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We employ multidimensional configuration-space models to investigate the electronic factor that appears in
theories of electron transfer. Of particular interest is the electronic factor in models of long-range biological
electron transfer (ET), which is thought to occur via a bridge-mediated superexchange mechanism. The
configuration-space electron tunneling fluxes that we calculate give explicit information on the relative
importance of many-electron effects such as correlation and hole vs particle transfer. The results from our
models lead to a nonintuitive indication that simple state-space perturbation theory expressions for the electronic
factor can lead to incorrect interpretations of electron-transfer processes. In particular, we find that the exclusion
of lower-energy bridge bound states may misrepresent the bridge attractive potential and may result in significant
errors in the electronic factor contribution to the electron-transfer rate. The importance of the lower energy
bridge levels in describing the tunneling state does not, however, imply that hole transfer is important. We
find that through-bond electron tunneling interactions are more reliably viewed in terms of the tunneling
barrier (using WKB theory) than in terms of the energy gaps between the tunneling electron and the respective
bridge bound and virtual states (i.e., a second-order perturbation theory perspective). In the present
superexchange models we find no instance in which hole transfer dominates the ET mechanism; however, as
the energy level of a bridge eigenstate approaches that of the donor-acceptor, we find that multiple transfer
pathways are simultaneously possible. Finally, results from these models suggest that the effects of electron-
electron repulsion are small and relatively unimportant.

I. Introduction

Despite recent efforts toward attaining accurate electron-
transfer (ET) rate predictions for the photosynthetic reaction
center (PRC) and analogous biological ET reactions, the precise
manner in which many of these types of ETs occur is still not
known.1-9 Nonetheless, the prospect that new device and
synthetic technologies can be developed for use in artificial
photosynthesis and biocatalysis ensures that the drive for
biological ET rate prediction will continue unabated.10-17 For
long-range biological ET reactions in which neither the donor
nor acceptor are closely coupled to the facilitating bridge, i.e.,
a nonresonant process, it is generally agreed that ET occurs
through a mechanism of superexchange.1 This process is
typically viewed as one in which the coupling between the donor
and acceptor is not direct and in which the electronic orbitals
of the donor and acceptor complexes do not overlap. The
distances between redox centers in the PRC are large, up to
∼10-20 Å, a circumstance in which we would expect the
probability for tunneling to be low for ET across empty space.
In proteins, however, the molecular structure intervening
between the donor and acceptor is comprised of a series of
bridging atoms that in the standard picture is thought to provide
a sequence of overlapping orbitals that give rise to coupling
between the donor and acceptor complexes. Experimental
observations suggest that there are a number of biological ET
systems, including the PRC, that can be described in this
fashion.8 In such systems the ET rate is controlled in whole or
part by the electronic properties of the protein scaffold, or bridge,

intervening between ET donor and acceptor sites. The net effect
of these electronic properties is typically distilled into a single
ET tunneling matrix element, also called the electronic factor,
the further understanding of which is the topic of this work.

Modeling the ET process is not only important from the
standpoint of predicting which molecular structures will exhibit
the desired ET rate but it is also important to understand how
and why the process occurs. From a theoretical standpoint, ab
initio methods provide the most accurate avenue for determining
tunneling matrix elements. However, these calculations are often
computationally untenable for systems in the 102+ kDa size
range of many proteins. Some efforts are underway to develop
ab initio methods that can accommodate very large systems,18

but most work on large systems to date has relied upon
simplifying approximations to reduce the size or extent of the
calculation.5 Often these assumptions reduce the problem to a
two-state or few-state one-electron model, reminiscent of one
of the earliest models of superexchange, the McConnel model.19

Also, many models employ the tight binding approximation in
which each bridge site only has nonnegligible interactions with
its nearest neighbor. Although modern ET models on biological
systems, systems that necessitate the model being large, have
progressed substantially since the McConnel model, the dis-
crepancies still observed between experimental and theoretical
long-range biological ET data indicate that there is significant
room for improvement.20-24 One possibility for scrutinizing ET
models, a strategy we pursue here, is to see how conventional
approaches used in large electronic factor models fare when
applied to smaller systems for which analytic solutions exist.25-27

Certainly, it is reasonable to infer that an approximation* To whom correspondence should be addressed.
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deleterious to accurate results for a small system will be less
valid for a large system of much greater complexity, such as
the PRC.

Another common feature in large biological ET models is
the use of state-space descriptions, or valence atomic orbital
(VAO) models, in which the tunneling electron is described
mathematically, for instance, in terms of a linear combination
of states. In these state-space descriptions the exact identification
of the electron-transfer mechanism may not be transparent
because this linear combination, or mixing of states, leads to
ambiguity in identification of transfer pathways.1,4,5,7The desire
for a more explicit, less ambiguous expression of transfer
mechanism has been a motivating force in the development of
pathway methods;28-32 still, many of the pathway models are
semiempirical in nature and have not yielded the kind of
mechanistic information necessary for design of biomimetic ET
complexes. Two new applications to address this need for
mechanistic tracking are the use of electron-transfer contact
maps33 and tunneling currents,34,35both of which provide more
detailed information than the conventional state-space picture
from valence atomic orbital models.

Three of the ideas expressed above formed the basis for the
current study: (1) the effect of simplifying approximations on
a smaller model can be compared to the exact solution as a test
of their validity; (2) smaller models provide a context from
which to view and test methods applicable to larger models;
(3) a spatially explicit perspective yields more useful mechanistic
information about electron transfers. The electron-transfer model
we describe below is a one- to many-electron configuration-
space model. One important and novel aspect of this work
compared to other work in the literature is that by combination
of the configuration-space approach with the method of tun-
neling fluxes, the ET process may be explicitly describedand
Visualizedin terms of the electronic structure of the bridge; i.e.,
which electronic configurations of the bridge are important to
the ET process. One issue that we have addressed in this way
is the relative importance of particle vs hole transfer in the ET
process. In previous often-cited papers on biological ET, the
ET process is modeled by either particle or hole transfer.31,36

The current results illustrate how a path multiplicity may arise
in which particle, hole, and mixed-mode transfers may occur
simultaneously. Here, we coin the terminology “mixed-mode”
transfer to describe a transfer process that other ET literature
to our knowledge does not address but that the visual nature of
the current results illustrates to be important in some cases.

Two simplifying assumptions used in large biological ET
models involve the use of one-electron models neglecting
electron-electron correlation and the use of reduced state-spaces
wherein some or many of the bridge electronic states are in
some manner deemed unimportant to the ET process and not
included in the model as a result.5 This paper addresses both of
these issues. With respect to one- vs many-electron models in
the context of biological ET, several authors have made the
case that a one-electron model is sufficient.1,37,38For three spatial
dimensions, visualizing results from a two-electron model
effectively requires six dimensions, a conceptually difficult
prospect. Alternatively, by use of one spatial dimension, it is
much easier to directly visualize how electron-electron cor-
relation affects tunneling, and we provide an example of this
in the results below. Although spatially one-dimensional models
are not directly comparable with more realistic models that are
spatially three-dimensional, there are nonetheless important ET
processes that occur by tunneling and that are well represented
by spatially one-dimensional models. In particular, Heifets et

al. have modeled simple linear chains of atoms as quasi-one-
dimensional systems.39 The results that we discuss here indicate
that a one-electron model is sufficient to determine the electronic
factor contribution to the ET rate.

