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We evaluate using a range of ab initio and density-functional approaches the vibrational frequencies, including
correction for diagonal anharmonicity, of the lowest triplet state of pyrazine T1(3B3u); less extensive calculations
are also performed for the ground state, three excited singlet states, and five other triplet states. The results
indicate that CASSCF-based methods are cumbersome to apply to molecules of this size, with no practicable
CASSCF methodology producing a continuous potential energy surface for T1. While CASPT2 (and also
MRCI) methods can correct for erroneous CASSCF state energies, they are not capable of removing the
effects of erroneous CASSCF conical intersections. Density-functional schemes, and in particular B3LYP,
provide the best qualitative and quantitative results, with the time-dependent approximation to density-functional
theory providing results comparable with those from direct evaluation. An overview of vibronic coupling
theory is presented and used to demonstrate the relative strengths and weaknesses of these Born-Oppenheimer
calculations compared to the traditional diabatic vibronic coupling calculations of Fischer. In particular, for
T1(3B3u), the current assignments of the strongly vibronically active modesν4, ν5, andν10aare readily verified,
vibronic activity is predicted forν12, the anomalous behavior ofν16aandν16b is reproduced, andν8a is reassigned.

I. Introduction

The electronic structures of the azabenzenes have been studied
extensively using a range of experimental techniques,1 and as
a result, these molecules have often been used for the verification
of new computational schemes.2-14 A range of interesting and
complex properties such as vibronic coupling are displayed,15

with, e.g., the S1 and S2 states of pyrazine forming a conical
intersection within the Franck-Condon region.11 Nevertheless,
no complete experimentally based vibrational analysis for any
excited state of any azine is yet available, and many observed
features remain unexplained; for pyrazine, e.g., only half of the
24 vibrational modes have been assigned for the S1 and T1

excited states.1,16,17One of the most important results to come
from the study of azines has been the verification1,15,18,19of the
through-bond electronic-coupling mechanism of Hoffman.20,21

This describes the interaction of lone-pair electrons on different
nitrogen atoms within the azine as arising from both short-range
through-space overlap interactions and long-range through-bond
superexchange interactions. Experimental manifestations of this
include the relative ordering and point-group symmetry of
different (n,π*) excited states. Consider, for example, the
diazines pyrazine, pyrimidine, and pyridazine. If a lone-pair
electron is removed from a nitrogen atom, its CNC bond angle
expands and the resulting energy lowering is known as the
reorganization energy. Two possibilities arise for such a
transition in a diazine, however: removal of an electron from
one nitrogen, or removal of density corresponding to half of an
electron from each nitrogen. The reorganization energy is much
larger in the former case and tends to localize (or trap) the (n,π*)
excitation on just one of the two nitrogens, reducing the point-
group symmetry of the excited state. In competition with this
effect is the inter-lone-pair coupling which tends to delocalize
(or share) the excitation equally over both nitrogens, preferring

high symmetry. Because of the effects of through-bond coupling,
in each diazine the electronic coupling is dominant and high-
symmetry results.22-24 Actually, this type of problem is very
general, forming, for example, the key questions25 concerning
the electronic properties of the famous Creutz-Taube ion26 [Ru-
(NH3)5-pyrazine-Ru(NH3)5]5+ and the special-pair radical
cation whose properties are central to biological photosynthesis.
In problems of this type, the principal issues involve (1)
determining the identity and energy of the low-lying excited
states and (2) determining whether the excited state has a single
minimum (all vibration frequencies at the high-symmetry
geometry are real) or a double minimum (an imaginary
frequency at the high-symmetry geometry). Central to this is
the determination of the strength of the vibronic coupling acting
between localized diabatic electronic states of the molecule.

For many azines, the identities of a variety of low-lying
excited states are now known. We have reviewed this literature
in a companion paper;27 here, we consider issue 2 only.

Vibrational analyses of excited states are much more difficult
to obtain than those of ground states. Experimentally, typically
only the lowest singlet and triplet excited states can be observed
in sufficient resolution to identify individual vibrational transi-
tions, and vibronic coupling or Duschinsky rotation effects make
the assignment of these transitions difficult. Computationally,
the mapping of excited-state adiabatic potential energy surfaces
is complicated by possible instabilities in the Hartree-Fock or
Kohn-Sham solutions.28 One such instability for the S1 state
of pyrazine is well-known4-6 and results in a much lower self-
consistent field (SCF) energy being determined for this state at
D2h nuclear geometries when the electronic wave function is
allowed to relax to one ofC2V symmetry. Vibrations of b1u

symmetry distort the nuclear geometry in an analogous fashion,
and hence, when the S1 potential energy surface is examined
as a function of any b1u normal mode (sayν12), it is discontinu-
ous. A continuous potential energy surface can be established* To whom correspondence should be addressed.
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by using multiconfigurational wave functions such as valence-
bond wave functions4,6 or state-averaged complete-active-space
SCF (CASSCF) wave functions,23 with (typically) a double-
well potential resulting. Dynamic electron correlation favors
high-symmetry configurations, however, and after a multiref-
erence configuration-interaction (MRCI) calculation based on
the CASSCF wave function, a single-well potential is obtained,
as is observed experimentally.23 Hence, the level of theory, and
the level of caution, necessary to satisfactorily complete an
excited-state vibrational analysis is appreciable.

