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A numerical study of the free energy gap (FEG) dependence of the electron-transfer rate in polar solvents is
presented. This study is based on the generalized multidimensional hybrid model, which not only includes
the solvent polarization and the molecular vibration modes, but also the biphasic polar response of the solvent.
The free energy gap dependence is found to be sensitive to several factors, including the solvent relaxation
rate, the electronic coupling between the surfaces, the frequency of the high-frequency quantum vibrational
mode, and the magnitude of the solvent reorganization energy. It is shown that in some cases solvent relaxation
can play an important role even in the Marcus normal regime. The minimal hybrid model involves a large
number of parameters, giving rise to a diverse non-Marcus FEG behavior which is often determined collectively
by these parameters. The model gives the linear free energy gap dependence of the logarithmic rate over a
substantial range of FEG, spanning from the normal to the inverted regime. However, even for favorable
values of the relevant parameters, a linear free energy gap dependence of the rate could be obtained only
over a range of 5000-6000 cm-1 (compared to the experimentally observed range of 10 000 cm-1 reported
by Benniston et al.). The present work suggests several extensions/generalizations of the hybrid model which
might be necessary to fully understand the observed free energy gap dependence.

1. Introduction

A parabolic dependence of the logarithm of the electron-
transfer rate on the free energy gap (∆G) is, perhaps, the most
dramatic prediction of the celebrated Marcus theory of electron
transfer.1 Many experimental studies have verified this bell-
shaped prediction in charge-shift and charge-recombination
reactions.2,3 However, in contrast to the original Marcus
prediction, the bell shape is often found to be asymmetric, the
origin of which has been discussed extensively in the literature.4-6

Many reasons have been put forth, including the involvement
of the vibrational modes. In some ultrafast charge-recombination
reactions, the contributions from the vibrational modes can be
so strong as to lead to a marked deviation from the expected
bell-shape dependence of the logarithmic rate.4,5 Such deviations
are referred to as the non-Marcus free energy gap (FEG)
dependence of the rate. In many cases, the energy gap
dependence has been found to be linear over a large energy
gap, even on the order of 10 000 cm-1.5 The reason for the
validity of the exponential energy gap dependence of the rate
over such a large variation of∆G is not clearly understood at
present. In fact, this has remained one of the few long-standing
unsolved problems in electron-transfer theory.

Substituent and isotope effects on the donor-acceptor pair
within a charge-transfer system are known to significantly affect
the free energy gap (∆G) of the reaction.7 Solvents also play a
major role. Therefore, in experimental studies on the free energy
gap dependence,4,5 the electron-transfer reaction dynamics is
observed in a series of donor-acceptor systems in a particular
solvent. Interesting examples of non-Marcus free energy gap
dependence have been found, with an off-parabolic behavior

pronounced, in some cases, in the normal region4 and, in a few
other cases, in the inverted region.8 However, the nature of the
non-Marcus FEG dependence can be quite different in these
two, as discussed below.

(i) Inverted Region. In the famous Rehm and Weller
experiments,8 nonparabolic dependence with the rates higher
in the inverted region than in the normal region was observed.
Although it remained a paradox for a long time, this type of
“breakdown” of the parabolic energy gap dependence has now
been satisfactorily explained on the basis of the Collin-Kimball
model.9 The explanation is based on the Marcus theory itself,
with a distribution of free energyValues arising from the
distribution of the distance between the donor-acceptor sites
in a system.Such a broad distribution of free energy values
essentially gives rise to contributions from many reactive pairs,
some of which are present in the low-barrier region, leading to
an enhancement of the rate. It is interesting to note that this
effect is similar to that of the involvement of a high-frequency
mode, as in the Jortner-Bixon model,10,11as both provide low
barrier channels for the reaction to occur. We have discussed
below the enhancement of the rate in the inverted regime via
the Jortner-Bixon mechanism in more detail.

(ii) Normal Region. In the experiments of Asahi and
Mataga,4 the rates in contact ion pairs (CIPs) were found to be
much higher in the normal region than in the inverted region
and seemed to follow a near-linear dependence over the normal
region.4 On the other hand, in solvent-separated ion pairs
(SSIPs), the rate was found to follow the Marcus parabolic
dependence rather well.3 An explanation such as that of the
Collin-Kimball model is clearly not tenable for back ET in
CIPs.

What then are the probable reasons for the observed non-
Marcus dependence in the normal regime, such as in CIPs? A
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simple explanation using a 1-D description, with the reaction
coordinate as the electrostatic potential difference (e∆V or X)
between the donor and the acceptor sites (which is produced
by the surrounding polar solvent), was first put forward by
Tachiya and Murata.12 CIPs, like betaine-30, can be modeled
as two-surface systems and are initially excited to a highly
nonequilibrium state.13,14Therefore, the main assumption in the
Marcus theory that the initial distribution of the system is at
equilibrium may not hold for the CIP systems under study.
Subsequent to the higher-level excitation, the CIP system relaxes
toward the potential minimum of the excited surface. As a result,
if the sink is in the normal region, there is a possibility for the
system to react as it relaxes down. Of course, how much reaction
takes place in this manner also depends on the electronic
coupling strengthVel (or exchange integralJ) at the sink. When
the value of the exchange integral is large (as is quite the case
for the contact ion pairs), the reaction occurs with almost unit
probability as the reactant population reaches the reaction zone.
Thus, the reaction can occur from a completely nonequilibrium
condition. On the other hand, when the value ofJ is small (as
in the case for the solvent-separated ion pairs), only a small
fraction reacts on the way to the potential minimum; the rest
relax down toward the minimum of the excited surface, and
further reaction occurs via the activated Marcus mechanism.
Thus, in the case of smallJ, the reaction is always via the
activated mechanism as the system has to relax after excitation,
reach the potential minimum, and then overcome a reaction
barrier.