The other simplifying assumption we address here, how
leaving some of the bridge electronic states out of the model
affects the electronic factor portion of the ET rate, has thus far
been employed in part as a way to make calculations on large
biological systems more tenable, since the size of the system is
directly related to the difficulty of modeling it. In a recent review
of biological ET, Beratan and Onuchic8 have commented that
caution must be exercised in excluding selected states from
models of ET systems. In this work we look at the effect of
excluding selected states from the model and find that such a
practice may often result in a calculated electronic factor and
hence ET rate, which is too low. When examining the causative
factors of this result, we find that the exclusion of certain states
results in a misrepresentation of the attractive nature of the
bridge, or in other words increases the effective tunneling
barrier, leading to a diminution of the electronic factor. This in
turn suggests that conventional VAO perspectives (e.g., Ray-
leigh-Schrodinger perturbation theory) are subtly related to the
Wentzel-Kramers-Brillouin (WKB) barrier perspective. The
states that cause the greatest misrepresentation of the electronic
factor are not intuitive from the VAO perspective; whereas in
the VAO perspective the uppermost bridge states are deemed
important in many particle-transfer ET models,40,41we find that
exclusion of the lower bridge states causes problematical
misrepresentation of the attractive nature of the bridge. Similarly,
the transfer mechanism (particle, hole, mixed-mode) is related
to the overall barrier height rather than the energy difference
between the tunneling electron and the highest occupied
molecular orbital (HOMO) or lowest unoccupied molecular
orbital (LUMO), the latter being the standard VAO viewpoint.
The relationship that we show between the WKB and VAO
perspectives and how individual states affect the bridge role in
ET has, to our knowledge, not previously been illustrated. In
the next section, we briefly describe the quantum mechanics
involved in ET processes such as superexchange, i.e., processes
for which the rate expression is given by Fermi’s Golden rule,
and in a subsequent methods section we give technical details
of how the present models are constructed. These sections are
followed by a discussion of the results in which the main
findings and their implications to biological ET are discussed
in detail.

II. Quantum Mechanics of Electron Transfer

Within the Born-Oppenheimer approximation electron trans-
fer is described theoretically in the same fashion as any other
chemical reaction. The nuclei move on one adiabatic potential
energy surface that connects the donor and acceptor states and
with the rate being determined by features of that potential
energy surface. However, when the transition state between the
donor and acceptor states is characterized by a weakly avoided
crossing or when the donor and acceptor states are not on the
same adiabatic surface, as in the inverted region of electron
transfer, the Born-Oppenheimer approximation is not a good
approximation and nonadiabatic processes must be considered
to understand the electron-transfer process. Such a situation is
typical in superexchange ET, and the preponderance of biologi-
cal ET models are based on a nonadiabatic process. Usually
the nonadiabatic processes are described using diabatic states.
The diabatic states can be thought of as a set of electronic
states of the system that can be written as linear combinations
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of the complete set of adiabatic electronic states. There are
various prescriptions for constructing these diabatic states that
typically yield states with the following characteristics: (1) the
diabatic states cross (i.e., are degenerate) at a geometry that is
close to the geometry where the adiabatic states had an avoided
crossing; (2) the diabatic states are localized with one state being
a good description of the initial donor state and the other of the
final acceptor state; (3) the diabatic states change slowly as a
function of the position of the nuclei in the region of the
crossing.42

In terms of the diabatic states, the electron-transfer rate
expression for nonadiabatic electron transfer is given in first-
order time-dependent perturbation theory by

whereHDA is the electronic coupling matrix element between
the diabatic donor and acceptor states andFFCWD is the Franck-
Condon weighted density of vibronic acceptor states at the
energy of the donor state. Often the diabatic states are not
orthogonal. In that case the electronic coupling matrix element
is given by43

where |ψD〉 is the diabatic donor state,|ψA〉 is the diabatic
acceptor state,Etun ) 〈ψD|H|ψD〉 ) 〈ψA|H|ψA〉 is the energy of
the tunneling state,SDA ) 〈ψD|ψA〉, andH is the total electronic
Hamiltonian of the system. Note that this formula reduces to
HDA ) 〈ψD|H|ψA〉 for the case of orthogonal diabatic states.

If the transition state occurs at a geometry where the donor
and acceptor sites are equivalent, then there is a very simple
choice for the diabatic states. The diabatic states can be
constructed from the plus and minus linear combinations of the
adiabatic states, where the adiabatic states are symmetric and
antisymmetric with respect to a symmetry operation of the
molecule that interchanges the equivalent donor and acceptor
sites. If the energy of the adiabatic states areEa and Eb, the
electronic coupling matrix element between the corresponding
diabatic states is then

Equation 3 reveals that the splitting is indirectly related to the
ET rate through the electronic factorHDA.

There are a number of methods that have been used to
compute the electronic factor for real systems. One class of
computations uses self-consistent field (SCF) ab initio calcula-
tions where the diabatic states are obtained by solving for
approximate localized SCF states either with or without a
perturbation to localize the states. These calculations incorporate
the full many-electron nature of the electronic state and have
yielded coupling matrix elements that seem to be in good
agreement with experimental data.1,18,40To study larger systems,
investigators have employed more approximate calculations,
usually invoking a single-particle approximation, i.e. assuming
that the tunneling matrix element can be obtained by solving a
Schrödinger equation that only contains the motion of a single
electron moving under the influence of an interaction poten-
tial.36,37,41,44 Once a single-particle Schro¨dinger equation is
assumed, then it can be solved by direct diagonalization, using
perturbation theory using expressions40 similar to

or a corrected version of perturbation theory as proposed by
Katz and Stuchebrukhov.45

Newton1 has described how it is possible to reduce what is
at its most basic level a many-electron problem to a single-
electron problem. He describes two possible cases. First, if the
electron transfer is truly a single-particle process, with all of
the electrons in the intervening medium (the bridge) not
participating in the process, then the single electron can be
thought of as moving in the mean field of the other electrons.
This type of electron transfer is referred to as particle transfer.
The other possibility is if the electrons of the bridge do
participate. Then if one assumes that all of the electronic
configurations that contribute to the electron-transfer process
are just singly excited configurations relative to the donor initial
electronic configuration, it is possible to show again that the
many-electron Schro¨dinger equation can be transformed into a
single-electron Schro¨dinger equation with an appropriate inter-
action potential. Such a process is referred to as hole transfer.

