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We employ multidimensional configuration-space models to investigate the electronic factor that appears in
theories of electron transfer. Of particular interest is the electronic factor in models of long-range biological
electron transfer (ET), which is thought to occur via a bridge-mediated superexchange mechanism. The
configuration-space electron tunneling fluxes that we calculate give explicit information on the relative
importance of many-electron effects such as correlation and hole vs particle transfer. The results from our
models lead to a nonintuitive indication that simple state-space perturbation theory expressions for the electronic
factor can lead to incorrect interpretations of electron-transfer processes. In particular, we find that the exclusion
of lower-energy bridge bound states may misrepresent the bridge attractive potential and may result in significant
errors in the electronic factor contribution to the electron-transfer rate. The importance of the lower energy
bridge levels in describing the tunneling state does not, however, imply that hole transfer is important. We
find that through-bond electron tunneling interactions are more reliably viewed in terms of the tunneling
barrier (using WKB theory) than in terms of the energy gaps between the tunneling electron and the respective
bridge bound and virtual states (i.e., a second-order perturbation theory perspective). In the present
superexchange models we find no instance in which hole transfer dominates the ET mechanism; however, as
the energy level of a bridge eigenstate approaches that of the-dacceptor, we find that multiple transfer
pathways are simultaneously possible. Finally, results from these models suggest that the effects of-electron
electron repulsion are small and relatively unimportant.

I. Introduction intervening between ET donor and acceptor sites. The net effect
. . of these electronic properties is typically distilled into a single
Despite recent efforts toward attaining accurate electron- g1 nneling matrix element, also called the electronic factor,

transfer (ET) rate predictions for the photosynthetic reaction a4 further understanding of which is the topic of this work.
center (PRC) and analogous biological ET reactions, the precise

manner in which many of these types of ETs occur is still not Model_mg the E_T_proce;s is not only important f_rom t_h_e
known1-9 Nonetheless, the prospect that new device and standpoint of predicting which molecular structures will exhibit

synthetic technologies can be developed for use in artificial the desired ET rate but it is also important to understand how

photosynthesis and biocatalysis ensures that the drive for@1d Why the process occurs. From a theoretical standpoint, ab
biological ET rate prediction will continue unabatéd*” For initio methods provide the most accurate avenue for determining

long-range biological ET reactions in which neither the donor tunneling matrix elements. However, these calculations are often

nor acceptor are closely coupled to the facilitating bridge, i.e., COmMPutationally untenable for systems in theé-£CkDa size

a nonresonant process, it is generally agreed that ET occurs@nge of many proteins. Some efforts are underway to develop
through a mechanism of superexchaﬁgﬁtns process is ab initio methods that can accommodate very Iarge Sys%%ms,
typically viewed as one in which the coupling between the donor but most work on large systems to date has relied upon
and acceptor is not direct and in which the electronic orbitals Simplifying approximations to reduce the size or extent of the
of the donor and acceptor complexes do not overlap. The calculation® Often these assumptions reduce the problem to a
distances between redox centers in the PRC are large, up tdwo-state or few-state one-electron model, reminiscent of one
~10-20 A, a circumstance in which we would expect the of the earliest models of superexchange, the McConnel ntddel.
probability for tunneling to be low for ET across empty space. Also, many models employ the tight binding approximation in
In proteins, however, the molecular structure intervening which each bridge site only has nonnegligible interactions with
between the donor and acceptor is comprised of a series ofits nearest neighbor. Although modern ET models on biological
bridging atoms that in the standard picture is thought to provide systems, systems that necessitate the model being large, have
a sequence of overlapping orbitals that give rise to coupling progressed substantially since the McConnel model, the dis-
between the donor and acceptor complexes. Experimentalcrepancies still observed between experimental and theoretical
observations suggest that there are a number of biological ETlong-range biological ET data indicate that there is significant
systems, including the PRC, that can be described in this room for improvement®=24 One possibility for scrutinizing ET
fashion® In such systems the ET rate is controlled in whole or models, a strategy we pursue here, is to see how conventional
part by the electronic properties of the protein scaffold, or bridge, approaches used in large electronic factor models fare when
applied to smaller systems for which analytic solutions eXigt.

*To whom correspondence should be addressed. Certainly, it is reasonable to infer that an approximation
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deleterious to accurate results for a small system will be less al. have modeled simple linear chains of atoms as quasi-one-
valid for a large system of much greater complexity, such as dimensional systen®.The results that we discuss here indicate
the PRC. that a one-electron model is sufficient to determine the electronic

Another common feature in large biological ET models is factor contribution to the ET rate.
the use of state-space descriptions, or valence atomic orbital The other simplifying assumption we address here, how
(VAO) models, in which the tunneling electron is described leaving some of the bridge electronic states out of the model
mathematically, for instance, in terms of a linear combination affects the electr_onlc factor portion of the ET rate,.has thus far
of states. In these state-space descriptions the exact identificatiorbgen gmployed in part as a way to make cqlculaﬂons on Iargg
of the electron-transfer mechanism may not be transparentbiological systems more tenable, since the size of the system is
because this linear combination, or mixing of states, leads to directly related to the difficulty of modeling it. In a recent review
ambiguity in identification of transfer pathway457The desire  of biological ET, Beratan and OnucRibave commented that
for a more explicit, less ambiguous expression of transfer caution must be exercised in excluding selected states from
mechanism has been a motivating force in the development ofmodels of ET systems. In this work we look at the effect of
pathway method3-32 still, many of the pathway models are  excluding selected states from the model and find that such a
semiempirical in nature and have not yielded the kind of practice may often result in a calculated electronic factor and
mechanistic information necessary for design of biomimetic ET hence ET rate, which is too low. When examining the causative
complexes. Two new applications to address this need for factors of this result, we find that the exclusion of certain states
mechanistic tracking are the use of electron-transfer contactresults in a misrepresentation of the attractive nature of the
map$2 and tunneling current&;35both of which provide more ~ bridge, or in other words increases the effective tunneling
detailed information than the conventional state-space picture barrier, leading to a diminution of the electronic factor. This in
from valence atomic orbital models. turn suggests that conventional VAO perspectives (e.g., Ray-

Three of the ideas expressed above formed the basis for thd€19—Schrodinger perturbation theory) are subtly related to the
current study: (1) the effect of simplifying approximations on Wentzet-Kramers-Brillouin (WK,B) barrier pe'rspectlve. The )
a smaller model can be compared to the exact solution as a tes tates that cause t_h_e greatest misrepresentation of the electl_ronlc
of their validity: (2) smaller models provide a context from actor are not intuitive from the VAO perspective; whereas in
which to view and test methods applicable to larger models; e VAO perspective the uppermost bridge states are deemed