Tachiya and Murata, restricting their description to a 1-D
picture, showed that if one assumes a simple Smoluchowski
dynamics for relaxation in a 1-D harmonic reactant potential
surface and aδ function sink for the reaction, then almost a
quantitative explanation of the rate of charge transfer can be
obtained for CIPs whenJ ) 0.3 eV and for SSIPs whenJ )
0.003 eV. Tachiya and Murata had also reported the calculated
energy gap dependence of the rate constant for various values
of the exchange integralJ in ref 12. In the case ofJ ) 0.003
eV, they found that the calculated energy gap dependence was
essentially the same as that predicted from the Marcus theory.

However, although the model by Tachiya and Murata could
explain the experimental results of Asahi and Mataga, the value
of electronic coupling used for CIP was 0.3 eV, which is too
large, and this is a point of serious concern, particularly if a
nonadiabatic description is used. The reason that such a large
value was required is that Tachiya and Murata assumed the
entire reaction to occur from a single-point reaction site. As
the electron transfer is required to occur during a single passage
during the relaxation of the population toward the potential
minimum, only a largeJ value can ensure a large probability
of reaction. The scenario can change dramatically when broad
reaction channels are present due to the presence or participation
of vibrational modes.10,13-15 In this work we demonstrate that
this indeed happens and that one can explain the experimental
results with much smaller coupling strength, on the order of
0.1 eV.

In the case of reactions in the inverted regime, such as in
betaines, interplay between the solvent relaxation effects and
the vibrational effects has been found to give rise to very large
rates10,13,15as the presence of vibrational modes gives rise to
additional reaction channels near the barrierless regions. In such
systems, both experimental and theoretical observations clearly
demonstrate the dominant role of vibrational modes.13-15 There
are several modes that are associated in an electron-transfer
process such as the aromatic skeletal ring vibrations in aromatic

systems, torsional or bending motions, and intermolecular
stretching modes. Also, exact identification of the nature of the
vibrational modes that are involved is often difficult.7,24

However, as first suggested by Barbara et al.,13,14,16 the
theoretical treatment of an electron-transfer process should be
at least to a minimal level such as the hybrid model with one
“average” low-frequency solvent mode, one average low-
frequency vibrational mode, and one average high-frequency
vibrational mode.

If the reaction is classically in the normal region, the presence
of vibrational modes will only give rise to additional reaction
channels in the higher normal region.19 This means some of
the sinks will be positioned closer to the excitation point (present
in the normal region, as in CIPs), and so the rates may be larger.
In addition, the presence of an ultrafast component, which is
experimentally observed in nearly all the solvents, can enhance
the rates.15,19 The same interplay mechanism between solvent
and vibrational effects, for a reaction involving nonequilibrium
excitations such as in CIPs12,20and in betaines,13-15 which was
shown to be responsible for large rates in the inverted region,
also holds good in the normal region. From the above discus-
sions, it seems like the hybrid model can provide a unified
description for the non-Marcus behavior in both the normal and
the inverted regions.

Jortner and Bixon have earlier performed a detailed and
elegant multimode, energy-dependent rate calculation17 which
could provide an explanation to the non-Marcus behavior.
However, this description does not take into account the transient
dynamics of motion on the potential energy surfaces as
necessary to treat the scenario described in CIPs. A full
dynamical calculation is required to understand the energy gap
dependence, particularly when reactions can occur in the normal
regime. It is in this regime, because of reaction possibilities in
nonequilibrium conditions, that there is an interplay between
the multi-time-scale relaxation effects of the reactant population
after excitation and the differing charge-transfer strengths of
the several broad sinks arising from the presence of the
vibrational modes.15,18,19

One of the few unsolved problems in the theory of electron-
transfer reaction is a quantitative explanation of the observed
linear free energy gap dependence of the logarithm of the rate
which has been experimentally observed over a large energy
gap, covering in some cases even 10 000 cm-1.4,5,17This spans
the normal, barrierless, and inverted regimes. While it is clear
that the elegant model of Jortner and Bixon in terms of the
participation of many vibrational modes should form the
backbone of any quantitative theory, several key factors still
seem to be missing from this description. The following three
appear to be particularly important.

(1) The effects of biphasic solvent relaxation on the electron-
transfer rate. As these effect can be different from each other
in the three (normal, barrierless, and inverted) regimes, this
aspect needs further study.

(2) The hybrid model needs to be combined with the Collins-
Kimbal9 model of diffusion-limited ion pair recombination to
describe experimental situations which involve electron transfer
among ion pairs.

(3) It might be necessary to include the relaxation of the
vibrational energy within the hybrid model. In the usual practice,
electron transfer is assumed to occur from thegroundVibrational
leVel of the reactant to the excited vibrational states of the
product surface. However, in photo-induced electron-transfer
reactions, reactants are often produced in the vibrationally
excited state. If vibrational energy relaxation is slow, then the
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rate can be adversely affected. In particular, the initial part of
the electron-transfer reaction (ETR) can be quite different. In
fact, the initial part of the ETR can occur from the vibrational
excited reactant states to the excited product states. The situation
can be further complicated because of back electron transfer
from the product to the reactant surface. In addition, back
electron transfer from the product to the reactant surface needs
to be considered if the electronic coupling is large.

Clearly each of the above three extensions is nontrivial. In
the present paper, we have performed only the first one. We,
however, present the tentative formulation for the other two
cases. The main objective of the present study is to investigate
the free energy gap dependence of the rate within the framework
of the generalized hybrid model, with biphasic solvent response
included. Also, in view of reported uncertainties in the estima-
tion of the values of some of the solvent and vibrational
parameters,17,28 a detailed study of the dependence of the rate
on a few relevant parameters was also carried out.