In this work we consider primarily the vibrational structure
of the lowest triplet state of pyrazine, T1(3B3u). For this state, 8
of the 24 vibrational frequencies have been experimentally
assigned by Fischer,17 and various other possible vibration
frequencies have been suggested;29,30 we concentrate on the
theoretical prediction of the eight assigned frequencies. Note
that this state is selected for detailed study in preference to S1-
(1B3u) as we can apply a larger range of theoretical techniques
to the triplet state,27 and as much is already known11 about S1
and its low-lying conical intersection with S2(1B2u).

We perform both harmonic and anharmonic analyses within
the Born-Oppenheimer approximation, but do not consider
vibronic coupling beyond this level. Vibronic coupling usually
lowers the vibration frequency, and calculations which fully
include this effect are very difficult to perform quantitatively a
priori. Born-Oppenheimer vibrational analyses form but the
first step in this procedure, accounting for some but not all
effects of vibronic coupling; progress beyond this level requires
the identification of all states involved and the evaluation and
processing of nonadiabatic-coupling matrix elements.

In addition to this study of T1(3B3u), we consider briefly
harmonic analyses of the vibrational properties of the ground
state S0(1Ag) and the excited states S1(1B3u), S2(1B2u), S3(1Au),
T2(3B1u), T3(3Au), T4(3B2u), T5(3B2g), and T6(3B1u). The notation
used for these states is described in detail elsewhere.27 A full
description of the results, including optimized energies, Cartesian
coordinates, normal modes, normal-mode displacements and
reorganization energies from the ground state, and Duschinsky
matrixes, obtained using up to five electronic structure methods,
is given in full in the Supporting Information.

II. Electronic Structure Computational Methods

A total of eight different ab initio and density-functional
computational schemes are employed to determine vibrational
properties of the excited states of pyrazine. These methods have
been described in full elsewhere,27 but briefly they are termed
SVWN, SVWN-TDDFT, B3LYP, B3LYP-TDDFT, CIS, CASS-
CF, MP2, and CASPT2. For the direct density-functional-theory
(DFT) methods SVWN (local density functional31,32) and
B3LYP (a hybrid functional with exact exchange33), the
GAUSSIAN-94 program is used.34 Their variants SVWN-

TDDFT and B3LYP-TDDFT involve the use of time-dependent
perturbation theory13,35to determine excited-state energies using
TURBOMOLE.36 For pyrazine, we have shown that the triplet
vertical excitation energies predicted by this TDDFT scheme
are similar to those evaluated directly, and also that, for both
singlet and triplet states, the B3LYP-TDDFT energies are
equivalent in accuracy to those7,14,27,37from the most accurate
ab initio methods, CASPT2 and EOM-CCSD(T). A variety of
DFT methods for excited states are becoming available; we have
reviewed this literature and explicitly considered a range of these
methods in the companion paper.27 Of the ab initio methods,
the CIS38 and MP239 calculations are performed using GAUSS-
IAN-94,34 the CASSCF and CASPT240 energies are evaluated
using MOLCAS,41 and the CASSCF analytical frequencies are
evaluated using DALTON;42 some multirepresentation state-
average calculations are performed using MOLPRO.43 The
active spaces used in the CASSCF and CASPT2 calculations
are given in Table 1 and described in detail later in section IV.B;
these are described as (n,m) wheren is the number of electrons
distributed inm orbitals. All calculations are performed using
the cc-pVDZ basis set.44

III. Ground State S0(1Ag)

Results from a variety of calculations of the normal modes
of pyrazine S0 are available in the literature, obtained using both
density-functional12,45and ab initio11,45methods with basis sets
comparable to or larger than cc-pVDZ. To aid in our analysis
of the excited-state vibrations, we have performed vibrational
analyses of the ground state using the SCF, SVWN, B3LYP,
MP2, and CASSCF(10,8) methods. We present in Tables 2 and
3 only brief summaries of the results obtained, but all results
are given in the Supporting Information. Table 2 shows the
maximum error found between calculated and gas-phase ex-
perimental frequencies for all 24 modes and the associated root-
mean-square (RMS) error. Also, for each method, a multipli-
cative scale factor is optimized to minimize the RMS errors,
and the maximum and RMS errors for the scaled vibration
frequencies are also given in the table; the calculated scale
factors for SCF, SVWN, B3LYP, MP2, and CASSCF are 0.90,
0.99, 0.97, 0.96, and 0.92, respectively. The results are quite
good, with the RMS error after scaling ranging between 20 and
43 cm-1, while the largest error found is just 170 cm-1.