. ) . o
(3) a spatially explicit perspective yields more useful mechanistic important in many particle-transfer ET modéfswe find that

information about electron transfers. The electron-transfer model exclusmn of t_he . bndg_e states causes_proble_mfatlcal
we describe below is a one- to many-electron configuration- misrepresentation of the attractive nature of the bridge. Similarly,

space model. One important and novel aspect of this work the transfer mechanism (particle, hole, mixed-mode) is related

compared to other work in the literature is that by combination (© the overall barrier height rather than the energy difference

of the configuration-space approach with the method of tun- between the _tunneling electron and the h|ghest occupied
neling fluxes, the ET process may be explicitly described molecular orbital (HOMO) or lowest unoccupied molecular

visualizedin terms of the electronic structure of the bridge; i.e., _?_Lb'tal I(Ltl.JMC:]).' ﬂ:ﬁ I?tter bﬁ'ng tgetstand?rr]d \CCSBV'eV\(’jp(\)/'Rt'O
which electronic configurations of the bridge are important to € refationship that we snow between the an .
the ET process. One issue that we have addressed in this wa erspectives and how individual states affect the bridge role in

is the relative importance of particle vs hole transfer in the ET th-g rr]1ae§<'t tsegﬁg,fnm%?igeﬁ’ n doetsii?géotjtféy tzgir:u':]usr;r:éﬁgh:gs
process. In previous often-cited papers on biological ET, the . ’ y 4

ET process is modeled by either particle or hole trarfé. involved in ET processes such as superexchange, i.e., processes

The current results illustrate how a path multiplicity may arise ]:’nr d"‘?g'(;hst:lfs;atﬁeenxtprf;ﬁggs'ssg'c\{g;] ?/?//eFei:/rzl tsécthr)Ji(ieaT (;:![Z’ils
in which particle, hole, and mixed-mode transfers may occur q 9

simultaneously. Here, we coin the terminology “mixed-mode” of how the present models are constructed. These sections are

transfer to describe a transfer process that other ET Iiterature]tﬁ::;\éve: at% ?h:ilf?rzsﬁ?agigrfst?c? brif)lsgltiialln Ev%lh;fg (;ihs?:ur:sazleré
to our knowledge does not address but that the visual nature of, 9 P 9

the current results illustrates to be important in some cases. in detail

Two simplifying assumptions used in large biological ET
models involve the use of one-electron models neglecting
electron-electron correlation and the use of reduced state-spaces Within the Born-Oppenheimer approximation electron trans-
wherein some or many of the bridge electronic states are in fer is described theoretically in the same fashion as any other
some manner deemed unimportant to the ET process and nothemical reaction. The nuclei move on one adiabatic potential
included in the model as a res@This paper addresses both of  energy surface that connects the donor and acceptor states and
these issues. With respect to one- vs many-electron models inwith the rate being determined by features of that potential
the context of biological ET, several authors have made the energy surface. However, when the transition state between the
case that a one-electron model is sufficieft38For three spatial donor and acceptor states is characterized by a weakly avoided
dimensions, visualizing results from a two-electron model crossing or when the donor and acceptor states are not on the
effectively requires six dimensions, a conceptually difficult same adiabatic surface, as in the inverted region of electron
prospect. Alternatively, by use of one spatial dimension, it is transfer, the BorrOppenheimer approximation is not a good
much easier to directly visualize how electreglectron cor- approximation and nonadiabatic processes must be considered
relation affects tunneling, and we provide an example of this to understand the electron-transfer process. Such a situation is
in the results below. Although spatially one-dimensional models typical in superexchange ET, and the preponderance of biologi-
are not directly comparable with more realistic models that are cal ET models are based on a nonadiabatic process. Usually
spatially three-dimensional, there are nonetheless important ETthe nonadiabatic processes are described using diabatic states.
processes that occur by tunneling and that are well representedrhe diabatic states can be thought of as a set of electronic
by spatially one-dimensional models. In particular, Heifets et states of the system that can be written as linear combinations

II. Quantum Mechanics of Electron Transfer
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of the complete set of adiabatic electronic states. There areHp, =
various prescriptions for constructing these diabatic states that (@plVelyg

. . X . T ey EtunSJBOC)(EJOB
typically yield states with the following characteristics: (1) the ;

occ occ

|VC|1/)AD_ EtunSBmA)
+

diabatic states cross (i.e., are degenerate) at a geometry that is Ewn— Eg,,,

close to the geometry where the adiabatic states had an avoided (MolVelts, O EuSoe, )(@s, IVelval— EuSs,__a)
crossing; (2) the diabatic states are localized with one state being anoee unee anoee unee

a good description of the initial donor state and the other of the g& Ewn— Eg

final acceptor state; (3) the diabatic states change slowly as a e (4)
function of the position of the nuclei in the region of the

crossing? or a corrected version of perturbation theory as proposed by

In terms of the diabatic states, the electron-transfer rate ki, and Stuchebrukhd.
expression for nonadiabatic electron transfer is given in first-

order time-dependent perturbation theory by Newtort has described how it is possible to reduce what is

at its most basic level a many-electron problem to a single-
o electron problem. He describes two possible cases. First, if the
ket = ?'HDAlzpFCWD 1) electron transfer is truly a single-particle process, with all of
the electrons in the intervening medium (the bridge) not
participating in the process, then the single electron can be
thought of as moving in the mean field of the other electrons.
This type of electron transfer is referred to as particle transfer.
The other possibility is if the electrons of the bridge do
participate. Then if one assumes that all of the electronic
configurations that contribute to the electron-transfer process

whereHpa is the electronic coupling matrix element between
the diabatic donor and acceptor states g is the Franck
Condon weighted density of vibronic acceptor states at the
energy of the donor state. Often the diabatic states are not
orthogonal. In that case the electronic coupling matrix element

S 3
is given by are just singly excited configurations relative to the donor initial
BolHIYAT- EuS, electronic configu[at_ion, it is pqssible to show again th_at the
oA = b A un—bA 2) many-electron Schnb_nger equation can be transformed into a
1-— SDA2 single-electron Schidinger equation with an appropriate inter-
action potential. Such a process is referred to as hole transfer.
where |yplis the diabatic donor stateyallis the diabatic In this paper we will show that when hole transfer is

acceptor statekyn = @p|H|ywp= WpalH|ywals the energy of significant, as determined by the probability fluxes, then a
the tunneling statespa = [@p|yallandH is the total electronic  multiplicity of mixed-mode pathways will also be important,
Hamiltonian of the system. Note that this formula reduces to which cannot be described by single excitations relative to the
Hpa = Op|H|ywalfor the case of orthogonal diabatic states. donor state. Thus, the single-particle picture will not be valid
If the transition state occurs at a geometry where the donor when there is hole transfer. Another point we will graphically
and acceptor sites are equivalent, then there is a very simpleillustrate here is the difficulty in qualitatively interpreting a state-
choice for the diabatic states. The diabatic states can bespace solution of the electron-transfer problem. To answer
constructed from the plus and minus linear combinations of the questions concerning the impact that various parts of the bridge
adiabatic states, where the adiabatic states are symmetric andhas on electron transfer, it is necessary to use a state-space
antisymmetric with respect to a symmetry operation of the expansion with localized nonorthogonal basis functions. As has
molecule that interchanges the equivalent donor and acceptorbeen shown by Priyadarshy et &t is essential to correctly

sites. If the energy of the adiabatic states Bgeand Eyp, the treat the nonorthogonal nature of the basis set to obtain the
electronic coupling matrix element between the corresponding correct electronic-coupling matrix element. The interpretation

diabatic states is then of wave functions constructed from such a basis set in terms of
the expansion coefficients is ambiguous. In particular, if a