The results reveal a clear nonparabolic dependence of the
logarithm of the rate on the free energy gap from the normal to
the inverted regimes, spanning a range on the order of 5000-
6000 cm-1 in several cases of study. The results clearly indicate
the wide range of possibilities that can arise within the
framework of a minimal hybrid model. The analysis even with
a simple one-dimensional Tachiya-Murata model revealed
several interesting situations.20

The organization of the rest of the paper is as follows. In
section 2, we describe the theoretical formulation of the hybrid
model. In section 3 a dynamic version of the Tachiya-Murata
model with the effects of vibrational modes in widening the
sink is discussed. Section 4 includes a study of the dependence
of the free energy gap dependence of the rate on various factors,
such as solvent reorganization energy, solvent relaxation, and
the frequency of the high-frequency mode. In section 5 we
discuss the extensions of the present theoretical formulation
required to treat experimental situations. Section 6 concludes
with a brief discussion.

2. Theoretical Model and Formulation

As pointed out earlier, the effects of high-frequency vibra-
tional modes are required to explain the high rate of the electron
transfer as in betaine-30, which is in the “Marcus inverted
region”.3-15,18,19In this case, the system is minimally modeled
by a low-frequency, harmonic, and classical solvent mode (X),
a similar low-frequency vibrational mode (Q), and a high-
frequency, harmonic mode (q). The high-frequency mode is
treated quantum-mechanically. The potentials for the reactant
and product states, therefore, become

where V1n and V2n denote the reactant and product states,
respectively, arising from thenth vibrational level of the high-
frequency quantum mode.∆G is the free energy gap of the
reaction.λX, λQ, andλq are reorganization energies of theX, Q,
andq modes, respectively.νq is the frequency of the quantum
mode. A schematic representation of the hybrid model is shown
in Figure 1. Since we are primarily interested in the photoelec-
tron-transfer reactions, the reactant surfaces are often referred
to as the locally excited (LE) states and the product surfaces as
the charge-transfer (CT) states. In the hybrid model, therefore,

λX, λQ, λq, νq, ∆G, and the electronic coupling strengthVel are
the relevant parameters. However, the values of these parameters
are often not known a priori. It is customary to obtain these
values by fitting the experimentally obtained absorption intensity
profiles to line-shape models.13,14,29The ETR reaction occurs
only along the sink curves obtained by the intersections of the
reactant and product potential energy surfaces (see Figure 1).
The equations describing the sink curves can be obtained by
equating eqs 1 and 2.

As the system is assumed to be excited from the ground
charge-transfer surface (V20) onto the ground vibronic level of
the locally-excited reactant surface (V10), the higher vibronic
levels are not involved (V1n, n ) 1, 2, ...) in the electron-transfer
process. It is, therefore, sufficient to consider the electron-
transfer reactive sites (sinks) that are present only along the
intersections of theV10 surface with the product surfaces(V2n,
n ) 0, 1, 2, ...).

The quantum treatment of the high-frequency mode intro-
duces a change in the effective free energy gap- ∆Gn () nhνq

+ λq +∆G) between the ground reactant andnth product
surfaces. One usually assumes that the relaxation of the high-
frequency mode is much faster than any relevant process so
the three-mode problem is reduced to a two-mode multisurface
one. This approach can be easily generalized to anm-mode case
where more than one high-frequency mode is involved. A
subsection of the two-dimensional potential energy surface, cut
horizontally at a heighth on theV-axis and projected onto the
X-Q plane, would appear as an ellipse and the projected sink
curves as parallel straight lines as in Figure 1. The ratio of the
reorganization energies,λX/λQ, determines the effective sink
width projected alongX.11,19,21 The sink reaction window is
narrowed alongX with increasingλX, and the dynamics is likely

V1n(X,Q) ) (1/2)2λXX2 + (1/2)2λQQ2 + nhνq (1)

V2n(X,Q) ) (1/2)2λX(X - 1)2 + (1/2)2λQ(Q - 1)2 + nhνq +
λq + ∆G (2)

Figure 1. General multisurface schematic representation of the hybrid
model for the electron-transfer reaction.V10 and V2n,n)0,1,2,... are the
effective potential energy surfaces for the ground reactant (or locally
excited) states and the vibronic product (or charge-transfer) states,
respectively.∆G is the difference between the potential heights between
the ground reactant (V10) and the ground product (V20) states.hνq is
the quantum gap of the high-frequency vibrational mode. I, B, and N
represent the inverted, barrierless, and normal cases, respectively.
Section AA represents the projection of the harmonic potential surface
V10 and the reaction (intersection) curves onto theX-Q plane. The
system is initially excited from the minimum ofV20 surface to theV10

surface.
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to become more solvent controlled in such conditions, more so
if the relaxation along the vibrational coordinate is much faster
than that along the solvent coordinate.

A classical sink is said to be positioned in the normal region
or in the inverted region depending upon whetherλ, the sum
of the reorganization energiesλX andλQ, is greater than or lesser
than -∆Gn, respectively. If the free energy gap-∆Gn > λ,
then the classical Marcus picture predicts the electron-transfer
reaction to be deeply in the inverted region and the reaction
rate to be very small. When-∆Gn ) λ, the barrierless case
result, and when∆Gn < λ, a normal region case results.