Table 3 provides a summary of the Duschinsky rotation
matrixes which map the normal coordinates obtained from the
SCF, SVWN, B3LYP, and MP2 methods onto those from
CASSCF. In general, these modes map smoothly, with theith
mode of a particular symmetry having the same shape for all
methods. However, one exception appears within the b2u

vibrations: the relative order ofν14 and ν18b differs between
the SCF and CASSCF methods and those that include dynamic
electron correlation: MP2, SVWN, and B3LYP. Disagreement

TABLE 1: Description of the State Averaging and Orbital Spaces Used in CASSCF and CASPT2 Calculationsa

doubly occupied active space

calculation optimized energy
size

(n,m) ag b3u b2u b1g b1u b2g b3g au ag b3u b2u b1g b1u b2g b3g au

analytical T1(3B3u) (10,8) 5 0 4 0 4 0 3 0 1 2 0 1 1 2 0 1
ag: ν1,6a,8a,9a T1(3B3u) (12,9) 5 0 4 0 4 0 2 0 1 2 0 1 1 2 1 1
b2g: ν4,5 T1(3B3u) + T2(3B1u) (12,10) 5 0 4 0 4 0 2 0 3 2 0 1 1 1 1 1
b1g: ν10a T1(3B3u) (12,10) 5 0 4 0 4 0 2 0 1 2 0 1 1 2 2 1
b1u: ν12 T1(3B3u) + T5(3B2g) (10,8) 5 0 4 0 4 0 3 0 1 2 0 1 1 2 0 1
au: ν16a T1(3B3u) (12,10) 5 0 4 0 4 0 2 0 1 2 1 1 1 2 1 1
b3u: ν16b T1(3B3u) (12,10) 5 0 4 0 4 0 2 0 1 2 0 1 2 2 1 1

a Different orbital spaces and state averages are used for the analytical frequency calculation and for the single-point energy calculations along
normal modes of different symmetry types. The size is specified byn, the number of active electrons, andm, the number of active orbitals in which
these electrons are distributed.
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for these modes is not unexpected as the observed frequencies
differ by only 86 cm-1; experimental evidence distinguishing
between the two possibilities is not currently available.

IV. Excited States

A. Overview of the Results for T1(3B3u). For this state,
analytical harmonic vibration frequencies have been evaluated
using CIS, CASSCF(10,8), UMP2, SVWN, and B3LYP. A
summary of the differences between the eight experimentally
assigned17 frequencies (ν1, ν4, ν6a, ν8a, ν9a, ν10a, ν16a, andν16b)
and the corresponding calculated ones is given in Table 2, while
the frequencies themselves are given in Table 4 and the
Duschinsky matrixes depicting rotations between the ground-
and excited-state normal coordinates are summarized in Table
3; in the Supporting Information are given in full all of the
optimized geometries, calculated vibration frequencies, normal
modes, and Duschinsky matrixes. Results are also given in Table
4 for two other modes,ν5 andν12, for which no firm assignment
has been suggested but for which considerable interest exists,
while results for all non-CH infrared-active modes are given
later in Table 5.

To facilitate discussion, Figure 1 shows the form of each of
the 10 normal modes considered in detail, as well as the change
in potential energy evaluated using B3LYP, B3LYP-TDDFT,
CASSCF, and CASPT2 when pyrazine is distorted along each
mode. The CASSCF geometry and normal modes for3B3u are
used, and the displacement is given in terms of the zero-point
displacementQzpt for each mode (in the harmonic approxima-
tion, the energy increase at displacementQ ) Qzpt is hν/2).
Vibration frequencies obtained using both harmonic and an-
harmonic analyses of these curves are given in Table 4, and
statistical analyses of the results are given in Table 1. Finally,
Figures 2 and 3 show additional energy surfaces obtained for
distortion alongν12 andν4, respectively.

From Table 2 it is clear that the agreement between the
observed and calculated frequencies is much poorer than that

found for the ground-state vibrations, the maximum and RMS
errors being typically 2-4 times larger. Also, as shown in the
table, application of the ground-state scaling factors does not
significantly improve the agreement. Possible causes of this
include poor applicability of the computational schemes to
excited states, incorrect representation of the nuclear-coordinate
dependence of interstate couplings, neglect of nonadiabatic
coupling, and possibly also incorrect experimental assignments.
The first two issues are clearly the most important ones: a priori
computations cannot address issues of nonadiabatic coupling
and experimental assignments unless the electronic structure
methods produce high-quality Born-Oppenheimer potential
energy surfaces.

