t) ok * _
h_zﬁodt {[o7Te@ V0 + OB (1) — ph(to)d] + Here, we neglect the complex part of @), which is equal

’ o o to —i sin[(e2 — e)(t — t')] because the sine term approaches
[AUL) (05t 06a €° 2" + pit)oas €¢I} (18) zero ast — t — 0. Thus, we have
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e (@D _ cos@— b)(t — t)] (23) Ropen= i[szaba(b —a) — 0~ 0, =0 (28)

1 , '
= E{cos[(a —b)(t —t)] + cos[b — a)(t — t)]}
_ %[ei(a—b)(t—t’) n e—i(a—b)(t—t’)]
Now we can rewrite eq 22 as
% ﬁmw dt & Ub(t)@[%{ @ D) | gritad-ty] dabr
1 (ae
Z[Jabbt(a = b) + Jyppdb — 3] o (24)
With this and[AUp4(t)[d = 0, we can write eq 18 as
* i * i(b— * i(a—
[Bed08” = £ p3lto) e €' = pilto) 0ap € P)g —
B — At [V 4 ) =

[ i(b— " i(ae
05lto) e € — pilt) 02 €[ (25)

1
Raanb= %[Z‘Jabat{a —b) - 6ab - 6at;| =0

Rabab= %[ZJaabk(o) - ‘Jaaago) - ‘Jbaba(b —a)—

Japaf@ = ) = JpppdO)]

- Zh%[zaaabm) — 300d0) = JypfO)] —

Zh%[Jbaba(b — &) + Jypafa — b]

= 2 0) U0~ ,0) U0 -

—o0

[W,(0) Uy(0)g] dt — Zhi ® 20% dit

L 1
- ngmeba(O) AU, (O dt = — T

* i * i(a— * 1
|iab(t) Q(Z) = Empab(to) AUba(t) + Gabe(a Pt (paa(to) - Rabaa: EZ[Z‘]aaba_ ‘]abaa_ Jbbba]

At + Zh% [ dt {20, 2 pr (i1 —
BT AUp)G = 10258 Dpifty) —

At — %@:b(to) [ dt [AU0) AU(0)]g

where we used the fact that

= % [ 2U1) 0 — o U (t) — Uy(t) ofg ct

=- %ﬁi{ AU, (OG0} dt=0

Rapbb = Zhizf :o{ [AUp{(t)l§ o} dt =0

00 ’ i(a— ! 00 r 1 1
ffoodt Ca j:mdt coses — et] =0 Rabba= %[‘]abbe{b —a) + Jyppfa — b)]

Equation 25 is our final expression for the second-order
Liouville equation.
The next approach considered in this work is a direct use of

=2hi2ff°m202 dt=0

the Redfield formulation. In doing so we add to the standard Ngw we can write

relaxation term thes’s terms that do not exist in Redfield’s
treatment. This leads to a modified Redfield expression

a0 = 3 Ry TN g (to) + ;;L;[pzﬂ(to)
O &ML= 010) = 04 Pclte) €L = 0] (26)
The elements of th& matrix are given by
1 _ _
Ruapp = ;2[%/3&'5'((_1' =B+ dpup (@ — B) —
Oup Y Lpya@ = B) = Oap Y Dus@ = B (27)
v Y
In our 2 x 2 test case we obtain

Riaaa= 2hi2[2‘]aaago) - Jaaai(o) - ‘]baba(b —a) - Jaaago) -

[
= E[ﬂpab(to) Opa

PiADE = Rogaidto) + Roaan€” '0iito) +

Raaba€® ™ pito) + Reanpin(to) +

i
E[ﬂpab(to) Opa

-2 eV e (] (29)

%~ pito) 00 €™ 71

P03 = RapaPlto)d + R’ @ it +

Ruvaa® " Badt0)d + Ruon€® " To5(t0)d +

=+

i

| * * i(a—
%[ﬂpaa(to) Tab ™~ Oap Poplto)] e b)tQ

€ Molfto) — pbelto)d — %@’;b(to)g

Joandb — )] =0 (28) Comparing eq 29 and 25, we see that the only difference is
the last term in eq 25. Equations 29 and 25 will become identical
sinceJpandb — @) = 0, once we assume that
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30.0