In the presence of a high-frequency mode, multiple sinks are
present. The projection of the sinks onto theX-Q plane would
appear as shown in Figure 1, as already noted. However, the
sinks are of differing strengths as the sink-transfer rate corre-
sponding to the 0 ton transition involving the high-frequency
mode is (2πVel

2/p)|〈0, n〉|2, whereVel is the electronic coupling
and|〈0,n〉|2 is the Franck-Condon overlap of the nuclear wave
functions of the ground reactant and thenth product states. The
Franck-Condon factor between the initialnl state and the final
n2 state is given by the relation

whereδ2 ) 2λq/hνq is the coupling parameter. The rates can
still be high in the inverted region because of the additional
reaction channels opened up due to the high-frequency quantum
levels; some of these channels may be not only efficient but
also located near the barrierless region (or even in the normal
region). But the main constraint is that the Franck-Condon
overlap decreases rapidly with higher quantum levels of the CT
states. As a result, most of the pertinent CT states that can
contribute significantly to the transfer arise only from the lower
quantum levels. For example, for the 0 ton transition, the
maximum overlap is found for the (0, 2) or (0, 3) combination
of levels in several cases as theλq is only around 1000 cm-1.
These have large energy gaps with respect to the LE state, and
the transfer from the LE to CT state can, therefore, be assumed
to be negligible. The inverted region case can then be treated
as a single-surface (V10) problem with multiple sink windows.
However, the above assumption may not be correct for an
electron transfer in the normal regime especially when the sink
reactive strength is large.

If the back transfer is neglected, then the time evolution of
the probability distributionP10(X,Q,t) of the system on theV10

PES is then given by the following equation:

The first term describes the relaxation in theV10(X,Q) potential.
The second term accounts for the actual transfer of the electron
to the different CT states along the sink windows.LX andLQ

are the Smoluchowski operators.S(X,Q) is the sink function.
The latter is determined by both the energy considerations and
the Franck-Condon overlap.15,19 As already mentioned, the
intrinsic sink-transfer rate (k0) corresponding to the 0 ton
transition involving the high-frequency mode is (2πVel

2/p)|-
〈0,n〉|2.

The operatorLê (ê ) X, Q) is assumed to be of the form

whereDê(t) is the time-dependent diffusion coefficient of motion
along the reaction coordinate.Dê(t) is given by the relation23

where∆ê(t) is the time correlation function of theêth reaction
coordinate and is assumed to be of the form∑jwj exp(-t/tj)
where∑jwj ) 1. The diffusion coefficient is time-dependent
when the relaxation is characterized by a multiexponential time
decay (non-Markovian) and is time-independent only for a
single-exponential decay (Markovian). The effective relaxation
time τeff is given by∫0

∞ dt ∆ê(t). In the present treatment, the
relaxation along theX mode has been assumed to be either
overdamped Markovian or non-Markovian (biexponential) and
that alongQ mode to be infinitely fast (as in earlier theoretical
studies).13,14,21Also, for simplicity, the initial population excited
on the reactant (locally excited) surface may be characterized
as aδ-function source at (X0,Q0). Mathematically, this is written
as Pi0(X, Q, t ) 0) ) δ(X-X0) δ(Q-Q0) δ1i. In the case of
back transfer reactions such as in CIPs,12-14,19 the coordinates
of the initial excited population correspond to those of the mini-
mum of the ground (charge-transfer) surface (see Figure 1). The
form of eq 2 implies that the minimum of the CT surfaces (V2n)
are located at the coordinates (1, 1) on theX-Q plane.

The time-dependent solution of the dynamical equation (eq
5) describing the motion on a two-dimensional potential surface
can be carried out by using Green’s function technique.15,19

The usefulness of this scheme lies in its generalization to the
multidimensional potential energy surface and its ability to
provide a solution even for the non-Markovian dynamics.
Also, the formulation can be used to obtain the solution for a
delocalizedsink by employing a simple discretized form of any
arbitrary delocalized sink function as a linear combination ofδ
functions (for point sinks) with calculated weight factors.15,19,22

Note that this discretization is perfectly general and valid for
any delocalized sink and (or) an arbitrary initial distribution.

The time-dependent probability,P10(t), obtained using Green’s
function technique can be used to obtain the average rates of
charge transfer. The average rate of the ET reaction (kET) is
defined as

However, when the solvation time correlation function is
biphasic with widely different time scales, this method is not
robust because evaluation ofP10(t) faces stability problems as
this procedure is computationally intensive. Fortunately, there
is a direct, almost analytical, method to obtain this average rate.
This method uses the well-known Cramer technique to first
obtain the solution of the system of linear equations by the
matrix equation.15,19,22Also, this scheme is valid for any arbitrary
sink.

3. Non-Marcus FEG Dependence of the Rate in the
Normal Regime

To emphasize the need to extend the Tachiya-Murata model
to a multidimensional description, we first present our investiga-
tions based on the Tachiya-Murata model.12 The average rates
obtained using a 1-D reaction picture (with only the solvation
energy (X) as the sole reaction coordinate), an initial Gaussian

|〈n1,n2〉|2 ) exp(-
δ2

2 )n1!,n2!