First we note in Table 4 that, of the eight modes, relatively
good agreement is found for five: the totally symmetric modes
ν6a, ν1, and ν9a as well asν16a (au) and ν16b (b3u). The other
totally symmetric modeν8a appears consistently overestimated
by ca. 300-400 cm-1, while ν10a andν4 are, in general, very
poorly reproduced. The maximum and RMS errors for both the
ground and excited states obtained from just the above-
mentioned first five modes are also given in Table 2. For the
ground state, these results are significantly better than those
obtained through the consideration of all modes; for the excited
state, the errors are larger than those for the ground state but
remain small, with RMS errors being on the order of 40 cm-1.
Hence, we conclude that, in principle, the computational
methods are capable of quantitatively describing the excited-
state vibrations.

The quality of the agreement found forν6a, ν1, and ν9a

suggests that the computational schemes are correctly represent-
ing any coordinate dependence of the interaction between
various3B3u excited states, and it appears acceptable to ignore
nonadiabatic coupling involving the ag modes. Hence, the
systematic overestimation ofν8a must either arise from some
highly mode specific interaction or be indicative of an incorrect
experimental assignment. This issue is specifically addressed
later in the Conclusions.

TABLE 2: Statistical Comparison of the Maximum and RMS Differences, cm-1, between Observed and Calculated Vibration
Frequenciesa

raw, all data scaled, all data ν1, ν6a, ν9a, ν16a, ν16b unscaled

el str method state
vibr

method max RMS max RMS max RMS

B3LYP S0 AN 137 56 53 20 29 17
B3LYP T1 AN 338 173 335 158 43 35
B3LYP T1 NUM 343 126 292 106 49 30
B3LYP-TDDFT T1 NUM 353 135 302 117 51 32
B3LYP T1 ANH 328 131 278 110 40 31
B3LYP-TDDFT T1 ANH 342 137 291 117 39 31
SVWN S0 AN 184 47 170 43 27 25
SVWN T1 AN 340 147 323 140 53 28
SVWN T1 NUM 311 132 294 126 40 29
SVWN-TDDFT T1 NUM 316 148 299 143 43 34
SVWN T1 ANH 289 132 273 126 52 31
SVWN-TDDFT T1 ANH 294 134 278 129 50 32
SCF S0 AN 332 170 72 30 112 89
CIS T1 AN 697 332 602 260 135 97
CASSCF S0 AN 336 150 93 38 89 63
CASSCF T1 AN 429 179 290 117 117 73
CASSCF T1 NUM 934 369 831 312 117 76
CASSCF T1 ANH 796 338 705 281 121 80
MP2 S0 AN 211 86 150 43 21 12
UMP2 T1 AN 965 387 908 358 48 36
CASPT2 T1 NUM 383 150 310 123 65 41
CASPT2 T1 ANH 353 146 281 118 52 30

a For S0(1Ag), “all data” includes all 24 modes, while for T1(3B3u) it involves only 8,ν1, ν4, ν6a, ν8a, ν9a, ν10a, ν16a, andν16b. AN (analytical)
frequencies are from analytical second-derivative calculations, while NUM (numerical harmonic) and ANH (numerical anharmonic) frequencies
are from analysis of the potential surfaces along the appropriate CASSCF analytical normal modes.
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Experimentally,17 the vibrational modes involved in the
strongest vibronic coupling areν10a andν4, and it is for these
modes that the largest errors between calculated and observed
frequencies occur. Before proceeding, we examine in section
C vibronic coupling and the various approaches used to treat
it. First, however, we note that, in Table 4, a selection of the
UMP2 and CASSCF frequencies are clearly absurd, e.g., UMP2,
ν10a ) 22 042 cm-1! This is associated withwaVe function
instability.

B. Wave Function Instability. For S1(1B3u), it is well-
known4-6 that (spin-adapted) single-determinant SCF wave
functions are unstable, with wave functions ofC2V symmetry
having lower energy than corresponding ones ofD2h symmetry.
The physical reason for this is that, inC2V symmetry, the (n,π*)
excitation localizes on one of the two nitrogens rather than
delocalizing over both, as is required inD2h; lone-pair localized
single determinants have lower energy than delocalized ones.
Distortions of pyrazine by modes of b1u symmetry, e.g.,ν12,
reduce the nuclear symmetry fromD2h to C2V. In particular,ν12

has the effect of enlargening the CNC bond angle about the
nitrogen on which the excitation is localized, favoring localiza-

tion, and thus the energy of localized determinants decreases.
The simplest method by which a continuous potential energy
surface can be constructed is through use of two nonorthogonal
determinants in a valence-bond type computation.4,6 In principle,
CASSCF can also produce a continuous potential energy surface
through the inclusion of both lone-pair orbitals and theπ* orbital
in the active space. The active space (10,8) which we employ
fulfills this criterion; it contains the two lone-pair orbitals and
all six valenceπ orbitals. However, a small discontinuity
remains in the CASSCF(10,8) potential energy surface, this
arising as the lone pairs are mixed with otherσ orbitals, and
these must also be included in the active space.