2Hpp = B, — E;= AEg, 3 tunneling state is seen to have a nonzero coefficient for a lower

energy occupied bridge state, it is usually assumed that this is

Equation 3 reveals that the splitting is indirectly related to the an indication that hole transfer is important in the electron-
ET rate through the electronic factbipa. transfer process. The results presented here suggest that a better
There are a number of methods that have been used tointerpretation of such a wave function is that the tunneling state
compute the electronic factor for real systems. One class of must be orthogonal to the occupied bridge state, and in a
computations uses self-consistent field (SCF) ab initio calcula- honorthogonal basis set this necessarily requires a mixing of
tions where the diabatic states are obtained by solving for the bridge state with the tunneling state. Thus, the presence of
approximate localized SCF states either with or without a @ nonzero mixing coefficient with a bridge state does not imply
perturbation to localize the states. These calculations incorporatethe participation of that state in the tunneling process.
the full many-electron nature of the electronic state and have Although this brief review of quantum mechanical ET models
yielded coupling matrix elements that seem to be in good has centered on the prevalent valence atomic orbital approach,
agreement with experimental dat&:4°To study larger systems,  the results from our configuration-space models have equally
investigators have employed more approximate calculations, important implications for pathway models, which we discuss
usually invoking a single-particle approximation, i.e. assuming below. Another view on how to quantify the electronic factor
that the tunneling matrix element can be obtained by solving a is the barrier or WKB model. In the WKB model the tunneling
Schralinger equation that only contains the motion of a single matrix element is wholly dependent on the net potential barrier
electron moving under the influence of an interaction poten- that the tunneling electron must traverse to reach the acceptor;
tial.36:3741.44Once a single-particle Schidimger equation is  considerations of the bridge electronic state energetics are
assumed, then it can be solved by direct diagonalization, usingirrelevant, and the sole utility of the bridge in promoting
perturbation theory using expressiéfhsimilar to electron transfer lies in the effect the bridge nuclear potential
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has in lowering the tunneling barrier. The standard rate
expression for the WKB modtlis

WKB
T

it
Do~ g fi{2Ma) ~ Bl Pda) = (©)
where V(q;) describes how the barrier shape varies with the
spatial coordinate, and we will refer to the WKB exponent
defined here ag\. The WKB picture of ET can be viewed in
the context of the VAO approach in a manner that we
demonstrate in the results section.

Ill. Configurations-Space Model and Computational
Methods

The central idea motivating our development of the present

Wells and Lucchese

15.00 for each Gaussian function {iip;J. For the potential,
usingcp = ¢y = —6.5,c5 = —11.0, and3p = A = B = 5.0
produces quasi-degenerate donacceptor values that are
between and well separated from the two bridge eigenvalues,
and for this reason we refer to this particular bridge as the
“nonresonant bridge” below.

In addition to the exact solutions, we also considered solutions
of our 1-D model problems in which we used a truncated basis
set where each basis function was a solution to the 1-D problem
with only one Gaussian potential well present (i.e., donor or
acceptor or bridge only). These single-well solutions were then
combined to solve the full multi-well BB—A problem. This
truncated basis set for our model problem is analogous to atomic
centered basis sets used to solve the electronic structure in more

configuration-space model is that these models have significant'€@/istic_calculations of the ET electronic factor. Since we

advantages in visualizing the ET problem and hence i
understanding explicitly the role of the bridge. Here, we will
consider models in which each dimension represents an
independent electron. To implement our configuration-space
model computationally, we begin with a distributed Gaussian
basis (DGBY!® {|#i[}, and an electronic Hamiltonian given by

1
— S — V(g
5 8qi2 10(ch)

N
H=

(6)

whereN is the number of electrons in the system. In eq 6 each
electron in the system is another dimension in the configuration-
space model and is represented by the coordigasther than

by x, y,or zto emphasize that the dimensionality of the model

n Ultimately wanted to compare the VAO perspective to the WKB

or barrier perspective, we used the formula

Ng Nirunc
ff

V=SS 16I812S DeaZalVItoTS ool 1|

) ab.cd

(8)

where N, is the number of DGB functions anunc is the
number of states in the truncated basis, to see what approximate
effective potential results from the truncated basis. Inserting this
potential into the 1-D Hamiltonian will yield the same eigen-
values as the full potential when the Hamiltonian is solved in
the same truncated basis set as is used to constflicThis
potential thus gives a way of visualizing how truncations of
the basis set modify the underlying problem.

is related to the number of electrons in the system rather than AS electrons are added to the donbridge-acceptor system,
to the spatial dimensions represented by Cartesian coordinatesthis corresponds to adding dimensions to the configuration-space
The potential in the Hamiltonian is based on model Gaussians Model. This enables us to add an electrefectron repulsion

simulating the attractive potentials of the donor, acceptor, and
bridge sites. The form of the 1-D potential is

Vip = Vp(d) + Va(ay) + iVB(Qa’ql) (7a)

where
Vp(0) = —Coj €XH{ —Boa(ty — RI2)% (7b)
V(@) = —Coy XA —Boaly + RI2)% (7¢)
Ve(Quth) = —Cs exp{ —Ba(ty + Q)% (7d)
o=t}

n is the number of bridge sites, aftlis the distance between
donor and acceptor.