(Bafto) J 70 [AU{t) AU(t)] 14 ' | | e

20.0

= (B3t dt' AUL(t) AU, (1) |

_ B o N\ alﬂ
T, ool 11 iy

||

‘J( |f M N

W T
Rl

W‘W JW; * |

energy gap {kcal/mol)
—
_—

This approximation is partially an ad hoc approximation, since 100 A i
it is essential for obtaining the simpl&, expression for W JW‘
Redfield’'s treatment. However, it is reasonable to assume that L
pato), which depends on the way the system is prepared, is v
not correlated strongly witiAUp4(t). The approximation used !
here can be also used in the second-order Liouville equation. ® 00 20 0 6.0 80 10,0
We left this equation, however, in the form of eq 25 in order to time (ps)
help clarify why the use of the Redfield equation is faster than 10
the use of the first- and second-order Liouville equation. The “
reason is, of course, that in the Redfield treatment we evaluate
T, once while in the second-order Liouville treatment we keep
evaluating theAU x AU product at each time step in the
integration ofp*(t).

One may wonder at this point why our treatment does not
have a formalT; term for the relaxation between the solvent b
modes. The reason is that our semiclassical treatment treats /
classically the relaxation between the vibrational modes of the 00 | \\ / \\ /\\/\/\w
same electronic state. This relaxation is obtained automatically \ / \ /
in the MD simulations. The validity of this treatment is
established in the next section where we show that we reproduce !
the correct microscopic reversibility relationship.

05+ |

<AUOAU, (1>, / <AU(OAU(0)>,

. . 05 0.0 20 40 50 80 10.0
Ill. Comparing Different Treatments time (ps}

_Equation 29 is not identical to eq 25 because of the use of Figyre 1. Fluctuations of the time-dependent energy gap (a) and the
different approximations. Thus, it is not clear if they give corresponding normalized autocorrelation function (b) for the Ma
physically correct results. In particular, it is not obvious that Na— Na+ Na' process considered in the text.
the resulting forward and backward rate constants satisfy the

. . . T . 100.0
requirement of microscopic reversibility. An effective way to [

G—0 State A (reactant)

1
check the validity of the different expressions is to examine %00 - o= State B fproduct 1
whether the results reproduce Marcus’ relationship for well- 80.0 - ) i
defined test cases. Here, we considered as a test case an electron 00 N /
transfer between a sodium-like ion and a sodium-like atonf(Na _ . N // i
+ Na— Na+ Na") in water. The simulations were done using £ 600 - F i
the program ENZYMIX?4 and applying the surface constraint  § soo | D/
all-atom solvent (SCAAS) spherical mod®¥ with a sphere & 100 | &
radius of 20 A. The long-range forces were treated consistently & S
by the local reaction field (LRF) approaéhThe wan der Waals g oy u rs

parameters for the sodiunwater interaction were taken from 200 | a7 8
ref 20, and the doneracceptor pair was held at 4.0 A apart, 100 - .
assuming that the electronic coupling is 1 énfi.e., 0 =1 ' M/ %
cm™1). The rate constant of electron transfer between these two 00 ¢
ions was evaluated using our umbrella sampling/free energy 100 ; : : :
perturbation approach?® The relevant data were generated by 1000 o0 2,((18 u, (kcaunff.')o 60 1000
running trajectories over 11 mapping potentials that took the

system gradually from the reactant to the product state (see refFigure 2. Free energy functions for the system considered in Figure
20 for more details about this procedure). The trajectories were 1. The reaction coordinate is taken as the energy gapXi=.bs —
propagated with 1 s tme sieps at 300 K. Each of the 11 Jo (5 % umeie €3 S wen e e Dl spente
mapping steps involved 40 ps S|mulqt|on time. The. resulted and the construction of the corresponding free energy functipasd
time-dependent energy gapUp(t), and its autocorrelation are “see ref 20.