In this paper we will show that when hole transfer is
significant, as determined by the probability fluxes, then a
multiplicity of mixed-mode pathways will also be important,
which cannot be described by single excitations relative to the
donor state. Thus, the single-particle picture will not be valid
when there is hole transfer. Another point we will graphically
illustrate here is the difficulty in qualitatively interpreting a state-
space solution of the electron-transfer problem. To answer
questions concerning the impact that various parts of the bridge
has on electron transfer, it is necessary to use a state-space
expansion with localized nonorthogonal basis functions. As has
been shown by Priyadarshy et al.,46 it is essential to correctly
treat the nonorthogonal nature of the basis set to obtain the
correct electronic-coupling matrix element. The interpretation
of wave functions constructed from such a basis set in terms of
the expansion coefficients is ambiguous. In particular, if a
tunneling state is seen to have a nonzero coefficient for a lower
energy occupied bridge state, it is usually assumed that this is
an indication that hole transfer is important in the electron-
transfer process. The results presented here suggest that a better
interpretation of such a wave function is that the tunneling state
must be orthogonal to the occupied bridge state, and in a
nonorthogonal basis set this necessarily requires a mixing of
the bridge state with the tunneling state. Thus, the presence of
a nonzero mixing coefficient with a bridge state does not imply
the participation of that state in the tunneling process.

Although this brief review of quantum mechanical ET models
has centered on the prevalent valence atomic orbital approach,
the results from our configuration-space models have equally
important implications for pathway models, which we discuss
below. Another view on how to quantify the electronic factor
is the barrier or WKB model. In the WKB model the tunneling
matrix element is wholly dependent on the net potential barrier
that the tunneling electron must traverse to reach the acceptor;
considerations of the bridge electronic state energetics are
irrelevant, and the sole utility of the bridge in promoting
electron transfer lies in the effect the bridge nuclear potential

kET ) 2π
p

|HDA|2FFCWD (1)

HDA )
〈ψD|H|ψA〉 - EtunSDA

1 - SDA
2

(2)

2HDA ) Eb - Ea ) ∆Esplit (3)

HDA )

∑
Bocc

(〈ψD|VC|ψBocc
〉 - EtunSDBocc

)(〈ψBocc
|VC|ψA〉 - EtunSBoccA

)

Etun - EBocc

+

∑
Bunocc

(〈ψD|VC|ψBunocc
〉 - EtunSDBunocc

)(〈ψBunocc
|VC|ψA〉 - EtunSBunoccA

)

Etun - EBunocc

(4)
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has in lowering the tunneling barrier. The standard rate
expression for the WKB model47 is

whereV(q1) describes how the barrier shape varies with the
spatial coordinate, and we will refer to the WKB exponent
defined here asΛ. The WKB picture of ET can be viewed in
the context of the VAO approach in a manner that we
demonstrate in the results section.

III. Configurations-Space Model and Computational
Methods

The central idea motivating our development of the present
configuration-space model is that these models have significant
advantages in visualizing the ET problem and hence in
understanding explicitly the role of the bridge. Here, we will
consider models in which each dimension represents an
independent electron. To implement our configuration-space
model computationally, we begin with a distributed Gaussian
basis (DGB),48 {|φi〉}, and an electronic Hamiltonian given by

whereN is the number of electrons in the system. In eq 6 each
electron in the system is another dimension in the configuration-
space model and is represented by the coordinateq rather than
by x, y,or z to emphasize that the dimensionality of the model
is related to the number of electrons in the system rather than
to the spatial dimensions represented by Cartesian coordinates.
The potential in the Hamiltonian is based on model Gaussians
simulating the attractive potentials of the donor, acceptor, and
bridge sites. The form of the 1-D potential is

where

n is the number of bridge sites, andR is the distance between
donor and acceptor.

To obtain the electronic factor for the model system, we
construct the Hamiltonian matrixHij over the DGB where the
indicesi andj indicate the DGB basis, symmetrically orthogo-
nalize the basis set, transformHij into Hab in the symmetrically
orthogonal basis, and then diagonalizeHab to obtain the
eigenvalues and eigenvectors. The energy difference between
the quasi-degenerate donor acceptor states is∆Esplit and is related
to the electronic factor by eq 3. These solutions to the problem
in one spatial dimension and for one electron, designated{|øa〉},
are very accurate solutions of our model problem. For the
donor-bridge-acceptor potentials in our models, we find that
approximately seven functions/bohr are required to converge
the 1-D eigenvalues to∼10-10 hartree, given an exponent of

15.00 for each Gaussian function in{|æi〉}. For the potential,
usingcD ) cA ) -6.5,cB ) -11.0, andâD ) âA ) âB ) 5.0
produces quasi-degenerate donor-acceptor values that are
between and well separated from the two bridge eigenvalues,
and for this reason we refer to this particular bridge as the
“nonresonant bridge” below.

In addition to the exact solutions, we also considered solutions
of our 1-D model problems in which we used a truncated basis
set where each basis function was a solution to the 1-D problem
with only one Gaussian potential well present (i.e., donor or
acceptor or bridge only). These single-well solutions were then
combined to solve the full multi-well D-B-A problem. This
truncated basis set for our model problem is analogous to atomic
centered basis sets used to solve the electronic structure in more
realistic calculations of the ET electronic factor. Since we
ultimately wanted to compare the VAO perspective to the WKB
or barrier perspective, we used the formula

where Nφ is the number of DGB functions andNtrunc is the
number of states in the truncated basis, to see what approximate
effective potential results from the truncated basis. Inserting this
potential into the 1-D Hamiltonian will yield the same eigen-
values as the full potential when the Hamiltonian is solved in
the same truncated basis set as is used to constructVeff. This
potential thus gives a way of visualizing how truncations of
the basis set modify the underlying problem.

As electrons are added to the donor-bridge-acceptor system,
this corresponds to adding dimensions to the configuration-space
model. This enables us to add an electron-electron repulsion
term, Ve-e, to the Hamiltonian. ForN-dimensional solutions
(whereN is the number of electrons andN > 1) includingVe-e,
we perform a self-consistent field (SCF) calculation to find the
N-dimensional wave functions for the ground-state configuration
||ø1‚‚‚øN|〉0. This N-dimensional ground-state wave function
contains an electron in the lower level of each bridge site plus
one electron in the tunneling state. By removing the tunneling
electron from the antisymmetrized, high-spin||ø1‚‚‚øN|〉0, we
can construct a set of improved virtual orbitals (IVOs) for
electronic states in the presence of an occupied bridge. Kurnikov
et al.40 have used the IVO method in models of intramolecular
ET in a bimetallic system and have found that this methodology
provides a better description of excited states of the system.
Construction of the IVOs results in a new set of one-electron
states,{|øa

IVO〉} that we use in configuration state functions
(CSFs) composed of antisymmetrized direct products of IVOs,
or {||ø1

IVO‚‚‚øN
IVO|〉}. A few of these one-electron IVO states are

bound orbitals, but the majority of them are continuum functions
that, when included in the set of CSFs, contribute little to the
CI results but increase the cost of the computation greatly. Thus,
we choose a subset of these states, indicated by the indexS,
and compute CI eigenvalues of the fullN-dimensional Hamil-
tonian using the linear variational method and{||ø1

IVO‚‚‚
øN

IVO|〉s}.
To consider the effect ofVe-e, we constructed a delocalized

Coulomb potential from a linear combination of three Gaussian
functions,

and add this to the Hamiltonian. We then solve the correspond-

kET
WKB ∝ exp[- 2

p
∫q1

i

q1
f

{2[V(q1) - Etun]}
1/2 dq1] ) e-ΛR (5)