The triplet state T1(3B3u) behaves in a fashion directly
analogous to S1(1B3u), and the CASSCF(10,8) potential surface,
shown in Figure 2, is also discontinuous. The solid line shows
∆E, the energy of a wave function ofC2V symmetry relative to
that of aD2h-symmetry wave function (i.e.,Q ) 0); this curve
has a nonzero energy change,∆E ) -0.0064 eV, atQ ) 0,
indicating a small discontinuity. However, as is clearly seen in
the figure, the discontinuity in the derivative of theC2V-
symmetry surface atQ ) 0 is pronounced. Note that, as
expected, the energy decreases initially as pyrazine is displaced
alongν12.

Electronic-structure computational schemes which determine
analytical harmonic vibration frequencies assume that the wave
function is stable to symmetry lowering. When the wave
function is unstable, they unwittingly report vibration frequen-
cies, but the numbers reported are not necessarily meaningful.
For the b1u modes of T1(3B3u) as calculated by UMP2 and
CASSCF(10,8), all calculated frequencies (see the Supporting
Information) appear reasonable except those for the mode most
associated with lone-pair localization,ν12, for which the
calculated frequencies are 2380 and 2732 cm-1, respectively.
Further investigation reveals that single-determinant wave
functions (and hence UMP2 results) are also unstable with
respect to b1g and b2g displacements. While the calculated b1g

frequency forν10a of 22 042 cm-1 is clearly erroneous, the
calculated b2g frequencies forν4 andν5 of 1260 and 803 cm-1,
respectively, are quite plausible. Interestingly, these modes are
perceived as being switched in order compared to those of the
ground state. Whether or not such a switching actually occurs
has been an issue of some controversy,17 and the naive
application of results such as this to resolve that controversy
would have led to the incorrect conclusion. Hence, for analytical
frequency calculations on excited states, it is imperative that
the wave function be tested for stability before computed
frequencies are interpreted. The CASSCF(10,8) wave function
is stable with respect to b1g distortions but remains unstable to
b2g ones.

A method which can be employed to establish the stability
of CASSCF wave functions is state averaging. In this approach
the CASSCF wave function is optimized to minimize the
average energy of a number of electronic states. In calculations
on S1(3B3u) it has been usual practice10,11,23 to obtain wave
functions which mimimize the equally weighted average energy
of S0(1Ag), S1(1B3u), and the close lying state S2(1B2u). The result
is a wave function which is completely stable to symmetry
lowering, and in particular one that is very well suited to study
the S1-S2 conical intersection. However, for our purposes it
embodies excessive averaging and is not the most appropriate
scheme. For the case of lone-pair localization distortions,
symmetry lowering reveals two localized (diabatic) states, states
corresponding to localization on each of the two nitrogens. These
interact to form two (n,π*) adiabatic states, the lower being

TABLE 3: Summary of Symmetry Blocks of Duschinsky
Matrixesa

method state ag b1u b2u b3g au b1g b2g b3u

CASSCF S1(1B3u) D S S i D
CASSCF S2(1B3u) M S D
CASSCF S3(1Au) i S Si S
CASSCF T1(3B3u) D S S Di
CASSCF T2(3B1u) S Si D
CASSCF T3(3Au) i S S
CASSCF T4(3B2u) d Sd
CASSCF T5(3B2g) D S S
CASSCF T6(3B1u) S S
SCF S0(1Ag)
CIS S1(1B3u) M M S
CIS S3(Au) S Si i M
CIS T1(3B3u) Mi S i S
CIS T2(3B1u) S Si
CIS T3(3Au) S M
CIS T4(3B2u) S i
CIS T5(3B2g) S i
CIS T6(3B1u) M Mi i
MP2 S0(1Ag) S
UMP2 T1(3B3u) D S D D
SVWN S0(1Ag) S
SVWN T1(3B3u) S S
B3LYP S0(1Ag) S
B3LYP T1(3B3u) S S i
B3LYP T2(3B1u) S S Si S i
B3LYP T3(3Au) S Si i S S
B3LYP T4(3B2u) S S
B3LYP T5(3B2g) S S S i
B3LYP T6(3B1u) S Si i i M