[ ∑
r)0

min(n1,n2)(-1)n
1-r(δ2/x2)n

1+n2-2r

r!(n1 - r)!(n2 - r)! ]2

(3)

∂P10(X,Q,t)/∂t ) (LX + LQ)P10(X,Q,t) - S(X,Q) /P10(X,Q,t)
(4)

Lê ) Dê(t)( ∂
2

∂ê2
+ 1

kBT
∂

∂ê[dV(ê)
dê ]) (5)

Dê(t) ) -kBT d ln∆ê(t)/dt (6)

κET
-1 ) ∫0

∞
dt P1(t) (7)

FEG Dependence of the Electron-Transfer Rate J. Phys. Chem. A, Vol. 103, No. 42, 19998499



excitation distribution, and aδ function point sink20 are as shown
in Figure 2, with the calculated average rate plotted against the
free energy gap as in a standard Marcus plot. The rates were
calculated using the parameter values as reported in Tachiya-
Murata’s work: solvent reorganization energy (λX) 1.5 eV,
solvent relaxation time (τX) for acetonitrile 0.3 ps, and exchange
integral (or electronic couplingVel) J ) 0.3 eV. The results are
found to be in good agreement with the experimental obserr-
vations of Asahi and Mataga4 whenVel is chosen to be 0.3 eV.
The use of a broad initial (Boltzmann) distribution in this work
in place of aδ function distribution as in Tachiya and Murata’s
work to describe an initial excited-state population on the locally
excited surface (at the point corresponding to the minimum of
the ground charge-transfer surface) did not result in any
noticeable difference between the final rates obtained from these
two works.

However, in the work of Tachiya and Murata, an unrealisti-
cally large value of the coupling strength (Vel ) 0.3 eV) was
required to explain the results observed in CIPs. Usually, the
values forVel are obtained from the Hush approximation for
the electronic coupling factors, and the reported values are most
often in the range of 1400-2800 cm-1 (=0.11-0.22 eV).14,25

Recently, uncertainties have been reported in the estimated
values of the coupling strength,Vel.25,26 Similarly, the solvent
reorganization energy (λX) values reported in the older literature
span over a wide range (=2000-15000 cm-1). However, values
on the order of 1-1.5 eV (=7000-15000 cm-1), such as used
in the work related to the Tachiya-Murata model, are also
suspected to be too high even in the case of strongly polar
solvents, the error estimation being around 20%.26,28 In some
recent studies, the correction inλX has been more than 50%.28

In consideration of the above factors, we carried out
investigations based on the hybrid model. In the presence of
vibrational modes, several broad sinks are involved in the
reaction, as explained earlier, and a largeVel value is not
required. Thus, one may need to implement the hybrid model
even in the normal region. The values of the parameters were
chosen so that they are within the realistic limits13,14,29and are
as follows:It is customary to obtain these relevant parameters

by fitting the experimentally obtained absorption intensity
profiles to line-shape models.13,14,29 The above values are in
good agreement with experimental results.15 The values of some
of the energy parameters were varied in various studies to gain
an understanding of their effects on the ET rate. These results
are presented in the following section.

Rate calculations were carried out using the method described
in section 2 for three different values ofVel and by assuming
a biexponential solvent relaxation for acetonitrile (∆X(t) )
0.686 exp(-t/0.089)+ 0.314 exp(-t/0.63) along theX mode
and an infinitely fast relaxation along theQ mode. The results
are shown in Figure 3. The rates were found to be rather large
over much of the normal regime for all the cases and are clearly
in contrast to the parabolic dependence. It is also clear from
these results that the stronger the reactive sites and the closer
they are to the excitation point, the faster is the rate. As pointed
out earlier, the back transfer from the product to the reactant
state could be substantial in the normal regime especially
when the sink reactive strength is large and may give rise to
lesser rates. However, efficient channels are located mostly
near the barrierless region as the Franck-Condon overlap
decreases rapidly with higher quantum levels of the CT
states. For the parameters used, the maximum Franck-Condon
overlap is usually found to be for (n, n + 2) or (n, n + 3)
transitions.

For the caseVel ) 900 cm-1 (=0.07 eV), the free energy
gap dependence gives rise to an almost linear dependence above
the barrierless region in the plot of lnkET vs ∆G. This behavior
is very much similar to the one observed in CIPs. This
demonstrates that the main limitations of the Tachiya-Murata
model can be removed by use of the hybrid model. One can
indeed explain the experimental observation with a realistic
value of the coupling parameter by considering the effects from
broad multiple sinks.

In the event of very low coupling strengths, it is intuitively
obvious that the behavior would result in a bell-shaped Marcus
dependence as seen in the case of charge recombination in
weakly coupled SSIPs. So, perhaps, the hybrid model could
provide a generic and realistic explanation to the non-Marcus
behavior.

Figure 2. Average rate,kET, plotted as a function of the free energy
change (-∆G) showing the non-Marcus energy gap dependence for
contact-ion pairs (J ) 0.3 eV). The small gap slow time decay
component inP1(t) may makekET dip near-∆G ) 0. In this case,
-∆G ) 1.5 eV is the zero-barrier point,-∆G < 1.5 eV is the normal
region, and-∆G > 1.5 eV is the inverted region.

energy parameter cm-1 eV

solvent reorganization energy (λX) 2220 0.174
low-frequency mode reorganization energy (λQ) 1220 0.096
high-frequency mode reorganization energy (λq) 1228 0.097
quantum frequency (hνq) 1550 0.122
electronic coupling strength (Vel) 1800 0.141

Figure 3. Sensitivity of the average ET rate (kET) to the electronic
coupling (Vel) shown in the lnkET vs -∆G plot for different values
of Vel, 900, 1800, and 3600 cm-1. Vel ) 900 cm-1 is much less
than the value of 0.3 eV (3800 cm-1) used in the Tachiya-Murata
model. The results show nonlinearity in the high normal regime
for largerVel values. Values of the other energy parameters (in 1000
cm-1): λQ ) 1.5, λq ) 1.0, andhνq ) 1.8. The biexponential solvent
time correlation function for acetonitrile is assumed to be∆(t) )
0.686 exp(-t/0.089) + 0.314 exp(-t/0.63). Times are scaled in
picoseconds.
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4. Study of the Free Energy Gap Dependence of the
Electron-Transfer Rate on the Solvent Relaxation Rate,
Solvent Reorganization Energy, and Value of the
Frequency of the Quantum Mode

Various reaction possibilities can be studied by varying the
relevant solvent- and vibrational-related parameters in the hybrid
model. As pointed out earlier, the values of some of these
parameters are usually obtained from fits to experimental line-
shape profiles13 and are found to vary widely from system to
system. However, as mentioned earlier, uncertainties in the
estimation of these parameters, mainlyVel, λX, andνq, have been
reported.25,26,28 In view of this, we have carried out detailed
studies to understand the sensitivity of the free energy gap
dependence on these parameters. The results on the effects of
electronic coupling,Vel, are already presented in the previous
section. The other two studies related toλX andνq are presented
in this section.