given in Figure 1. The rate constants generated by the simulatedg

AU(t) depend on the assuméds, (or eg - e;’). This AGy can The free energy perturbation/umbrella sampling treatment
be shifted in a parametric way from its zero value to any other gives the free energy functions (the Marcus parabola) depicted
value. Thus, our study is not confined to the'Na\a system in Figure 2 with a reorganization enerdy= 75.0 kcal/mol.

but to hypothetical sodium-like spherical atoms with the same The use of the energy gapUp4t) and the relationshipAUp4d
solute-solvent interaction energies as the Na and Rat with = 1 + AGy gaveld = 75.4 kcal/mol. The rate constant of our
different ionization energy and thus differefnGy. system was first estimated using the Marcus formula
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k= |ofh|[mh (ks TA)] Y exp{ —Ag'/(ks )} (30)

Marcus relationship
(Peaked at A=75kcal/mol)

Ag' = (AG, + 1)%(42) 90

With the abovel and o we obtain the dependence of the rate
constant orAGo as described in Figure 3.

Next we examined our different density matrix treatments
by comparing them to the Marcus rate constant. The calculations
used theAUp(t) of Figure 1 and produced time-dependgist
of the type presented in Figure 4. The rate constant was
calculated from the correspondimpgt) using

K Aﬂ)bb(t)g 130 .

(3 ]_) 1000 -90.0 800 700 600 -50.0
At AG, (kcal/mol)

whereAt is small on the reaction time scale but large on the zisgl;r‘?u?;{ctiageo‘f?o:ﬁtg‘:gir‘:rfiIth:;\;ir';‘]ie - '\#?:et Zg;ﬁ%ﬁ;"\fﬁz
, . . . . 0.
R:g%?ﬁ;%gg Ir?]teet?]gi[l.on @t The integration was done by gonlt/a usling Marcus formula V\Xth theobtained from Figure 2A(= 75

The dependence of the rate constants of the different models calfmol).
on AGy was evaluated by repeating the calculations for different 1.0
values ofep — €. We started this study by considering the L o
performance of the semiclassical trajectory (ST) rate constant, P \‘\ Pe
kst, obtained from our previous surface hopping apprééch o8y ~
(using the time dependence of ti&s of eq 4). The calculated \
kst (Figure 5) was obtained by the Rungiutta integration o6 L - .
procedure with time steps of 0.2 fs. The results of this integration ‘
were averaged over 10 initial conditions. These initial conditions
were generated by starting at different points along the simulated
energy gap. As seen from Figure 5, &gt reproduces the results
obtained by the Marcus relationship, as found in previous
studiest-® Next we examined the direct integration of the 0.2
Liouville equation. In this case we needed time steps of 0.1 fs }
and an average of 20 initial conditions to obtain converged ‘/\/“ ‘
results that reproduced the results of Marcus’ relationship (see 0-% 20 a0 5o a0 0.0
Figure 5). time (ps)

The performance of the second-order Liouville equation (eq Figure 4. Typical time dependence pf.andpw,. The results are taken
25) and the Redfield equation (eq 29) is described in Figure 6. from the Liouville equation treatment withGo = —75 kcal/mol and
The convergence of the second-order Liouville equation was ¢ =1 cnr™.
obtained with time steps of 0.2 fs and an average of 20 initial 80
conditions. The Redfield approach converged with time steps = g:rﬁﬂfaii'@gf?f:;é’mnes
of 1.0 fs and an average of five initial conditions. Thus, it —o— Liouville equation
appears that the Redfield equation converges much more quickly
than the direct integration of the Liouville equation and the
second-order Liouville treatment. This is due to the use of the
autocorrelation function, which is determined once and then used
as a constarnif, term in the Redfield treatment. In our case we
find that the Redfield treatment is roughly 20 times faster than
the Liouville treatment.