H ) ∑
i)1

N (-
1

2

∂
2

∂qi
2

+ V1D(qi)) (6)

V1D ) VD(q1) + VA(q1) + ∑
R)1

n

VB(QR,q1) (7a)

VD(q1) ) -cD/A exp{-âD/A(q1 - R/2)2} (7b)

VA(q1) ) -cD/A exp{-âD/A(q1 + R/2)2} (7c)

VB(QR,q1) ) -cB exp{-âB(q1 + QR)2} (7d)

QR ) ( R
n + 1

- 1
2)R (7e)

Veff ) ∑
i,j

Nφ

∑
a,b,c,d

Ntrunc

|φi〉〈φi|øc〉(S
-1)ca〈øa|V|øb〉(S

-1)bd〈ød|φj〉〈φj| (8)

Ve-e(q1,q2) ) ∑
n

cn e-ân(q1-q2)2
(9)
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ing Schrödinger equation as described in the paragraph above.
The coefficients and exponents of the three Gaussians used to
construct the approximate 1/r Coulomb potential arec1 )
19.218,c2 ) 2.660, andc3 ) 0.754 andâ1 ) 58.501,â2 )
2.598, andâ3 ) 0.0910, respectively. The results from calcula-
tions includingVe-e are not directly comparable to results from
the same calculation in the absence ofVe-e because the inclusion
of repulsion alters the bridge eigenstate levels. To obtain a bridge
electronic structure with eigenstates close to those of the bridge
in the absence of repulsion, we subtract terms of the formJB -
K̃B at the same time as we add in theVe-e repulsion. The term
JB is the Coulomb integral, which gives the interaction of the
tunneling electron with an electron in the state used to construct
the IVOs (i.e., a state wherein bridge sites have an electron in
the lower energy state), andK̃B is a local approximation to the
exchange interaction with an electron in the same state. Thus,
our 2-D potential that includes electron-electron repulsion has
the form

The exchange integrals are approximated by the diagonal
elements of their respective matrices in the DGB. TheJB and
K̃B approximations are also expressed as the linear combination
of three Gaussian functions. Table 1 gives a description of the
coefficients and exponents used to approximateJB andK̃B for
four different 1-D bridge potentials used in the two-electron
models discussed in this work. InV1D, the same value ofâ is
used for all bridges (5.0), and intermediate bridge 1 (Int. 1),
intermediate bridge 2 (Int. 2), and the nearer-resonant bridge
have cB ) 9.5, cB ) 8.5, andcB ) 7.5, respectively. After
obtaining expressions forVe-e, JB, andK̃B, we may perform a
calculation withVe-e that will be comparable to the calculation
without by subtracting the approximateJB - K̃B from the 1-D
potential at the outset of the calculation.

To fully realize the advantages of the configuration-space
model, we need to calculate tunneling fluxes. To do this, we
first use the delocalized symmetric and antisymmetric CI
solutions (|Ψ+〉 and |Ψ-〉) to construct localized donor and
acceptor CI wave functions

Using |ΨD〉 and |ΨA〉, we calculate the donor-to-acceptor
tunneling flux from the relation

wheret is time and the wave functions are real.

IV. Results and Discussion

A. Effect of Excluding Selected Bridge States from the
Model. We discussed above how in models of large biological
systems some states may be excluded from the model. We begin
by using the simple 1-D model to see what effect this type of
approximation has on the electronic factor by comparing
approximate results to exact results for the same system. We
begin by considering a simple donor-bridge-acceptor (D-
B-A) system described above where the bridge is nonresonant;
i.e., the bridge bound states are well separated from those of
the donor and acceptor. In the present case, because we are
considering a model system, what is meant by the terms donor,
bridge, and acceptor is somewhat abstract. We want to address
issues in how large-scale models of biological ET are con-
structed, and many large-scale biological models describe
systems in which two metal centers with near-degenerate d
levels are separated by a nonmetal protein matrix that has bound
states above and below the d levels but no bound states that
are energetically near the d levels.37 Examples of similar but
smaller ET systems are also common and include the system
studied by Kurnikov et al. in which an Ir donor atom transfers
an electron to an Ir acceptor atom through a covalently bonded
pyrazolate bridge, and a separate work of ours in which we
look at the electron transfer from an iron donor to an iron
acceptor through a nonbonded water bridge. Thus, the models
constructed here utilize quasi-degenerate donor and acceptor
states that are energetically well separated from the bridge bound
states. Scheme 1 depicts the potential for the D-B-A system
with a nonresonant bridge in which the diabatic donor and
acceptor bound states have a binding energy of-3.4 hartree
and the upper and lower bound states for the isolated bridge
are at-0.6 and-6.7 hartree, respectively.

In Figure 1 the electronic factor∆Esplit, which is directly
related to the electronic factor portion of the ET rate, is plotted
as a function of the distance between the donor and acceptor
for both exact and approximate solutions of the DBA system
in Scheme 1. In this calculation, we first obtain the exact solution
and then compare this to solutions that include only selected
bound states in the model per the description of the truncated
basis in section III. The “approximate” solution using all four
bound states is the same as the exact solution in Figure 1 to the
scale resolvable on the graph, and both of these are given by
the solid line. If we selectively exclude bound states from the
calculation, we begin to see some interesting effects. In Figure
1 we see that the splittings found by excluding the higher energy
bridge bound state compare reasonably well to the full solution,
but if the lower energy bridge state is excluded, the accuracy
of the splitting compared to the exact solution is significantly
compromised and is nearly the same as that of a donor-acceptor
system with no promoting bridge whatsoever, i.e., the bottom-
most line in Figure 1. Also in Figure 1 we see that even if no

TABLE 1: Expansions of the J and K̃ Integrals Used to
Construct V2D As Given in Eq 10a

bridge description

nonresonant Int. 1 Int. 2 nearer-resonant

J1, c/â 4.991/6.165 4.671/5.860 4.420/5.639 4.003/5.483
J2, c/â 2.987/1.951 3.053/1.897 3.103/1.852 3.248/1.846
J3, c/â 0.755/0.0902 0.755/0.0902 0.756/0.0901 0.770/0.0905
K̃1, c/â 3.644/8.412 3.418/7.989 3.256/7.676 4.450/6.577
K̃2, c/â 4.096/4.842 3.951/4.478 3.870/4.189 2.786/2.979
K̃3, c/â -0.370/2.335 0.430/2.129 0.433/1.912 0.0155/0.147

a The Gaussians used to expand theJ andK̃ operator are centered at
the center of the bridge well.

V2D ) V(q1,q2) ) V1D(q1) + V1D(q2) + Ve-e(q1,q2) -
(JB(q1) - K̃B(q1)) - (JB(q2) - K̃B(q2)) (10)

|ΨD〉 )
|Ψ+〉 + |Ψ-〉

x2
and |ΨA〉 )

|Ψ+〉 - |Ψ-〉
x2

(11)

j i(q1‚‚‚qN,t) ) (Ψ- dΨ+

dqi
- Ψ+ dΨ-

dqi
) sin(t∆Esplit) (12)

SCHEME 1: Potential Structure for Donor -Bridge-
Acceptor System with the “Nonresonant” Bridge
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bridge states are explicitly included and we use only the donor
and acceptor states, the splitting is enhanced by the presence
of an attractive potential between the donor and acceptor centers.