As mentioned earlier, systems such as betaine-30 in a wide
range of solvents have clearly revealed the interplay between
the vibrational parameters and the ultrafast solvent relaxation
components.15,18,19Only a limited number of vibrational chan-
nels are found to effectively participate in this enhancement as
both the solvent relaxation rate and the intrinsic rate of the sinks
compete to determine the choice of these sinks in the charge-
transfer process. In acetonitrile, both the fast and slow time
constants which characterize its biphasic relaxation (∆X(t) )
0.686 exp(-t/0.089)+ 0.314 exp(-t/0.63)) behavior are in the
sub-picosecond time scale. The slow relaxation effects (as those
in alcohols) leading to very small ET rates are, therefore, not
present in this case.18

An increase in the weight of the ultrafast component results
in shifting of the average position of the relaxing population
toward the potential minimum faster.15,18,19In such conditions,
very fast and highly nonexponential reaction dynamics is
possible in the normal region for systems initially excited to a
highly nonequilibrium state as in betaines and CIPs. A time-
dependent numerical study of the population reaction dynamics
(P1(t) vs t) using a biexponential solvent relaxation for aceto-
nitrile shows such very fast dynamics (Figure 4). As shown in
our earlier work,20 even a Markovian exponential relaxation
shows highly nonexponential dynamics for the CIP case.

Time-dependent studies involve rather extensive numerical
computation and so have been restricted only to a single set of
parameters. In the rest of the study, reaction rates were
straightforwardly obtained.

The various results are presented in the following subsections.
4.1. Effect of Change in the Frequency of the Quantum

Vibrational Mode. As demonstrated earlier in the case of
betaines, the presence of a high-frequency mode can dramati-
cally enhance the rate of electron transfer, particularly in the
inverted region. It is easy to imagine that a range of reaction
behavior is possible when only the quantum frequency is
changed.

In fact, substituent and isotope effects on the donor-acceptor
pair are known to significantly affect the frequency of the
vibrational modes.7 For example, the stretching frequency of
the C-H bond decreases on deuteration. A reduction in the
quantum frequency means more closely spaced sink channels
involved in the reaction process. This does not immediately
ensure an increase in the reaction rate because a major constraint
is the rapidly decreasing Franck-Condon overlap value of the
higher quantum levels of the product state. For this reason, when
large energy gaps are involved, the rates are found to decrease
on deuteration as the sinks close to the barrierless region become
weaker.7 Understandably, the charge-transfer rate is expected
to be more sensitive to the changes in the high-frequency mode
when the reaction is in the inverted regime.

We found that when sink strengths are quite large (Vel ) 2800
cm-1), the rates are rather insensitive to changes in the quantum
frequency. This is shown in Figure 5. On the other hand, for a
case study with a modestVel value of 1200 cm-1, the results
are found to be otherwise as shown in Figure 6. The explanation
is as follows. When the sink strengths are not very large, the
overall rates are quite sensitive to the change in the density of
the reaction channels, which occurs with a change in the
frequency of the quantum mode. As mentioned earlier, there
are many aspects which collectively determine the effectiveness
of a sink, in particular the electronic couplingVel and the solvent
relaxation rates. While in Figure 5 above the results have been
obtained with the biexponential relaxation data for acetonitrile
(al ) 0.686,τ1 ) 0.089 ps,a2 ) 0.314,τ2 ) 0.63 ps), the results

Figure 4. Time-dependent survival probability on the reactant surface,
P1(t), plotted as a function of scaled time showing the nonexponential
dynamics that are observed for the following set of values, deliberately
chosen to mimic a normal region case. Values of the energy parameters
(in 1000 cm-1): λX ) 2.2, λQ ) 1.5, λq ) 1.0, ∆G ) 0.0, νq ) 1.8,
andVel ) 0.9. The biexponential solvent time correlation function for
acetonitrile is assumed to be∆(t) ) 0.686 exp(-t/0.089)+ 0.314 exp-
(-t/0.63). Times are scaled in picoseconds.

Figure 5. Sensitivity of the average ET rate (kET) to the quantum
frequency (νq) when the electronic coupling strength (Vel) is 2800 cm-1

shown in the lnkET vs -∆G plot for different values of the quantum
frequencyhνq, 1500, 2100, and 3100 cm-1.Values of the other energy
parameters (in 1000 cm-1): λX ) 2.2, λQ ) 1.5, andλq ) 1.0. The
biexponential solvent time correlation function for acetonitrile is
assumed to be∆(t) ) 0.686 exp(-t/0.089)+ 0.314 exp(-t/0.63). Times
are scaled in picoseconds. The rates are found to be not very sensitive
to changes inhνq as the reaction strengths of the sinks are quite strong
due to a largeVel value.
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of Figure 6 were obtained with slower relaxation time constants
(al ) 0.65, τ1 ) 0.5 ps,a2 ) 0.35, τ2 ) 20 ps). The energy
parameters are quite comparable between these two case studies.
This shows that thedegree of the sensitiVity of the free energy
gap dependence to one particular parameter depends on other
factors too.