To obtain the electronic factor for the model system, we
construct the Hamiltonian matrid;; over the DGB where the
indicesi andj indicate the DGB basis, symmetrically orthogo-
nalize the basis set, transfoi into Hyp, in the symmetrically
orthogonal basis, and then diagonalitk, to obtain the

term, Ve—e, to the Hamiltonian. FoiN-dimensional solutions
(whereN is the number of electrons amd> 1) includingVe—e,

we perform a self-consistent field (SCF) calculation to find the
N-dimensional wave functions for the ground-state configuration
[lx1+*xn|8. This N-dimensional ground-state wave function
contains an electron in the lower level of each bridge site plus
one electron in the tunneling state. By removing the tunneling
electron from the antisymmetrized, high-spigs--xn|[, we

can construct a set of improved virtual orbitals (IVOs) for
electronic states in the presence of an occupied bridge. Kurnikov
et al*® have used the IVO method in models of intramolecular
ET in a bimetallic system and have found that this methodology
provides a better description of excited states of the system.
Construction of the IVOs results in a new set of one-electron
states,{|y°[} that we use in configuration state functions
(CSFs) composed of antisymmetrized direct products of IVOs,
or {|[\°-+xn°|3. A few of these one-electron IVO states are
bound orbitals, but the majority of them are continuum functions
that, when included in the set of CSFs, contribute little to the
Cl results but increase the cost of the computation greatly. Thus,
we choose a subset of these states, indicated by the Bdex
and compute Cl eigenvalues of the fdHldimensional Hamil-

tonian using the linear variational method afiély)’°-+
VO
N I

eigenvalues and eigenvectors. The energy difference between To consider the effect d¥.—, we constructed a delocalized

the quasi-degenerate donor acceptor staté&ds;; and is related

to the electronic factor by eq 3. These solutions to the problem
in one spatial dimension and for one electron, design@sed,

are very accurate solutions of our model problem. For the
donor-bridge—acceptor potentials in our models, we find that

approximately seven functions/bohr are required to converge

the 1-D eigenvalues te-10710 hartree, given an exponent of

Coulomb potential from a linear combination of three Gaussian
functions,

Ve o(O1,0) = ZCn g Prla-a? )
n

and add this to the Hamiltonian. We then solve the correspond-



Electron Transfer by Superexchange

TABLE 1: Expansions of the J and K Integrals Used to
Construct V,p As Given in Eq 1

bridge description

J. Phys. Chem. A, Vol. 103, No. 36, 1998349

SCHEME 1: Potential Structure for Donor —Bridge—

Acceptor System with the “Nonresonant” Bridge

~ 0.6 hartree

nonresonant Int. 1 Int. 2 nearer-resonant
JLcf  4.991/6.165 4.671/5.860 4.420/5639 4.003/5.483 ~34 hartres |
J,clf  2987/1.951 3.053/1.897 31031852 3.248/1846
Jaclf  0.755/0.0002 0.755/0.0902 0.756/0.0901 0.770/0.0905
KiCjf 3.644/8412 3.418/7.980 3.256/7.676 4.450/6577 Y il
KoClf  4.006/4.842 3.951/4.478 3.870/4.180  2.786/2.979 I
Ry Clf —0.370/2.335 0430/2129 0433/1.912 0.0155/0.147 Bonor Acceptor

aThe Gaussians used to expand drendK operator are centered at I
the center of the bridge well.

ing Schiainger equation as described in the paragraph above. ) )
The coefficients and exponents of the three Gaussians used tdV. Results and Discussion

construct the approximate rlCoulomb potential are; = A. Effect of Excluding Selected Bridge States from the
19.218,c, = 3-660- andcs = 0-'754 andp; = 58.501,f3; = Model. We discussed above how in models of large biological
2.598, angBs = 0.0910, respectively. The results from calcula-  gystems some states may be excluded from the model. We begin
tions mcIudmgVeF_e are not directly comparable to re_sults f_rom by using the simple 1-D model to see what effect this type of
the same calculation in t.he ab§ence/91‘e because the mg:lusmn approximation has on the electronic factor by comparing
of repuls_|on alters the _brldge eigenstate levels. To obtain a br_'dgeapproximate results to exact results for the same system. We
electronic structure with eigenstates close to those of the b“dgebegin by considering a simple dondridge—acceptor (D-

in the absence of repulsion, we subtract terms of the faym B—A) system described above where the bridge is nonresonant;
Kg at the same time as we add in tHgc repulsion. The term o ' the bridge bound states are well separated from those of
Jg is the Coulomb integral, which gives the interaction of the e donor and acceptor. In the present case, because we are
tunneling electron with an electron in the state used to construct considering a model system, what is meant by the terms donor
the IVOs (i.e., a state wherein bridge sites have an electron in bridge, and acceptor is somewhat abstract. We want to address

the lower energy state), arik is a local approximation to the

issues in how large-scale models of biological ET are con-

exchange interaction with an electron in the same state. Thus,gicted. and many large-scale biological models describe

our 2-D potential that includes electroelectron repulsion has
the form

Vop = V(0y,02) = Vip(dh) ": Vip(Gp) + Ve—e(qlaq?) -
(Js(ad) — Kp(ap) — (Js(ap) — Kg(ap)) (10)

The exchange integrals are approximated by the diagonal

glements of their respective matrices in the DGB. Tphand

Kg approximations are also expressed as the linear combinatio
of three Gaussian functions. Table 1 gives a description of the

coefficients and exponents used to approxindatand Kg for

four different 1-D bridge potentials used in the two-electron

models discussed in this work. Wyp, the same value ¢f is

used for all bridges (5.0), and intermediate bridge 1 (Int. 1),
intermediate bridge 2 (Int. 2), and the nearer-resonant bridge

havecg = 9.5, cg = 8.5, andcg = 7.5, respectively. After
obtaining expressions fife—e, Jg, andKg, we may perform a
calculation withVe_e that will be comparable to the calculation
without by subtracting the approximalg — Kg from the 1-D
potential at the outset of the calculation.

To fully realize the advantages of the configuration-space
model, we need to calculate tunneling fluxes. To do this, we
first use the delocalized symmetric and antisymmetric ClI

solutions (¥*Oand |W~0J to construct localized donor and
acceptor Cl wave functions

W H (PO

NG

W' (PO

W=
° V2

and |W, 0=
(11)

Using [WpOand |WalJ we calculate the donor-to-acceptor
tunneling flux from the relation

. _
Ayt di SiN(tAEg;)
|

ole/ da (12)

Ji@ayt) = | W

wheret is time and the wave functions are real.

systems in which two metal centers with near-degenerate d
levels are separated by a nonmetal protein matrix that has bound
states above and below the d levels but no bound states that
are energetically near the d levélsExamples of similar but
smaller ET systems are also common and include the system
studied by Kurnikov et al. in which an Ir donor atom transfers
an electron to an Ir acceptor atom through a covalently bonded
pyrazolate bridge, and a separate work of ours in which we

Mook at the electron transfer from an iron donor to an iron

acceptor through a nonbonded water bridge. Thus, the models
constructed here utilize quasi-degenerate donor and acceptor
states that are energetically well separated from the bridge bound
states. Scheme 1 depicts the potential for theB>-A system

with a nonresonant bridge in which the diabatic donor and
acceptor bound states have a binding energy-8f4 hartree

and the upper and lower bound states for the isolated bridge
are at—0.6 and—6.7 hartree, respectively.