To place the results in Figure 1 in the context of large ET
models for protein systems where a limited state-space is chosen
in order to make such models tractable, we consider the example
of the work by Kuki and Wolnyes.31 These authors used
repulsive pseudopotentials to produce bridge sites each of which
had only one bridge bound state that was higher in energy than
the bound donor-acceptor. The use of the pseudopotential not
only reduced the size of the calculation by reducing the number
of bridge states that needed to be included, but it was also
necessary to successfully implement the pathway model used
by the authors. Pseudopotentials often fail to capture the essence
of the very attractive nuclear potential, and we believe their
use should be approached with caution in these types of
problems. Using the analogous practice in Figure 1, i.e.,
including only the most loosely bound bridge state, produced a
splitting that was the same as that for ET without the promoting
effect of the bridge (lowest line, Figure 1). We conjecture that
this drastic underestimation of the electronic factor arises in
part because of the effective exclusion of important parts of
the bridge attractive potential when the strongly bound state is
excluded, much like the repulsive core pseudopotential of Kuki
and Wolynes does not support any bound states below the
donor-acceptor energy level.

To find out more about the effect of the approximations
discussed in Figure 1, we used eq 8 to calculate the effective
potential, Veff, for each approximate solution and plot the
diagonal elements inVeff as a function ofq1 in Figure 2. The
effective potential gives a way of visualizing how excluding
selected states from the model modifies the underlying ET

process. A look at Figure 2 immediately reveals the reason some
approximations are better than others. The approximate solution
using all four bound states in the model has an effective potential
that is, to the scale of the graph, the same as the exact potential.
When the higher energy bridge state out of the calculation is
left out, the effective potential exhibits a slightly higher barrier
around the bridge, and this lowers the splittings for this
approximation in Figure 1, a result that would lead to inac-
curacies in the calculated ET rate. Excluding the lower energy
state from the model results in an effective potential that fails
to represent the attractive nature of the bridge, has a much higher
barrier to tunneling, and produces an electronic factor that is
much too low. AlthoughVeff is only an approximate localized
potential, Figure 2 gives an excellent qualitative picture of how
excluding selected states from the model (or analogously, use
of a repulsive core pseudopotential) may fail to represent the
critical aspect of the deeply attractive bridge potential that
promotes long-range ET.

B. Comparison of Model Results to WKB Predictions.The
idea that excluding selected states from the ET model might
deleteriously affect the calculated ET rate because it implicitly
excludes some of the bridge attractive potential has direct
implications for barrier, or WKB, models of tunneling. Figure
3 shows how the exact results from this model compare to WKB
predictions using eq 5. We find that the barrier model predictions
are in excellent agreement with our model results, even though
our system may not strictly adhere to the qualifying assumptions
pertinent to the WKB model49 (i.e., that the potential varies
slowly and that the two turning points be well separated). This
agreement between our model results and WKB theory predic-
tions is excellent for variations in the flat barrier between donor
and acceptor, when only the distance between donor and
acceptor is varied (Figure 3a). The agreement is still good but
less quantitative for variations in the curved barrier between
donor and acceptor (Figure 3b), in other words when new
bridges are added between the donor and acceptor. This is
probably because in this latter case the potential is not varying
slowly. Of course, the simple barrier model is one of the oldest
and most thoroughly considered ET models, and as such, it is
generally agreed to be inadequate of itself as a predictive basis

Figure 1. ∆Esplit as a function of donor-acceptor separation,RD/A,
and the effect of excluding selected bridge states. Including both bridge
states (solid line) is the same as the exact solution to within the scale
of the graph, but, by comparison, excluding either of the bridge states
results in errors in the electronic factor.∆Esplit obtained using only the
upper bridge state and∆Esplit with no bridge give the same results to
within the scale of the graph and are represented by a single line.

Figure 2. Diagonal elements ofVeff, the effective bridge potential, as
a function of the bridge states used in the simplifying approximation.
Veff is defined in eq 8.

Figure 3. Configuration-space model results showing the effect on
∆Esplit of increasing (a) the flat and (b) the curved barrier in the space
between donor and acceptor. To the right of each graph the slope of
ln(∆Esplit) as a function of the distance between the donor and acceptor
is compared to the slopeΛ predicted by WKB theory using eq 5.∆R
is the distance between centers of neighboring wells.
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for modeling bridge-mediated ET in proteins; other important
factors that a model must incorporate are symmetry and the
interference between through-bond and through-space transfer
paths.25,42,50-52 The model system that we are treating here
considers through-bond interactions, and we treat the other topics
in a separate work.53 However, for the through-bond interactions
that we are treating here, the attractive potential of the bridge
is the major rate-determining consideration. The other factors
we mention (e.g., interference) are typicallyrate-Vitiating
considerations that are not inimical to the basic idea that the
bridge attractive potential is the major promoting factor in
biological ET by superexchange. We expect that for some
complex protein systems the donor-acceptor separation is
sufficiently great that there is no competitive or interfering
through-space path and that the electronic factor contribution
to the ET rate is as simply predicted by the barrier structure as
the WKB model would suggest.

C. Two-Electron Models and ET Transfer Pathways:
Particle vs Hole? So far, we have considered results from a
system in which the only particle influencing the tunneling rate
is the tunneling electron. By increasing the number of interacting
electrons in the system, we can utilize our configuration-space
model to look at the effects of electron-electron repulsion,Ve-e,
and competitive transfer pathways in configuration-space.
Additionally, we can look at the issue of particle vs hole transfer.
To first look at the particle vs hole transfer issue, we begin
with the simple 2-D system depicted in Scheme 2 in the absence
of electron-electron repulsion (Ve-e ) 0). Scheme 2 illustrates
the difference between these two transfer mechanisms; both
particle and hole transfer have the same initial and final states,
but the facilitating role of the bridge is very different in each
case. It is important to note here our use of the phrase
“facilitating configuration”. The D-B-A configurations such
as those in Scheme 2 lend the impression of chemical
intermediates in which a transferring electron or hole may be
localized on the bridge; however, these schemes are meant to
aid the reader’s understanding of how the model works, not to
represent how superexchange ET occurs. The bridge configura-
tions are useful to identify the manner in which the bridge
mediates the ET transfer process, but the process itself is not
affiliated with sequential electron or hole hopping and should
instead be viewed as an electron probability leak that flows from
the donor into the acceptor via the bridge and as a result of the
facilitating configurations that the bridge enables.