4.2. Effect of Change in the Solvent Reorganization
Energy. The potential sensitivity of the rate to changes in the
solvent reorganization energy (λX) is obvious for the following
reasons.

(1) Reorganization energies are the “force constants” in the
quadratic equations (eqs 1 and 2) defining the harmonic potential
energy surfaces and are highly important in determining the
position of the classical sinks.

(2) The minimum activation energy (∆Gn
/) of the reaction

corresponding to the sink which arises from thenth vibronic
product surface is also determined by the total reorganization
energy (λ) and is given by the relation11,15,21

where ∆Gn is the effective free energy gap for the 0f n
channel.

(3) The ratio of the reorganization energies,λX/λQ, determines
the effective sink width, as mentioned earlier. The sink reaction
window is narrowed alongX with increasingλX, and the
dynamics is likely to become more solvent controlled in such
conditions.

Also, experimental studies have reported changes inλX with
changes in solvent such as in the case of betaine in alcohols.29

A study was, therefore, carried out to understand the sensitivity
of the energy gap dependence to the solvent reorganization
energy. The results are depicted in Figure 7 where lnkET vs
∆G behavior for three different values ofλX is shown. The
results clearly show the combined effects of the changes in the
sink width and the activation energy with changes inλX over
the whole range (of 10 000 cm-1) of the free energy gap that

was studied. For the lower range values of∆G (=<5000 cm-1

where∆G < λ), most of the efficient sinks are likely to be
present in the normal region. Also, asλX increases, the sinks
are shifted to higher values ofX with increases inλX. As these
sinks in the normal region become closer to the excitation point,
extremely high reaction strengths are required to trap the fastly
relaxing population. The rates were, therefore, found to decrease
at a particular value of∆G with an increase inλX, reflecting
the narrowing of the sink width and the shift of the sinks toward
higher values ofX. On the contrary, in the higher range values
of ∆G (=>5000 cm-1 where∆G > λ), an increase inλX shifts
the sinks toward lower values ofX. The rates were, therefore,
found to increase in this region despite the narrowing sink width
with increases inλX as most of the efficient sinks are likely to
be shifted to the barrierless region.

Of course, the results shown here are for a single value of
Vel equal to 1800 cm-1. It is intuitively obvious that the
sensitivity of the rate to changes inλX would also change
with changes in the coupling strength. The effects of chang-
ing the coupling strength have already been discussed in section
3.

This study related toλX gains further relevance in view of
several recent studies emphasizing the uncertainties in determin-
ing the value ofλX, as mentioned earlier. A change inλX implies
more changessa shift in the position of the reaction site and
its associated changes to activation energies and the effective
sink widths. It is probable then that a system that was earlier
perceived to be in the normal region could have as well been
in the inverted region.

In view of the above, it is interesting to recall the argument
of Asahi and Mataga,4 who had argued that because of stronger
charge-transfer complexation, the positions of the potential
minima of the CIP state and the CT state remain close to each
other; i.e.,the reorganization energy is likely to be small.This
makes the charge recombination (CR) in CIP to be in the
inverted region for most of the values of∆G. However, the
Asahi and Mataga argument that∆G must be much larger than
the solvent reorganization energy would lead to rather small
values of the rate for large∆G, at least in the classical picture,
unless the interaction between the two surfaces is very large,
which may again be unlikely even in the case of contact-ion
pairs. This is because for smallλX and large∆G, the classical
crossing point in the Marcus 1-D reaction scenario would be

Figure 6. Sensitivity of the average ET rate (kET) to the quantum
frequency (νq) when the electronic coupling strength (Vel) is 1200 cm-1

shown in the lnkET vs -∆G plot for different values of the quantum
frequencyhνq, 1200, 1800, and 2400 cm-1. Values of the other energy
parameters (in 1000 cm-1): λX ) 2.2, λQ ) 1.5, andλq ) 1.0. The
biexponential solvent time correlation function for acetonitrile is
assumed to be∆(t) ) 0.65 exp(-t/0.5) + 0.35 exp(-t/20.0). Times
are scaled in picoseconds. The rates are found to be very sensitive to
changes inhνq as the reaction strengths of the sinks are not large due
to a moderateVel value.

∆Gn
/ ) (λ + ∆Gn)

2/4λ (8)

Figure 7. Sensitivity of the average ET rate to the solvent reorganiza-
tion energy (λX) shown in the lnkET vs -∆G plot for different values
of λX, 1100, 2200, and 4400 cm-1. The biexponential solvent time
correlation function for acetonitrile is assumed to be∆(t) ) 0.686 exp-
(-t/0.089)+ 0.314 exp(-t/0.63). Times are scaled in picoseconds. The
values of the other energy parameters (in 1000 cm-1): λQ ) 1.5,λq )
1.0, hνq ) 1.8, andVel ) 2.8.
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deeply in the inverted regime. For example, forλX ) 2000 cm-1

and ∆G ) -10 000 cm-1 (as in betaines), the classical
crossing point along theX coordinate is atXc ) -8000 cm-1

and the expected rate is on the order of 10-6 ps-1, which is
far too small.13,14 However, as shown in several cases, the
explanation of Asahi and Mataga can be resurrected by the
presence of broader, multiple reactive sites arising from the
vibrational modes that even the reactions that are classically in
the inverted regime can proceed in the barrierless and (or)
normal regimes.