In Figure 1 the electronic factohEsy, which is directly
related to the electronic factor portion of the ET rate, is plotted
as a function of the distance between the donor and acceptor
for both exact and approximate solutions of the DBA system
in Scheme 1. In this calculation, we first obtain the exact solution
and then compare this to solutions that include only selected
bound states in the model per the description of the truncated
basis in section Ill. The “approximate” solution using all four
bound states is the same as the exact solution in Figure 1 to the
scale resolvable on the graph, and both of these are given by
the solid line. If we selectively exclude bound states from the
calculation, we begin to see some interesting effects. In Figure
1 we see that the splittings found by excluding the higher energy
bridge bound state compare reasonably well to the full solution,
but if the lower energy bridge state is excluded, the accuracy
of the splitting compared to the exact solution is significantly
compromised and is nearly the same as that of a desxzeptor
system with no promoting bridge whatsoever, i.e., the bottom-
most line in Figure 1. Also in Figure 1 we see that even if no
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results in errors in the electronic factaEpi; obtained using only the oy - AR = 3; This Study, Slope = 1.8
upper bridge state andlEs with no bridge give the same results to < 1073 T B AR=2 WKB A= 1.1
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Figure 3. Configuration-space model results showing the effect on
AEspit of increasing (a) the flat and (b) the curved barrier in the space
between donor and acceptor. To the right of each graph the slope of
In(AEspir) @as a function of the distance between the donor and acceptor
is compared to the slop& predicted by WKB theory using eq AR

is the distance between centers of neighboring wells.

Ve“(q1) (hartree)

process. A look at Figure 2 immediately reveals the reason some
T T T approximations are better than others. The approximate solution
25 0 25 using all four bound states in the model has an effective potential
g, (bohr) that is, to the scale of the graph, the same as the exact potential.
Figure 2. Diagonal elements o#", the effective bridge potential, as  When the higher energy bridge state out of the calculation is
a function of the bridge states used in the simplifying approximation. left out, the effective potential exhibits a slightly higher barrier
Ve is defined in eq 8. around the bridge, and this lowers the splittings for this
approximation in Figure 1, a result that would lead to inac-
bridge states are explicitly included and we use only the donor curacies in the calculated ET rate. Excluding the lower energy
and acceptor states, the splitting is enhanced by the presencgtate from the model results in an effective potential that fails
of an attractive potential between the donor and acceptor centersto represent the attractive nature of the bridge, has a much higher
To place the results in Figure 1 in the context of large ET barrier to tunneling, and produces an electronic factor that is
models for protein systems where a limited state-space is chosermuch too low. Althoughvef is only an approximate localized
in order to make such models tractable, we consider the examplepotential, Figure 2 gives an excellent qualitative picture of how
of the work by Kuki and Wolnyed! These authors used excluding selected states from the model (or analogously, use
repulsive pseudopotentials to produce bridge sites each of whichof a repulsive core pseudopotential) may fail to represent the
had only one bridge bound state that was higher in energy thancritical aspect of the deeply attractive bridge potential that
the bound donoeracceptor. The use of the pseudopotential not promotes long-range ET.
only reduced the size of the calculation by reducing the number  B. Comparison of Model Results to WKB Predictions.The
of bridge states that needed to be included, but it was alsoidea that excluding selected states from the ET model might
necessary to successfully implement the pathway model useddeleteriously affect the calculated ET rate because it implicitly
by the authors. Pseudopotentials often fail to capture the essencexcludes some of the bridge attractive potential has direct
of the very attractive nuclear potential, and we believe their implications for barrier, or WKB, models of tunneling. Figure
use should be approached with caution in these types of 3 shows how the exact results from this model compare to WKB
problems. Using the analogous practice in Figure 1, i.e., predictions using eq 5. We find that the barrier model predictions
including only the most loosely bound bridge state, produced a are in excellent agreement with our model results, even though
splitting that was the same as that for ET without the promoting our system may not strictly adhere to the qualifying assumptions
effect of the bridge (lowest line, Figure 1). We conjecture that pertinent to the WKB modét (i.e., that the potential varies
this drastic underestimation of the electronic factor arises in slowly and that the two turning points be well separated). This
part because of the effective exclusion of important parts of agreement between our model results and WKB theory predic-
the bridge attractive potential when the strongly bound state is tions is excellent for variations in the flat barrier between donor
excluded, much like the repulsive core pseudopotential of Kuki and acceptor, when only the distance between donor and
and Wolynes does not support any bound states below theacceptor is varied (Figure 3a). The agreement is still good but
donor-acceptor energy level. less quantitative for variations in the curved barrier between
To find out more about the effect of the approximations donor and acceptor (Figure 3b), in other words when new
discussed in Figure 1, we used eq 8 to calculate the effectivebridges are added between the donor and acceptor. This is
potential, Ve, for each approximate solution and plot the probably because in this latter case the potential is not varying
diagonal elements iveff as a function ofy; in Figure 2. The slowly. Of course, the simple barrier model is one of the oldest
effective potential gives a way of visualizing how excluding and most thoroughly considered ET models, and as such, it is
selected states from the model modifies the underlying ET generally agreed to be inadequate of itself as a predictive basis
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for modeling bridge-mediated ET in proteins; other important
factors that a model must incorporate are symmetry and the
interference between through-bond and through-space transfer
paths?>4250-52 The model system that we are treating here
considers through-bond interactions, and we treat the other topics
in a separate worké However, for the through-bond interactions
that we are treating here, the attractive potential of the bridge
is the major rate-determining consideration. The other factors
we mention (e.g., interference) are typicalfate-vitiating
considerations that are not inimical to the basic idea that the
bridge attractive potential is the major promoting factor in
biological ET by superexchange. We expect that for some
complex protein systems the dor@cceptor separation is
sufficiently great that there is no competitive or interfering
through-space path and that the electronic factor contribution

to the ET rate is as simply predicted by the barrier structure as hole transfer is Usually interpreted in terms of the energy gap

the WKB model would suggest. between the protein bridge’s HOMO art,, (i.e., Ewn —

C. Two-Electron Models and ET Transfer Pathways: Es,..) L see eq 4). The usual conclusion is that particle transfer
Particle vs Hole? So far, we have considered results from a dominates over hole transfer when the tunneling endegy,
system in which the only particle influencing the tunneling rate s closer to the protein bridge LUMO than it is to the HOMO,
is the tunneling electron. By increasing the number of interacting and this type of analysis may even extend to other formalisms
electrons in the system, we can utilize our configuration-space for ET models?6-294041\We propose that this perspective is
model to look at the effects of electrerlectron repulsionye—e, misleading and will examine the question more fully in our
and competitive transfer pathways in configuration-space. model.