a Ground-state Duschinsky matrixes are the rotations with respect
to the CASSCF ground-state normal coordinates, while excited-state
Duschinsky matrixes are with respect to the ground-state normal
coordinates determined by the most analogous method. Full results are
given in the Supporting Information. The flag “i” indicates that one
harmonic frequency is imaginary (but does not indicate whether or not
the double-well potential can support localized zero-point vibration),
“S” indicates that normal modes have interchanged in order within the
symmetry block, “M” indicates strong normal mode mixing, “D”
indicates that the potential-energy surface is known to be discontinuous
for displacements of that type, and “d” indicates suspected discontinu-
ous, and no flag indicates that the normal modes are similar. For the
in-plane symmetries ag, b1u, b2u, and b3g there are five, four, four, and
four modes, respectively, while for the out-of-plane symmetries au, b1g,
b2g, and b3u there are two, one, two, and two modes, respectively. Note
that the pattern obtained for perdeuteropyrazine is significantly different
from this.
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T1(3B3u) and the upper T5(3B2g). Hence, the most appropriate
scheme to establish continuity with respect to b1u distortions is
an equal-weight state average of these two states. The resulting
potential energy surface for distortion alongν12 is shown in
Figure 2 and is continuous. Similarly, distortions along the b2g

modesν4 andν5 involve interactions between T1(3B3u) and the
(π,π*) state T2(3B1u), and we find that averaging over these
states does indeed result in a continuous potential-energy
surface.

While state averaging can eliminate discontinuities, it modi-
fies the wave function from that which would otherwise be
thought of as optimal and hence may modify key qualitative
features. Figure 2 depicts a possible example of this as the
single-state curves appear to have a double-minimum form,
while the state-averaged surface shows only a single minimum.
To determine which is the most appropriate qualitative descrip-
tion of the potential surface, CASPT2 calculations have been
performed. In each case, the CASPT2 surface has a minimum
at Q ) 0, though the single-state surface is of course not
continuous at this point. Further, the symmetry-broken CASPT2
energy is significantlyhigher than theD2h-symmetry energy.
These results indicate that it is indeed the state-averaged wave
function which provides the best CASPT2 description of the
potential surface. Finally, we optimized the geometry inC2V

symmetry with and without state averaging. With it, the
geometry relaxed to a fully symmetricD2h structure, but without

TABLE 4: Comparison of Observed and Calculated T1(3B3u) Vibration Frequencies, cm-1 a

el str method vibr method ag, 8a ag, 9a ag, 1 ag, 6a b1u, 12 au, 16a b1g, 10a b2g, 5 b2g, 4 b3u, 16b

observedb 1234d 1149 986 620 690c 406 254 295 236
B3LYP AN 1571 1191 1029 617 667 448 84i 834 371 266
B3LYP NUM 1577 1180 1035 613 1386 439 276 775 362 233
B3LYP-TDDFT NUM 1587 1183 1037 613 1360 444 132 770 310 233
B3LYP ANH 1562 1187 1026 614 1393 442 374 802 393 254
B3LYP-TDDFT ANH 1576 1188 1025 613 1372 445 418 797 333 250
SVWN AN 1574 1151 1039 598 831 432 378 795 487 241
SVWN NUM 1545 1121 1026 591 1456 429 201 686 481 214
SVWN-TDDFT NUM 1550 1120 1029 590 1397 440 65 678 481 204
SVWN ANH 1523 1127 1038 592 1458 432 368 721 488 239
SVWN-TDDFT ANH 1528 1124 1036 591 1404 441 395 711 477 227
CIS AN 1724 1284 1097 658 406i 493 945i 911 992 322
CASSCF AN 1663 1266 1053 643 2723* 457 370 834* 2343i* 311
CASSCF NUM 1664 1266 1053 644 1347 461 280 853 1229 321
CASSCF ANH 1664 1270 1052 645 1373 463 503 878 1091 332
UMP2 AN 1568 1197 1027 609 2380* 440 22042* 803* 1260* 269
CASPT2 NUM 1617 1196 1051 604 1594 389 203 720 2069 197
CASPT2 ANH 1587 1201 1022 604 1546 393 392 755 1824 225

a AN (analytical) frequencies are from analytical second-derivative calculations, while NUM (numerical) and ANH (anharmonic) frequencies are
from analysis of the potential surfaces along the appropriate CASSCF analytical normal modes. An asterisk indicates that the potential-energy
surface is not a continuous function of that particular mode; i indicates an imaginary frequency, i.e., a transition state.b From Fischer,17 except for
those described in footnotec. c Our assignment of an observed30 infrared line; see the Conclusions.d We reassign this as 1410 cm-1.