In Scheme 2 the bridge configuration that facilitates particle
transfer results when an electron is added to the higher energy
bridge site, or the site corresponding to the LUMO in molecular
systems. In contrast, the bridge configuration that facilitates hole
transfer results when an electron is removed from the lower

energy bridge site, or the site corresponding to the HOMO in
molecular systems. Because tunneling matrix element expres-
sions based on second-order perturbation theory contain
terms such as (Etun - EB)-1, an electronic energy gap, the
importance of particle transfer is usually interpreted in terms
of the energy gap between the protein bridge’s LUMO andEtun

(i.e., (Etun - EBunocc.)-1; see eq 4). Likewise, the importance of
hole transfer is usually interpreted in terms of the energy gap
between the protein bridge’s HOMO andEtun (i.e., (Etun -
EBocc.)-1; see eq 4). The usual conclusion is that particle transfer
dominates over hole transfer when the tunneling energy,Etun,
is closer to the protein bridge LUMO than it is to the HOMO,
and this type of analysis may even extend to other formalisms
for ET models.26,29,40,41We propose that this perspective is
misleading and will examine the question more fully in our
model.

Scheme 3 illustrates how the configuration-space model can
be visualized for a 2-D model system. In this model each
dimension represents an independent electron. Hence, when
electron 1 is in the lower level of the bridge well and electron
2 is in the acceptor well, the wave function is localized in the
region C2 of the 2-D space as indicated in Scheme 3. The value
of this configuration-space approach will be apparent when we
look at tunneling fluxes because this model enables us to trace
the configuration pathways through which electron transfer
occurs. In both Schemes 2 and 3, only two electrons are shown
in the donor-bridge-acceptor complex. In practice there are
many more electrons in the system, but core and inner valence
electrons do not typically enter into thermal or photoinduced
ETs.

Parts a and b of Figure 4 show the donorf acceptor flux
for a bridge structure such thatEpart. - ED/A ≈ ED/A - Ehole,
and the configuration-space potential, respectively. The quanti-
ties Epart. and Ehole are the energies of the states representing
particle and hole-transfer facilitators, respectively (see Scheme
2), andED/A is the energy of the initial/final state, which, as
previously mentioned, has the same configuration regardless of
the transfer mechanism. The multidimensional configuration-
space model potential is the sum of the independent 1-D
potentials from eq 7a. In this case the energy of the tunneling
electron is approximately halfway between and well separated
from the energies of the bridge HOMO and LUMO, i.e. the

SCHEME 2: Bridge-Dependent Mechanism of
Superexchange

SCHEME 3: 2-D Configuration-Space Model
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nonresonant bridge. The 2-D CI eigenvalues and the energy gaps
Epart. - ED/A andEhole - ED/A are in Table 2. Essentially all of
the tunneling flux in Figure 4a is passing through the particle-
transfer configuration (region C3 in Scheme 3), and in Figure
4b it is apparent that this bridge configuration represents a
strongly attractive intermediate with a low-energy transition state
designatedV1 in the figure. Note that the 1-D model potential
on which the 2-D model is based has a tunneling barrier. In
Figure 4b, there is no barrier to tunneling along each 1-D leg
of the particle-transfer path (the energy of the tunneling state is
-10.09 hartree. and the particle-transfer saddle point energy is
-10.80 hartree). However, because the lowest energy bound
state in a 11.0 hartree deep 1-D potential is-6.7 hartree (vida

supra), we conclude that by inclusion of the transverse modes
adiabatically there would be an effective one-dimensional
tunneling barrier.

We contrast the case of the nonresonant bridge with what
we shall designate the nearer-resonant bridge in which one of
the bridge levels has an energy closer to that of the donor-
acceptor increasing the strength of the coupling between the
bridge and the donor-acceptor. The energy gap between the
donor-acceptor state and the nearest bridge level for the nearer-
resonant bridge from Table 2 is 0.7 hartree or 19.0 eV. This
energy gap is substantial and is significantly greater than typical
gaps for molecular systems,37 but the energies for bound states
in molecular systems are not directly comparable to the model
system that we treat here, and we do not require this direct
comparability, since the current model is used to examine ET
dynamics rather than for predictive purposes. The ET flux and
configuration-space potential for the nearer-resonant bridge are
plotted in Figure 5. The manner in which we construct the
nearer-resonant bridge is apparent from the configuration-space
potential in Figure 5b; the bridge attractive potential is decreased
until the lower bridge eigenstate comes closer to the donor and
acceptor levels. This has the net effect of making the effective
hole-transfer barrier comparable to the particle-transfer barrier,
and as a result, a little more than half of the total ET flux passes
through the hole-transfer configuration. Note that even for the
nearer-resonant bridge, hole transfer is an important transfer
mechanism, but it is not the only important transfer process as
particle transfer was in the case of the nonresonant bridge.

Scheme 4 allows us to more easily view results from the two-
electron models in the context of the WKB perspective on
tunneling. In the top portion of Scheme 4 we see how the
tunneling barrier for particle transfer is lower than that for hole
transfer when the nonresonant bridge is between the donor and
the acceptor, and we previously saw how ET with the nonreso-
nant bridge is dominated by a single transfer mechanism, that
being particle transfer. In the bottom panel of Scheme 4 we see
a diagram of what the barrier to particle and hole transfer is for
the nearer-resonant bridge. In the case of the nearer-resonant
bridge the barrier for the former is very similar to that of the
latter, and hence, both particle and hole transfers are important

Figure 4. 2-D configuration-space ET for a nonresonant bridge. (a) Flux, represented by arrows, passes from the donor to the acceptor through a
particle-transfer configuration. Gray circles correspond to C1, C2, and C3 in Scheme 3. (b) Configuration-space potential contours corresponding
to the nonresonant D-B-A structure. The 1-D potential in Figure 1 with a donor-acceptor separation,RD/A, of 5.0 bohr is used to construct the
2-D potential; energy contours are at-1.0, -6.8, -11.0,-14.0, and-17.0 hartree. The tunneling state energy is-10.09 hartree, andV1 andV2

are saddle points for the particle and hole pathways.V3 is the maximum in the potential along the double exchange pathway shown by the dashed
line in (a). ∆Esplit is in Table 3.

TABLE 2: Eigenvalues of 2-D CI Matrix and Energy Gaps
between the Donor-Acceptor and Bridge States