In concluding this section, it might be useful to mention that
all the treatments considered reproduce the correct microscopic C/ °
reversibility. This is so, since all these treatments reproduced
the trend obtained by the Marcus’ relationship and this relation- 49 =———""——"——=——+ —— >+ ——=———
ship involves forward and backward rate constants that satisfy AG, (kealimol)
the requirement of microscopic reversibility. °

-10.0 4

-11.0

in (rate (1/ps) )

R
o

P40 vs. P (0
\

\

\

-10.0 4

-11.0 4

In (rate (1/ps) )

-12.0 4

Figure 5. Dependence of the rate constantsAd®, for the Na+ Na*

— Na' + Na type process, calculated using the Liouville equatio) (

using the semiclassical trajectories approddh, @nd using Marcus
The above treatments are based on a semiclassical approactelationship £). The calculations used = 1 cnr™,

that treats the solvent fluctuations classically. This involves

several problems, ranging from the underestimate of quantumFor example, in our case it is not obvious what the correct way

mechanical tunneling to the fact that the correct implementation of treating the solutesolvent coupling should be. In the case

of the semiclassical surface hopping approach is not necessarilyof small electronic coupling, we can run trajectories on a

clear. In fact, semiclassical approaches by their nature are notpotential surface that reflects only the reactant charges (see ref

“exact” quantum mechanical treatments (see discussion in ref8). However, when the magnitude ofincreases, it is more

8). There are also practical problems that are not fully resolved. proper to let the solvent see a superposition of the reactant and

IV. Quantizing the Solvent Degrees of Freedom
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-8.0 00 2 _ 2
—0- second-order Liouville ffoo(lA(w)l /T) d(U - Jthwi kBT (36)
—A— Marc_us relalionship
9.0 4 O Redied equation wherel is the total reorganization energy. Once the origin shifts
are known, we can get the FC factors by
% -10.0 4
g ¢ = [ Chi (37)
2 s
©
= -11.0 4 . .
£ where we use the relationship
12,0 4 b ) ASZ Ns
ai —
: (Cho)” = exp{ —AS72} - nd (38)
-13.0 T T T T . . .
-100.0 -90.0 -80.0 -700 -60.0 -500 and obtain the generalng, by using the proper recursion
AG, (kcal/imol) formula8
Figure 6. Dependence of the rate Constantmo for the Na+ Na* W|th the SO|Ven'[ FC faCtOrS we can now erte the VibroniC

— Na* + Na type reaction, calculated using the second-order Liouville Hamiltonian as
equation 0) (eq 25), the modified Redfield equatio®) (eq 29), and

the Marcus relationshipy) (eq 30). The calculations used= 1 cnr 2. H(nﬁ =0, ﬁc‘;ﬁ (39)
product charges (see ref 7) so that the solvent trajectories are H = zhws(ns +1,)
propagated on a combination of the reactant and product 3

potential surfaces. This can be partially solved by moving to

the adiabatic representation, but the available formulations do Now we can write a Liouville equation for the system where,

not provide exact quantum mechanical results. Furthermore,in contrast to the semiclassical case, we do not have any

approaches that involve splitting of trajectories are not easily fluctuating term in our Hamiltonian (within the harmonic

implemented in Redfield type formulations. approximation). This means that, at least formally, we have no
A possible way to obtain a more rigorous quantum mechanical T2 term of the type given by eq 28 and all the corresponding

treatment that overcomes many of the above problems is to usedissipation effects are given by tivam terms (which provide

vibronic-based density matrix approach. That is, one can try to the equivalent of th&, term). However, our treatment requires

develop approaches that treat the nuclear coordinate quantun® term that represents the dissipation of energy between

mechanically but still reflect the microscopic physics of the Vibrations of the same electronic state. That is, our Liouville

simulated system. Thus, we divide our system into a quantum €quation is expressed as

mechanical space that includes the solute modes and all the

“active” solvent modes that are coupled to the solute reaction [p0= [pH — Hp + R(p—p*)0 (40)

ggﬁ/@:\?ﬁ%ggg Iio(:rla::isllf:(lj ?,\I/);f(esteheatr;?sil;ge'srotht?e;etstthgf theWherepeq is the equilibrium value of, while R is the relaxation