TABLE 5: Analytically Calculated and Observed non-CH
Infrared-Active Vibration Frequencies, cm-1 a

method state
b1u,
ν19a

b1u,
ν18a

b1u,
ν12

b2u,
ν19b

b2u,
ν14

b2u,
ν18b

b3u,
ν11

b3u,
ν16b

obsd 1 S0 1484 1136 1021 1416 1149 1063 785 420
B3LYP S0 1508 1162 1032 1436 1089 1242 803 431
SVWN S0 1468 1142 1002 1405 1065 1333 767 410
SCF S0 1652 1251 1117 1553 1191 1117 888 484
CASSCF S0 1623 1225 1114 1527 1152 1080 829 455
MP2 S0 1505 1160 1034 1448 1086 1360 804 420
obsd T1 690b 565c 23617

B3LYP T1 1381 1001 667 1349 1081 1331 733 266
SVWN T1 1350 1022 831 1329 1052 1417 701 241
CIS T1 1498 1100 406i 1464 1153 1189 809 311
CASSCF T1 1486 1063 [2723] 1447 1139 1362 741 311
UMP2 T1 1421 1107 [2380] 1347 1078 1519 736 269

a Square brackets flag clearly erroneous frequencies associated with
the potential surface being a discontinuous function of the b1u

coordinates.b Our assignment.c Tentative assignment.29

Figure 1. Change in pyrazine T1(3B3u) potential energy on displacement
of pyrazine along various CASSCF T1(3B3u) normal modes, the
displacements expressed in terms of the appropriate CASSCF zero-
point vibration lengthQzpt. The energies are (s) CASPT2, (- -)
CASSCF, (b) B3LYP, and (O) B3LYP-TDDFT. The insets show the
form of the CASSCF normal modes.
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it a localized minimum-energy structure is found. The coordinate
change was projected onto the CASSCF normal modes and
found to be 2.2Qzpt, and this point is indicated in Figure 2.
CASPT2 calculations at this geometry result in an energy which
is again well above theD2h CASSCF energy. Hence, at the
CASPT2 level, there is no tendency to form localized structures.

In CASSCF potential energy surfaces, discontinuities can arise
at configurations of other than high symmetry due to the
swapping of orbitals to and from the selected active space.
Effects such as this can be minimized by careful choice of the
initial orbitals in the CASSCF calculations, and through level
shifting. Also, discontinuities at the high-symmetry geometry
can occur if, in low symmetry, the orbitals selected for the active
space do not precisely correspond to those used in the high-
symmetry calculation. Both of these effects can be eliminated
by expanding the active space to include all relevant orbitals.
Initially, we strove to find an active space which could produce
a potential surface continuous for several zero-point displace-
ments in any combination of modes around the3B3u equilibrium
geometry. However, it soon became clear that such an active
space would need to be at least as large as (12,14), the active
space which contains all molecular orbitals within the range of
the lowest occupiedπ orbital to the highest unoccupiedπ*
valence orbital. In practice, additional orbitals are needed as
the inclusion of an orbital with significant nitrogen lone-pair
involvement requires the addition of the matching orbital with
opposite phase, for example, and hence, all orbitals of inter-
mediate energy between these and those in the (12,14) active
space must also be included. As a result, no practicable single
active space can be found, and hence active spaces and state-
averaging specifications were designed for each individual
mode, as detailed in Table 1. The resulting potential energy
surfaces, shown in Figure 1, are continuous. Both removal and
addition of orbitals from these active spaces will, in general,
result in loss of continuity. The choice of active space is
particularly critical forν4 andν5.

CIS wave functions are not subject to instabilities, provided
that the ground-state wave function is stable, as they embody a
complete configuration-interaction calculation at the single-
excitation level; i.e., all molecular orbitals are treated equally.
However, density functional calculations can also give rise to
instabilities in the solutions of the Kohn-Sham equations.28 For
pyrazine, we find that the B3LYP and SVWN3B3u potential
surfaces are continuous.

In the Duschinsky-matrix summary given in Table 3,
vibrational symmetries for which distortion is known to give
rise to discontinuous potential energy surfaces are flagged by
“D”; other cases in which discontinuity is suspected are flagged
with “d”.