bridge description

nonresonant Int. 1 Int. 2 near-resonant

Eigenvalues,a hartree
withoutVe-e

EC1/C2 -10.09 -8.96 -8.22 -7.50
EC2 -7.29 -5.83 -4.93 -4.12
EC3 -6.80 -6.80 -6.80 -6.80

with Ve-e

EC1/C2 -11.20 -10.09 -9.36 -8.65
EC2 -8.18 -6.83 -6.00 -5.24
EC3 -7.58 -7.58 -7.58 -7.58

Energy Gaps,b hartree
withoutVe-e

Epart - ED/A 2.8 3.1 3.3 3.4
ED/A - Ehole 3.3 2.2 1.4 0.7

with Ve-e

Epart - ED/A 3.0 3.3 3.4 3.4
ED/A - Ehole 3.6 2.5 1.8 1.1

a See Scheme 3 for state configurations. Eigenvalues were obtained
by diagonalizing the 4× 4 CI matrix that was generated using IVO
orbitals, as discussed in the text. Note that C1 and C2 are nearly
degenerate states, one of which is symmetric and one of which is
antisymmetric, and the splittings between these two states are given in
Table 3.b Epart - ED/A ) EC3 - EC1/C2andED/A - Ehole ) EC4 - EC1/C2.
Note that because of the weak interaction in these model systems, the
differences are small between the final eigenvalues and the value of
the diagonal elements in the original basis set.
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in ET with the nearer-resonant bridge. From the perspective of
Scheme 4 it is apparent why hole transfer will never be the
single dominant transfer mechanism in superexchange; there is
no bridge configuration for which the barrier-to-hole transfer
is lower than the barrier-to-particle transfer as long as the
occupied bridge levels are lower in energy than the donor-
acceptor levels in which the transfer is occurring. We noted
above how diagrammatic representations such as Schemes 1-3
evoke a state-space image of superexchange that may be
misleading inasmuch as it suggests that the transferring electron
(or hole) may be localized on the bridge during the ET when
actually superexchange ET occurs via a delocalized intermediate.
Nonetheless, Schemes 1-3 are very useful for visualizing
various issues related to superexchange ET, and Scheme 4
provides a unifying glimpse at why (though schemes such as
Schemes 1-3 are useful in conceptualizing the transfer mech-
anism) the contour plots in Figures 4b and 5b are the more
realistic way to view the problem.

D. Two-Electron Models: The Effect of Electron-
Electron Repulsion.We now want to examine how electron-
electron repulsion affects both the magnitude of the electronic
factor and the transfer mechanism. We noted in the methods
section that results from model calculations includingVe-e are
not directly comparable to results from the same calculation in
the absence ofVe-e because the inclusion of repulsion alters
the bound-state energy levels in the bridge, and we outlined an
approximation technique, using eq 10, by which we can
construct bridges that, in the presence ofVe-e, are comparable
to a bridge in a system withoutVe-e. The resulting bridge
eigenvalues, given for the four different bridges in Table 2, are
much closer to those of the same bridges in the absence of
repulsion than they would be without using this approximation.
The quantitiesEpart. - ED/A andEhole - ED/A, also in Table 2,
are the energy differences, respectively, between the particle
and hole configurations in Scheme 3 and the initial/final
configuration. A comparison of the 2-D model with and without
Ve-e shows that these energy differences are very similar. In
parts a and b of Figure 6 we give the flux and potential for the
2-D nonresonant bridge model with a potential incorporating
Ve-e. Although the repulsion is clearly evident in the potential,
the flux still passes predominantly through the particle-transfer
configuration.

In the flux diagrams of Figures 4a, 5a, and 6a all of the net
ET flux must pass through the 2-D flux axis depicted in Figure
5a. We utilize this flux axis in Figure 7 to plot the total flux
magnitude at each point across the axis for ET transfer across
the nonresonant well, the nearer-resonant well, and two inter-
mediate cases wherein the more strongly bound bridge eigenstate
is gradually moving closer to the donor and acceptor. In Figure
7a there is no electron-electron repulsion and the flux
magnitudes for the near-resonant and nonresonant bridges
correspond to the fluxes from Figures 4a and 5a. In Figure 7b
the flux magnitudes result from calculations includingVe-e using
bridges comparable to those used in the absence of repulsion,
and the nonresonant flux magnitude corresponds to that of
Figure 6a. The logical expectation is that the addition of
electron-electron repulsion to the system should increase the
relative proportion of hole transfer, since the tunneling electron

Figure 5. 2-D configuration-space ET for a nearer-resonant bridge. (a) Flux, represented by arrows, passes from the donor to the acceptor through
both particle- and hole-transfer configurations. Gray circles correspond to C1, C2, and C4 in Scheme 3 and emphasize the hole-transfer path, and
the dashed line indicates the flux axis used to analyze flux pathways. (b) Configuration-space potential contours corresponding to the nearer-
resonant D-B-A structure. The 2-D potential is constructed from the 1-D potential for the nearer-resonant bridge discussed in the text with a
donor-acceptor separation,RD/A, of 5.0 bohr; energy contours are at-1.0, -6.8, and-11.0 hartree. The tunneling-state energy is-7.50 hartree,
andV1 andV2 are saddle points for the particle and hole pathways.

SCHEME 4: Diagram of Particle and Hole Tunneling
Barriers for Nonresonant and Nearer-Resonant Bridges

Electron Transfer by Superexchange J. Phys. Chem. A, Vol. 103, No. 36, 19997353



is now repulsive and could slightly increase the probability of
the electron in the lower bridge state transferring to the acceptor
(producing a hole-transfer configuration). What we observe in
Figure 7b is a slight increase in hole relative to particle transfer,
compared to Figure 7a, which is primarily noticeable as the
bridge is nearer resonance. Table 3 compares the electronic
factor contribution to the ET rate with and withoutVe-e for the
nonresonant, near-resonant, and two intermediate bridges con-
sidered in Figure 7. In general, the electronic factor contribution
to the ET rate for bridges withVe-e is comparable to, but higher
than, the ET rate for corresponding bridges in the absence of
Ve-e. We expect this not from energy gaps, which all favor
increased ET for the D-B-A in the absence ofVe-e (Table 2),
but rather from the lower eigenvalues resulting for the states
with Ve-e. The eigenvalues from calculations incorporatingVe-e

are lower because of changes to the bridge potential structure,

while the donor and acceptor remain essentially the same as in
the calculation withoutVe-e. This means that there is less barrier
to ET (or a more attractive bridge potential) in the models with
Ve-e. By looking at the normalized rather than absolute flux
magnitudes, we can assign the slight but discernible quantitative
enhancement of hole over particle transfer that appears in Figure
7b to the effects ofVe-e.

There is another possible transfer pathway that we have
neglected to mention so far and that is double exchange.1 In
the case of the 2-D system, double exchange amounts to the
bridge electron transferring to the acceptor while the donor
electron is simultaneously transferring to the bridge. In Figures
4a and 5a this pathway corresponds to flux passing directly along
a straight line from the donor configuration to the acceptor
configuration (see bold dashed line in Figure 4a). Double
exchange is a transfer mechanism that should be enhanced by
electron-electron repulsion for the same reasons we cite for
hole transfer, a reason that is perhaps even more germane to
double exchange. In Figure 7a the shape of the nonresonant
well flux magnitude along the flux axis has a slowly dying tail
along the part of the flux axis corresponding to double exchange
(q1 ≈ 1.4 bohr on the flux axis) indicating that some small flux
contribution arises from double exchange, even without electron-
electron repulsion. For the realistic Coulomb electron-electron
repulsion in Figure 7b this contribution is not significantly
enhanced. We have found however that when a very high and
physically unrealistic repulsion is chosen, a third discernible
double exchange flux magnitude centroid arises between the
hole- and particle-transfer centroids. Note that double exchange
occurs along the configuration-space path with the highest
tunneling barrier (V3 in Figure 4b), and in regard to Scheme 4,
we see that double exchange is not an important transfer path
because the tunneling barrier for double exchange is the sum
of both hole- and particle-transfer barriers.