Additionally, we can look at the issue of particle vs hole transfer. ~ Scheme 3 illustrates how the configuration-space model can
To first look at the particle vs hole transfer issue, we begin be visualized for a 2-D model system. In this model each
with the simple 2-D system depicted in Scheme 2 in the absencedimension represents an independent electron. Hence, when
of electron-electron repulsione— = 0). Scheme 2 illustrates  €lectron 1 is in the lower level of the bridge well and electron
the difference between these two transfer mechanisms; both2 is in the acceptor well, the wave function is localized in the
particle and hole transfer have the same initial and final states, région C2 of the 2-D space as indicated in Scheme 3. The value
but the facilitating role of the bridge is very different in each Of this configuration-space approach will be apparent when we
case. It is important to note here our use of the phrase |00k at tunneling fluxes because this model enables us to trace
“facilitating configuration”. The B-B—A configurations such  the configuration pathways through which electron transfer
as those in Scheme 2 lend the impression of chemical OCCUrS. In both Schemes 2 and 3, only two electrons are shown
in the donor-bridge—acceptor complex. In practice there are
Jnany more electrons in the system, but core and inner valence

aid the reader's understanding of how the model works, not to electrons do not typically enter into thermal or photoinduced
' ETs.

represent how superexchange ET occurs. The bridge configura- Parts a and b of Figure 4 show the doneracceptor flux

tions are useful to identify the manner in which the bridge for a bridge structure such th&bar, — Eom ~ Eoa — Enole

mediates the ET transfer process, but the process itself is not : . . : .
- . . ’ . nd th nfiguration- ntial, r ively. Th nti-
affiliated with sequential electron or hole hopping and should and the configuration-space potential, respectively. The guant

. i . ties Epar. and Engle are the energies of the states representing
instead be viewed as an electron probability leak that flows from particle and hole-transfer facilitators, respectively (see Scheme

the_qlon_or into t_he aC(_:eptor via the b_ridge and as a result of thez)l andEpya is the energy of the initial/final state, which, as
facilitating configurations that the bridge enables. previously mentioned, has the same configuration regardless of
In Scheme 2 the bridge configuration that facilitates particle the transfer mechanism. The multidimensional configuration-
transfer results when an electron is added to the higher energyspace model potential is the sum of the independent 1-D
bridge site, or the site corresponding to the LUMO in molecular potentials from eq 7a. In this case the energy of the tunneling
systems. In contrast, the bridge configuration that facilitates hole electron is approximately halfway between and well separated
transfer results when an electron is removed from the lower from the energies of the bridge HOMO and LUMO, i.e. the

=C1, donor

= C3, particle

= C4, hole

EEE

energy bridge site, or the site corresponding to the HOMO in
molecular systems. Because tunneling matrix element expres-
sions based on second-order perturbation theory contain
terms such asHy, — Eg)~!, an electronic energy gap, the
importance of particle transfer is usually interpreted in terms
of the energy gap between the protein bridge’s LUMO Bpd

(i-e., Ewn — Esyuo) % See eq 4). Likewise, the importance of

intermediates in which a transferring electron or hole may be
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Figure 4. 2-D configuration-space ET for a nonresonant bridge. (a) Flux, represented by arrows, passes from the donor to the acceptor through a
particle-transfer configuration. Gray circles correspond to C1, C2, and C3 in Scheme 3. (b) Configuration-space potential contours corresponding
to the nonresonant BB—A structure. The 1-D potential in Figure 1 with a don@cceptor separatiolp, of 5.0 bohr is used to construct the

2-D potential; energy contours are-afl.0, —6.8,—11.0,—14.0, and—17.0 hartree. The tunneling state energy-is0.09 hartree, an¥; andV,

are saddle points for the particle and hole pathw&yss the maximum in the potential along the double exchange pathway shown by the dashed

line in (a). AEgpit is in Table 3.

TABLE 2: Eigenvalues of 2-D Cl Matrix and Energy Gaps
between the Donor-Acceptor and Bridge States

bridge description
Int. 1 Int. 2
Eigenvalue$,hartree

nonresonant near-resonant

supra), we conclude that by inclusion of the transverse modes
adiabatically there would be an effective one-dimensional
tunneling barrier.

We contrast the case of the nonresonant bridge with what
we shall designate the nearer-resonant bridge in which one of

Without Ve_e the bridge levels has an energy closer to that of the denor
Ecuce —10.09 -8.96 —8.22 —7.50 acceptor increasing the strength of the coupling between the
Eco —7.29 —5.83 —4.93 —4.12 bridge and the doneracceptor. The energy gap between the
Ecs —6.80 —6.80 —6.80 —6.80 donor-acceptor state and the nearest bridge level for the nearer-

with Ve-e resonant bridge from Table 2 is 0.7 hartree or 19.0 eV. This
Eg:’cz _fé:fg _fg:gg :Z:gg :g:gi energy gap is substantial and is significantly greater than typical
Ecs _758 —758 —758 758 gaps for molecular systerﬁébut_the energies for bound states

Energy Gap& hartree in molecular systems are not directly comparable. to thg mpdel

Without Ve « ' system that we treat here, and we do not require this direct
Epart— Eoin 28 31 33 3.4 comparability, since the current model is used to examine ET
Ep/a — Enole 3.3 2.2 1.4 0.7 dynamics rather than for predictive purposes. The ET flux and

with Ve—e configuration-space potential for the nearer-resonant bridge are
Epart — Epia 3.0 3.3 3.4 3.4 plotted in Figure 5. The manner in which we construct the
Ep/a — Enole 3.6 25 1.8 1.1

nearer-resonant bridge is apparent from the configuration-space

aSee Scheme 3 for state configurations. Eigenvalues were obtainedpotential in Figure 5b; the bridge attractive potential is decreased

by diagonalizing the 4x 4 Cl matrix that was generated using IVO

until the lower bridge eigenstate comes closer to the donor and

orbitals, as discussed in the text. Note that C1 and C2 are nearly acceptor levels. This has the net effect of maklng the effective

degenerate states, one of which is symmetric and one of which

antisymmetric, and the splittings between these two states are given in

Table 3.° Eyat — Epa = Ecs — EcuczandEpja — Enole = Eca — Ecuca

'S hole-transfer barrier comparable to the particle-transfer barrier,

and as a result, a little more than half of the total ET flux passes

Note that because of the weak interaction in these model systems, thethrough the hole-transfer configuration. Note that even for the
differences are small between the final eigenvalues and the value ofnearer-resonant bridge, hole transfer is an important transfer

the diagonal elements in the original basis set.

nonresonant bridge. The 2-D CI eigenvalues and the energy gap

Epart. — Ep/a andEngle — Epja are in Table 2. Essentially all of

mechanism, but it is not the only important transfer process as
Particle transfer was in the case of the nonresonant bridge.