A ) . ) matrix. In our case, we choose the simple expression

active” solvent modes quantum mechanically, we have to know

their vibrational frequencies and Frare€ondon (FC) factors. —

Fortunately, this can be accomplished using the dispersed Rgf“_ 0 fora=p (41)

polaron (spin boson) approdctiwhere the FC factors for each

pair of electronic states are obtained by considering the time- Rm=—— f0r2|ms -n=1

dependent energy gap as a Fourier transform, T s

. _ n=0 fory m—nJ>1
AU(t) = i [ A) € do (32) R Z m

. . . . We could, of course, use more rigorous expressions (e.g.,
Using the WienerKhintchine theorem, one obtaitis ref 30), which will be examined in subsequent studies. However,
) the main point is thal; is still a phenomenological parameter
lim |A(w)%r = fdt e "' AU(0) AU(DD  (33) (microscopic strategies for obtainifig will be considered in
e subsequent work). Thus, the present treatment describes the
relaxation between different electronic states (fhgprocess)
by the microscopically deriveduﬁcﬁﬁ] terms of eq 39, while
2 2402 11 describing the relaxation within vibronic levels of the same
FAVO) AVME= A Zws As(ng+ ) cosad (34) electronic states using a phenomenologital
To examine the vibronic approach, we considered the electron
(where A; and w; are, respectively, the origin shift and transfer from the bacteriopheophytin chromophdte)(to the

vibrational frequency of theth state andis = 1/[expfws3) — primary quinone Q) in the bacterial reaction center &ps.
1]), one obtain% viridis (see ref 1 for a description of this system). This process

was studied previously by a dispersed polaron treatierte
lim |A(w) T = ﬂhkaTZASZ So—wy (35) present work represented thg(w) of ref 21 by a three-mode
70 = model, usingA; = 1.10,A, = 1.80,A3 = 1.84,w; = 40 cnT?,
wy = 400 cn! and wz = 2275 cml. T; was taken as 1 ps
where we use the high-temperature approximatiomfoNote following ref 1. The vibronic Liouville equation that was
that A(w) can be normalized by constructed for the assumedlG°® (values between zero to

Now using the relationship
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7.0 P T——— short time. We can also assume that trajectories that cross to
& Marcus relationship the product surface do not interfere with those that move on
the reactant surface. Unfortunately, the issue of what is the
effective surface for the nuclear trajectories (the solvent
trajectories) is less clear, despite recent advances (for example,
see ref 22). Furthermore, in the adiabatic limit we have to
consider the proper solutesolvent coupling. It is possible that
using the current approach for largewill produce results that

do not obey microscopic reversibility. In such cases one may
require the solute to follow a potential that involves the adiabatic
solute dipole. Examination of this important issue is left to
subsequent studies.

The main focus of the present work was placed on a
semiclassical treatment where the solvent coordinates are

-AGq (em”) considered classically. Such a treatment is subject to the above-
Figure 7. Comparison between the Marcus relationshig) &nd the mentioned problems. Furthermore, quantum mechanical features
vibronic Liouville equation ©). of the solvent motion are neglected. These problems can be
overcome, at least in a partial way, by using an alternative
approachthat treats the solvent motion quantum mechanically.
In this approach we follow the same trick introduced in the
dispersed polaron (spin boson) mdd&land use molecular
simulations to evaluate the Frane€ondon factors for the
solvent modes. These Franekondon factors are then intro-
duced in the relevant Liouville equatiérHere again, we have
a microscopically based density matrix with the exception that
the correlation timeT; for transition between vibrations in the
same electronic manifold is considered as a phenomenological

This work developed and examined microscopically based parameter. Future studies will attempt to obtain this parameter
density matrix methods for studies of electron transfer and other from microscopic simulations.
charge-transfer reactions in condensed phases. The starting point
of our approach is a molecular dynamics simulation of a denor Acknowledgment. This work was supported by NIH Grant
acceptor pair in an all-atom solvent model. The simulation GM40283.
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calculated by direct integration of this equation. The dependence
of the calculated rate constant &G° is shown in Figure 7.

As can be seen by comparing Figure 7 to Figure 4b of ref 21,
we reproduce the general trend of the dispersed polaron
treatment and in particular the deviation from the Marcus

relationship in the inverted region.
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