E. Three-Electron Models and ET Transfer Pathways:
Evolution of Path Multiplicity. From the 2-D configuration-
space system, we conclude that electron-electron repulsion is
not of great importance in affecting the ET mechanism. To
further investigate the effect of multielectron effects on the
transfer mechanism, we add another bridge to our system and
look at the configuration-space model results for the moiety
D-B-B-A, where the two bridge potentials are identical, each

Figure 6. 2-D configuration-space ET for a nonresonant bridge where effects of electron-electron repulsion are included. (a) Flux, represented by
arrows, passes mostly through a particle-transfer configuration. (b) Configuration-space potential contours corresponding to the nonresonant D-B-A
structure. The 2-D potential (eq 10) with a donor-acceptor separation ofRD/A ) 5.0 bohr is constructed to mimic the bridge used in Figure 4 by
a technique described in the text using eq 10. Energy contours are at-1.0, -6.8, and-11.0 hartree. The tunneling-state energy is-7.50 hartree,
andV1 andV2 are saddle points for the particle and hole pathways.

Figure 7. Relative proportion of particle and hole transfers as a function
of the bridge structure. Flux magnitudes are taken along flux axis
defined byq1 ) -q2 and indicated in Figure 5. (a) No electron-electron
repulsion. (b) With electron-electron repulsion.

TABLE 3: Comparison of ET Rate for 2-D D-B-A
Systems Solved with and without Electron-Electron
Repulsion

∆Esplit, 10-4 hartree

bridge withoutVe-e with Ve-e % difference

nonresonant 6.33 6.79 +7
Int. 1 6.74 7.56 +11
Int. 2 8.19 9.12 +11
near-resonant 13.40 13.24 -1
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bridge has an electron in the lower energy orbital,Ve-e is not
included, and the 3-D potential is a sum of three 1-D potentials
much as the 2-D model potential was the sum of two 1-D
potentials. Parts a and b of Figure 8 shows the resulting 3-D
tunneling flux from donor to acceptor for nonresonant and
nearer-resonant bridges, respectively, and Figure 8c illustrates
the 3-D particle and hole-transfer configuration pathways. Again,
we see that the nonresonant bridge flux passes solely through
the particle-transfer configurations and that hole transfer only
becomes significant for the nearer-resonant bridge system.
Further, the only major path for the nonresonant bridge is
particle transfer, but there is more than one major transfer path
for the nearer-resonant bridge. In fact, there is a multiplicity of
paths for the near-resonant well.

The two main transfer paths in Figure 8b for the nearer-
resonant bridge represent hole- and particle-transfer paths. Of
the remaining two, neither are double exchange. Scheme 5
contains a graphical depiction of the hole- and particle-transfer
pathway configurations as well as the configurations involved
in the two more minor transfer pathways. Both of these less
significant transfer paths have configurations that resemble hole
transfer and configurations that look like particle transfer. For

this reason, we refer to these transfer paths as mixed-mode
transfer. This path multiplicity would make a larger, more
complicated system very difficult to analyze in terms of particle
and hole transfer by any of the popular pathway models and
may also pose a challenge to the formalism used in one-electron
valence atomic orbital models. However, for long-range ET by
superexchange, both our model and others have indicated that
the only major transfer path should be particle transfer.26,41

Nonetheless, there is at least one recent example of a large
biological electron-transfer model that is based on hole trans-
fer.36

An analysis of the nearer-degenerate case shows that there
are 2n nearly equivalent paths for electron transfer, wheren is
the number of bridge sites. This is borne out by the results of
our model calculations. For a donor and acceptor with no
intervening bridge, there is 20 or one path. If one bridge site is
added, there are now 21 or two major transfer paths (Figure 5a
and Scheme 2). Adding yet another bridge site results in 22 or
four major transfer paths (see Figure 8b). The enhanced rate of
transfer in the resonant bridge systems can be thought of in
terms of this path multiplicity. Figure 9 compares the increase
in ∆Esplit for the nearer-resonant bridge systems with several
low-barrier paths compared to the nonresonant bridge systems
in which there is only one low-barrier path. The observed
increase in rate is within∼90% of what is predicted by the
multiplicity of low-barrier paths. Also, we see that both lines
in Figure 9, one for the nonresonant bridge systems and one
for the nearer-resonant bridge systems, continue smoothly to
the common no-bridge point (1-D).

Figure 8. 3-D configuration-space model results. The 3-D potential
is constructed from the appropriate 1-D potentials as described in the
text, and the donor-acceptor separation isRD/A ) 7.5 bohr. (a) 3-D
flux for a nonresonant bridge and 1-D parameters describing the bridge
are the same as in Figure 4. (b) 3-D flux for a nearer-resonant bridge
and 1-D parameters describing the bridge are the same as in Figure 5.
(c) Diagram illustrating particle- and hole-transfer pathways in 3-D
configuration-space.

Figure 9. ∆Esplit for nonresonant and nearer-resonant bridges as a
function of the number of configuration-space dimensions. The 1-D
model potentials used to construct 3-D nonresonant and nearer-resonant
potentials are the same as those used in Figures 4 and 5, respectively.
Note that as the number of electrons in the model increases, the distance
between the donor and acceptor increases because bridge sites are added.

SCHEME 5: 3-D Configuration-Space ET Pathways
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V. Conclusions

The results from our models support the view that many-
electron effects can be reasonably small and do not greatly affect
the mechanism of ET. This finding is robust in that it results
from a direct comparison of our one-electron and analogous
many-electron models and serves to substantiate a common
practice of using one-electron models for biological ET.

We illustrate how the electronic dynamics of long-range ETs
can be interpreted in a configuration-space perspective and
illustrate how configuration-space models offer advantages to
traditional state-space models. Perhaps the most important aspect
of the model systems that we consider here is that they provide
a new viewpoint in which long-range ETs are not primarily
dependent on the bridge electronic states, but, in the absence
of interference effects, are primarily controlled by the specifics
of the bridge attractive potential. This view is complementary
to, but not always conformal with, the state-based approach used
in many models, even including some pathways models. Since
the main focus of many long-range diabatic ET models is to
accurately predict rates in large computationally intractable
biological ET systems, a frequent technique is to selectively
exclude states that do not affect the ET rate. This approach has
been very successful when the excluded states were ancillary
parts of the protein structure;54 however, selection is frequently
based on energy gap types of arguments.5,7 This latter conven-
tional emphasis on bridge electronic states can lead to inclusion
of states that will inadequately represent the bridge attractive
potential, leading to unrealistic model results. Also, many
superexchange models utilize pseudopotentials. Since the form
these pseudopotentials is typically based on a repulsive center,
great care must be taken when choosing and implementing
pseudopotential-based models. We treat this subject more fully
in forthcoming work.

With respect to whether ET occurs through particle or hole
transfer, we find that the mechanism is always dominated by
particle transfer when the energy of the tunneling electron is
far away from that of bridge eigenstates. As the energy of the
electron approaches that of one bridge eigenstate, a multiplicity
of transfer paths is possible and the concept of a single transfer
mechanism my have limited validity for multisite bridge systems
such as proteins. Further, in the context of the results herein,
the concept of pure hole transfer is erroneous, and the term is
simply a nomenclature to describe enhanced tunneling that
occurs nearer resonance and should not be used in the context
of nonresonant superexchange ET. Particle transfer then be-
comes a nomenclature to describe tunneling induced solely by
the bridge attractive potential.
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