Scheme 4 allows us to more easily view results from the two-

the tunneling flux in Figure 4a is passing through the particle- electron models in the context of the WKB perspective on
transfer configuration (region C3 in Scheme 3), and in Figure tunneling. In the top portion of Scheme 4 we see how the

4b it is apparent that this bridge configuration represents

a tunneling barrier for particle transfer is lower than that for hole

strongly attractive intermediate with a low-energy transition state transfer when the nonresonant bridge is between the donor and
designated/; in the figure. Note that the 1-D model potential the acceptor, and we previously saw how ET with the nonreso-
on which the 2-D model is based has a tunneling barrier. In nant bridge is dominated by a single transfer mechanism, that
Figure 4b, there is no barrier to tunneling along each 1-D leg being particle transfer. In the bottom panel of Scheme 4 we see
of the particle-transfer path (the energy of the tunneling state is a diagram of what the barrier to particle and hole transfer is for
—10.09 hartree. and the particle-transfer saddle point energy isthe nearer-resonant bridge. In the case of the nearer-resonant
—10.80 hartree). However, because the lowest energy boundbridge the barrier for the former is very similar to that of the
state in a 11.0 hartree deep 1-D potentiat-&.7 hartree (vida latter, and hence, both particle and hole transfers are important
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Figure 5. 2-D configuration-space ET for a nearer-resonant bridge. (a) Flux, represented by arrows, passes from the donor to the acceptor through
both particle- and hole-transfer configurations. Gray circles correspond to C1, C2, and C4 in Scheme 3 and emphasize the hole-transfer path, and
the dashed line indicates the flux axis used to analyze flux pathways. (b) Configuration-space potential contours corresponding to the nearer-
resonant D-B—A structure. The 2-D potential is constructed from the 1-D potential for the nearer-resonant bridge discussed in the text with a
donor-acceptor separatiofRpya, of 5.0 bohr; energy contours are-af.0, —6.8, and—11.0 hartree. The tunneling-state energy-i&50 hartree,

andV; andV; are saddle points for the particle and hole pathways.

SCHEME 4: Diagram of Particle and Hole Tunneling
Barriers for Nonresonant and Nearer-Resonant Bridges

D. Two-Electron Models: The Effect of Electron—
Electron Repulsion.We now want to examine how electron
electron repulsion affects both the magnitude of the electronic
factor and the transfer mechanism. We noted in the methods
section that results from model calculations includifge are
not directly comparable to results from the same calculation in
the absence of¥.—. because the inclusion of repulsion alters
the bound-state energy levels in the bridge, and we outlined an
approximation technique, using eq 10, by which we can
construct bridges that, in the presencevpf., are comparable
to a bridge in a system withoWe_.. The resulting bridge
eigenvalues, given for the four different bridges in Table 2, are
much closer to those of the same bridges in the absence of
repulsion than they would be without using this approximation.

Non-Resonant Bridge

The barrier to hole transfer
is much greater than the
barrier to particle transfer

\ Hole transfer
tunneling barrier

Particle transfer
tunneling barrier

Nearer-Resonant Bridge

Lower bridge state is
much closer in energy to

The quantitie®Eparn. — Ep/a andEnole — Epja, also in Table 2,
are the energy differences, respectively, between the particle
and hole configurations in Scheme 3 and the initial/final

donor/acceptor than for
non-resonant bridge. The
barrier to hole transfer is
similar to the barrier
to particle transfer

configuration. A comparison of the 2-D model with and without
Ve-e shows that these energy differences are very similar. In
parts a and b of Figure 6 we give the flux and potential for the
2-D nonresonant bridge model with a potential incorporating
Ve—e. Although the repulsion is clearly evident in the potential,

in ET with the nearer-resonant bridge. From the perspective of the f_qu sti_II passes predominantly through the particle-transfer
Scheme 4 it is apparent why hole transfer will never be the configuration.

single dominant transfer mechanism in superexchange; there is In the flux diagrams of Figures 4a, 5a, and 6a all of the net
no bridge configuration for which the barrier-to-hole transfer ET flux must pass through the 2-D flux axis depicted in Figure
is lower than the barrier-to-particle transfer as long as the 5a. We utilize this flux axis in Figure 7 to plot the total flux
occupied bridge levels are lower in energy than the denor magnitude at each point across the axis for ET transfer across
acceptor levels in which the transfer is occurring. We noted the nonresonant well, the nearer-resonant well, and two inter-
above how diagrammatic representations such as Schen®es 1 mediate cases wherein the more strongly bound bridge eigenstate
evoke a state-space image of superexchange that may bés gradually moving closer to the donor and acceptor. In Figure
misleading inasmuch as it suggests that the transferring electron/a there is no electrerelectron repulsion and the flux

(or hole) may be localized on the bridge during the ET when magnitudes for the near-resonant and nonresonant bridges
actually superexchange ET occurs via a delocalized intermediate. correspond to the fluxes from Figures 4a and 5a. In Figure 7b
Nonetheless, Schemes-3 are very useful for visualizing the flux magnitudes result from calculations includiige using
various issues related to superexchange ET, and Scheme 4ridges comparable to those used in the absence of repulsion,
provides a unifying glimpse at why (though schemes such asand the nonresonant flux magnitude corresponds to that of
Schemes 43 are useful in conceptualizing the transfer mech- Figure 6a. The logical expectation is that the addition of
anism) the contour plots in Figures 4b and 5b are the more electron-electron repulsion to the system should increase the
realistic way to view the problem. relative proportion of hole transfer, since the tunneling electron

Hole transfer
tunneling barrier

Particle transfer
tunneling barrier
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Figure 6. 2-D configuration-space ET for a nonresonant bridge where effects of eleetectron repulsion are included. (a) Flux, represented by
arrows, passes mostly through a particle-transfer configuration. (b) Configuration-space potential contours corresponding to the noriBsdghant D
structure. The 2-D potential (eq 10) with a doracceptor separation &pa = 5.0 bohr is constructed to mimic the bridge used in Figure 4 by
a technique described in the text using eq 10. Energy contours are.@t—6.8, and—11.0 hartree. The tunneling-state energy-i50 hartree,
andV; andV; are saddle points for the particle and hole pathways.

while the donor and acceptor remain essentially the same as in
the calculation withouVe—e. This means that there is less barrier
to ET (or a more attractive bridge potential) in the models with

fé o Nearer-fes. Ve—e. By looking at the normalized rather than absolute flux
517 & T~ 0| Int. 2 magnitudes, we can assign the slight but discernible quantitative
z Int. 1 enhancement of hole over particle transfer that appears in Figure
é _______ Non-Res. 7b to the effects oVe—e.