5. Further Generalizations of the Hybrid Model

However, despite the demonstration of the non-Marcus
behavior using the hybrid model and with a reasonably low
value ofVel near linearity is observed only over a range on the
order of 5000-6000 cm-1 or so (compared to the experimentally
observed range of approximately 10 000 cm-1 in CIPs) of the
free energy gap spanning the normal, barrierless, and inverted
regimes. In the very-deep-inverted regime, the rates are under-
standably smaller with reduced strengths of the sinks close to
the activationless regime. It seems that a more comprehensive
model could be obtained by combining the hybrid model with
the Collin-Kimball model9 (which was used to explain the non-
Marcus behavior observed such as in the Rehm-Weller
experiments8). Thus, the reactant probability distribution now
depends not only on the solvent polarization coordinateX and
the vibrational coordinateQ, but also on the separation distance
R between the reactant pair. The dynamical equations for the
hybrid Collin-Kimball model can be obtained by adding a
diffusion term to the existing equation of motion and can be
given in the following form:

LR is the diffusion operator in real space to account for the
migration of the reactant pairs. The sink functionS(X,Q,R) is
now determined not only byX andQ, but also by the distance
of separation (R) between the reactant pair. For differentR
values, the free energy gap is different for ion pairs.9b,c One
thus would need to average over the initial distribution ofR.
The broad continuous sink area (not a continuous line) resulting
in such a situation may render an extended linear behavior well
into the inverted regime where reaction rates should increase.
The operatorLR is the diffusion operator with a mutual diffusion
coefficient. Detailed numerical calculation with this model is
yet to be carried out. There are, however, some qualitative
conclusions which follow from the model. For all distances
larger than the contact pair, the reorganization energy will
increase, which in turn will enhance the distance-dependent
Marcus rate of electron transfer between the reactant pair in
the inverted region of FEG. The opposite will happen for the
normal region. The overall effect can be significant.

In all the existing theoretical studies of electron-transfer
reactions, relaxation of the high-frequency vibrational mode has
been assumed to be infinitely fast. In many cases, this assump-
tion is difficult to justify. Since reactants are often produced
optically at highly vibrationally excited states, electron transfer
can occur from these vibrationally excited states of the reactant
to the vibrationally excited levels of the product state. We note
here that the model presented here can be easily extended to
accommodate such relaxation effects. The dynamical equations
in such a case would be of the form

wherek1n is the vibrational population relaxation rate of the
reactant 1n vibronic surface. A similar equation needs to be
written for the population of the productP2m states. The above
master equation is general andincludes the effects of the back
reaction. There are two points of concern here. First, the rates
k1n can be small and rate determining. Second, the sink functions
Snmcan peak at values different from those of the 0f n channels
involving the ground reactant surfaceV10. Numerical studies
indeed show that there are several efficient channels other than
the 0f n channel considered so far. This model can also be
solved by extending Green’s function method used in this study.
One needs to consider an initial population distribution in the
reactant, which can be in high nonequilibrium. This can seriously
affect the rate of electron-transfer reactions.

Also, theoretical modeling, so far, involved only an average
high-frequency mode to represent the overall contributions from
the high-frequency factors.7,24 Maybe, more than one high-
frequency mode needs to be explicitly included in the parameter
fitting of line shape profiles and in the formalism. This means
more densely spaced sink channels. However, if the coupling
strength is not very strong (as is the case in most systems), the
product of Franck-Condon factors of the different high-
frequency modes would tend to make the intrinsic rate from
each sink small. The presence of several high-frequency modes
may not, therefore, result in an increase of the ET rate.

It is to be noted that all the above suggested extensions to
the model presented here can be solved using Green’s function
technique in a similar manner described in refs 15 and 19.

6. Conclusion

Let us first summarize the main results of this work. A
detailed study of the free energy gap dependence of the rate of
the electron-transfer reaction in a contact-ion pair in a polar
solution has been carried out. The study is motivated by recent
experimental and theoretical works which show distinct non-
parabolic dependence of lnkET vs∆G. A particularly interesting
situation arises when the electron transfer is in the normal region
of the free energy gap and when the value of the electronic
coupling is reasonably large. The time dependence of the
reactant population in such cases is predicted to be highly
nonexponential.

It was expected that the minimal multidimensional model
would suffice to explain the diverse behavior observed in ET
reactions. A rather large number of parameters are involved even
in a minimal model, and therefore, many different reaction
scenarios are possible. The various results obtained from the
investigation on the FEG dependence clearly indicate this.
However, near linearity is observed only over a range on the
order of 5000-6000 cm-1 or so (compared to the experimentally
observed range of=10 000 cm-1) of the free energy gap
spanning the normal, barrierless, and inverted regimes in several
cases. It seems, therefore, that a more comprehensive model
could be obtained by combining the hybrid model with the
Collin-Kimball model,9 which was used to explain the non-
Marcus behavior observed such as in the Rehm-Weller
experiments.8 This may render an extended linear behavior well
into the inverted regime.

We have also pointed out that the assumption of an infinitely
fast population relaxation along the vibronic states of the ground
and excited surfaces may not be a valid one in certain cases.

∂P10(X,Q,R,t)/∂t ) (LX + LQ + LR)P10(X,Q,R,t) -
S(X,Q,R) P10(X,Q,R,t) (9)

∂P1n(X,Q,t)/∂t ) (LX + LQ)P1n(X,Q,t) - ∑mSmn(X,Q) P1n ×
(X,Q,t) + ∑mSnm(X,Q) P2m(X,Q,t) - k1nP1n(X,Q,t) (10)
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Vibrational energy relaxations (VERs) of the high-frequency
modes could be rather slow.30 In such situations, two things
need to be included: first, the possibility of electron transfer
from the vibrationally excited states of the reactant and, second,
the back transfer from the product to the reactant state (neglected
in this study), particularly in the normal region. We have
presented the model equation, which, however, has not been
solved yet.
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