£

Zz

There is another possible transfer pathway that we have
neglected to mention so far and that is double excharge.
- the case of the 2-D system, double exchange amounts to the
0.0 0.7 14 21 28 bridge electron transferring to the acceptor while the donor
g4 (bohr) electron is simultaneously transferring to the bridge. In Figures

Figure 7. Relative proportion of particle and hole transfers as a function 4a anq 5a thls pathway corresponds t_o flux p assing directly along
of the bridge structure. Flux magnitudes are taken along flux axis @ Straight line from the donor configuration to the acceptor
defined byg, = —q, and indicated in Figure 5. (a) No electrealectron configuration (see bold dashed line in Figure 4a). Double
repulsion. (b) With electronelectron repulsion. exchange is a transfer mechanism that should be enhanced by
_ ) electron-electron repulsion for the same reasons we cite for
TABLE 3: Comparison of ET Rate for 2-D D—B—A hole transfer, a reason that is perhaps even more germane to
Systems Solved with and without Electror-Electron .
Repulsion double exchange. In Figure 7a the shape of the nonresonant
well flux magnitude along the flux axis has a slowly dying tail
along the part of the flux axis corresponding to double exchange

AEgi, 107% hartree

bridge withoutVe e~ withVee % difference (g1~ 1.4 bohr on the flux axis) indicating that some small flux
nonresonant 6.33 6.79 +7 contribution arises from double exchange, even without eleetron
Int. 1 6.74 7.56 +11 electron repulsion. For the realistic Coulomb electretectron
Int. 2 8.19 9.12 +11

repulsion in Figure 7b this contribution is not significantly
enhanced. We have found however that when a very high and
is now repulsive and could slightly increase the probability of physically unrealistic repulsion is chosen, a third discernible
the electron in the lower bridge state transferring to the acceptordouble exchange flux magnitude centroid arises between the
(producing a hole-transfer configuration). What we observe in hole- and particle-transfer centroids. Note that double exchange
Figure 7b is a slight increase in hole relative to particle transfer, occurs along the configuration-space path with the highest
compared to Figure 7a, which is primarily noticeable as the tunneling barrierVs in Figure 4b), and in regard to Scheme 4,
bridge is nearer resonance. Table 3 compares the electroniove see that double exchange is not an important transfer path
factor contribution to the ET rate with and withow for the because the tunneling barrier for double exchange is the sum
nonresonant, near-resonant, and two intermediate bridges conof both hole- and particle-transfer barriers.

sidered in Figure 7. In general, the electronic factor contribution  E. Three-Electron Models and ET Transfer Pathways:

to the ET rate for bridges withle_c is comparable to, but higher  Evolution of Path Multiplicity. From the 2-D configuration-
than, the ET rate for corresponding bridges in the absence ofspace system, we conclude that electretectron repulsion is
Ve—e. We expect this not from energy gaps, which all favor not of great importance in affecting the ET mechanism. To

near-resonant 13.40 13.24 -1

increased ET for the BB—A in the absence d¥.— (Table 2), further investigate the effect of multielectron effects on the
but rather from the lower eigenvalues resulting for the states transfer mechanism, we add another bridge to our system and
with Ve—e. The eigenvalues from calculations incorporatifage look at the configuration-space model results for the moiety

are lower because of changes to the bridge potential structure D—B—B—A, where the two bridge potentials are identical, each



Electron Transfer by Superexchange J. Phys. Chem. A, Vol. 103, No. 36, 1998355

0.1

a
) —0o— Nearer-Res. Bridge
w0 Non-Res. Bridge

0.014

0.001 4

AEsplit

0.0001 +

0.00001 4

1 2 3
(Rp,=2.5 bohr 5.0 bohr 7.5 bohr)

b)
Number of Electrons

A (Number of Configuration-Space Dimensions)
Mixed-Mode & Figure 9. AEgpi for nonresonant and nearer-resonant bridges as a

Transport i function of the number of configuration-space dimensions. The 1-D

; model potentials used to construct 3-D nonresonant and nearer-resonant

potentials are the same as those used in Figures 4 and 5, respectively.
Note that as the number of electrons in the model increases, the distance
between the donor and acceptor increases because bridge sites are added.

SCHEME 5: 3-D Configuration-Space ET Pathways

particle transport

9 hole transport

"\*" | Particle Transport W

4 Path mixed-mode transport

Path

Figure 8. 3-D configuration-space model results. The 3-D potential this reason, we refer to these transfer paths as mixed-mode
is constructed from the appropriate 1-D potentials as described in theransfer. This path multiplicity would make a larger, more

text, and the doneracceptor separation Bpa = 7.5 bohr. (a) 3-D . o - -
flux for a nonresonant bridge and 1-D parameters describing the bridge complicated system very difficult to analyze in terms of particle

are the same as in Figure 4. (b) 3-D flux for a nearer-resonant bridge @1d hole transfer by any of the popular pathway models and
and 1-D parameters describing the bridge are the same as in Figure 5may also pose a challenge to the formalism used in one-electron
(c) Diagram illustrating particle- and hole-transfer pathways in 3-D valence atomic orbital models. However, for long-range ET by

configuration-space. superexchange, both our model and others have indicated that
bridge has an electron in the lower energy orbitale is not the only major tran;fer path should be particle tran&fét.
included, and the 3-D potential is a sum of three 1-D potentials Nonetheless, there is at least one recent example of a large
much as the 2-D model potential was the sum of two 1-D biological electron-transfer model that is based on hole trans-
potentials. Parts a and b of Figure 8 shows the resulting 3-D fer®
tunneling flux from donor to acceptor for nonresonant and  An analysis of the nearer-degenerate case shows that there
nearer-resonant bridges, respectively, and Figure 8c illustratesare 2' nearly equivalent paths for electron transfer, wheis
the 3-D particle and hole-transfer configuration pathways. Again, the number of bridge sites. This is borne out by the results of
we see that the nonresonant bridge flux passes solely throughour model calculations. For a donor and acceptor with no
the particle-transfer configurations and that hole transfer only intervening bridge, there is2r one path. If one bridge site is
becomes significant for the nearer-resonant bridge system.added, there are now Br two major transfer paths (Figure 5a
Further, the only major path for the nonresonant bridge is and Scheme 2). Adding yet another bridge site result$ ior 2
particle transfer, but there is more than one major transfer pathfour major transfer paths (see Figure 8b). The enhanced rate of
for the nearer-resonant bridge. In fact, there is a multiplicity of transfer in the resonant bridge systems can be thought of in
paths for the near-resonant well. terms of this path multiplicity. Figure 9 compares the increase
The two main transfer paths in Figure 8b for the nearer- in AEsp; for the nearer-resonant bridge systems with several
resonant bridge represent hole- and particle-transfer paths. Oflow-barrier paths compared to the nonresonant bridge systems
the remaining two, neither are double exchange. Scheme 5in which there is only one low-barrier path. The observed
contains a graphical depiction of the hole- and particle-transfer increase in rate is withinr90% of what is predicted by the
pathway configurations as well as the configurations involved multiplicity of low-barrier paths. Also, we see that both lines
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