C. Vibronic Coupling. What is usually termed “vibronic
coupling” involves the breakdown of the crude-adiabatic ap-
proximation, i.e., the assumption that the combined electronic/
vibrational wave functions can be expressed as

wherei indexes electronic states andj indexes vibrational states,
q are electronic coordinates,Q are nuclear coordinates, and the
electronic wave functionsφi, which depend parametrically on
Q, are taken to be invariant toQ and hence are evaluated at
some reference configurationQ0 only. In this fashion the
excited-state vibrational modes and frequencies are often simply
taken to equal those of the ground electronic state. Vibronic
coupling in its simpler Herzberg-Teller form15 involves merely
the reintroduction of coordinate dependence to the electronic
wave functionsφi. More generally, the full molecular Hamil-
tonian HD, which includes nonadiabatic interactions, can be
expressed in the basis set of the crude-adiabatic wave functions;
applying a first-order Taylor expansion in nuclear motion gives
interstate (i * i′) matrix elements

Figure 2. CASSCF and CASPT2 potential-energy surfaces of pyrazine
T1(3B3u) displaced along the b1u CASSCF normal modeν12. The energies
are (s) the reference CASSCF wave function optimized for T1(3B3u)
only, (- -) the reference CASSCF wave function optimized for an
equal-weight state average of T1(3B3u) and T5(3B1u), (b) the single-
state energy of the structure obtained by minimizing the single-state
CASSCF energy inC2V symmetry, and (O) the state-averaged energy
at this geometry. The energy∆E is expressed relative to that obtained
at Q ) 0 usingD2h electronic symmetry so that continuous potential-
energy surfaces must pass through the point (Q ) 0, ∆E ) 0); however,
electronic symmetry lowering discontinuously reduces the single-state
CASSCF energy atQ ) 0 while raising the corresponding CASPT2
energy.

Figure 3. CASSCF and CASPT2 potential-energy surfaces of pyrazine
T1(3B3u) and T2(3B1u) displaced along the b2g CASSCF normal mode
ν4, the CASSCF reference wave function being obtained from an equal-
weight state average over these two states.

ψij(q,Q) ) φi(q;Q0) øj(Q) (1)
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wherek indexes the normal modes and theR’s are known as
vibronic coupling constants. (Note that vibronic coupling
constants are often15,17 expressed as 21/2Rk

ii ′.) If only two
electronic states are involved, these are expressed simply asRk.
The nuclear wave functions|øj〉 are usually expressed as
products of harmonic oscillator wave functions containingnj

k

quanta in each mode so that the above vibrational integrals are
zero except for the case thatnj

l ) nj′
l for l * k andnj

k ) nj′
k (

1; in this case we obtain46

if Qk is expressed in (mass-dependent) dimensionless zero-point
units. The interactions involved are shown schematically in
Figure 4 for the case of two electronic states and one vibrational
degree of freedom. This is equivalent to assuming that there
exist two delocalized diabatic states with coordinate-dependent
coupling given by

whereQ̇k is the momentum conjugate toQk, h0 is the energy
of the lower state, and∆ is the energy difference.

An alternate but equivalent description of this model can be
obtained through a coordinate-independent rotation of this
Hamiltonian into the localized diabatic representation25

where

In this representation,J is the electronic coupling between two
equivalent symmetry-broken localized states, each state being
characterized by displacementsδk in the equilibrium geometry.
These diabatic surfaces are sketched in Figure 5, which
illustrates an important property, the vibrational mode relaxation
energyλk given by

This representation is the one most frequently used to describe
intramolecular electron-transfer processes, processes which
involve very strong vibronic coupling between the ground and

first excited electronic states. Computationally, one proceeds
by defining vibrational/electronic wave functions for each of
the localized states here namedL andR:

The vibronic coupling matrix elements from eq 5 are then given
by

which is simply the electronic coupling times a Franck-Condon
overlap matrix element. Note that all of these equations can be
generalized to the situation in which the localized diabatic
surfaces are not degenerate,25 but that case is not of concern
here.

Another method by which this vibronic problem could be
solved is through the introduction of the Born-Oppenheimer
adiabatic approximation to diagonalize either eq 4 or eq 5
parametrically as a function ofQ and hence determine two
anharmonic adiabatic electronic potential surfaces here named
“+” and “-”. The resulting surfaces (for∆ ) 4hν and λ )
8hν) are shown in Figure 5; they can subsequently be used in
variational calculations and individual vibrational wave functions

Figure 4. Physical interpretation of the delocalized diabatic vibronic
coupling model. Shown are the two potential energy surfaces and their
vibrational eigenstates coupled via eq 4 forh0 ) 0 and∆ ) 6hν, along
with arrows indicating the nonzero inter-vibronic-level couplings
specified by eqs 2 and 3.

Figure 5. An alternate but equivalent description of the vibronic
coupling problem in terms of equivalent localized diabatic states shown
as solid lines for the situation in whichh0 ) 0, ∆ ) 2|J| ) 4hν, and
δ ) 2Qzpt; derived parameters include the vibronic coupling constant
R ) 2hν (from eq 6) and reorganization energyλ ) 8hν (from eq 7).
Also shown as dashed lines are the Born-Oppenheimer adiabatic
surfaces obtained by diagonalizing either eq 4 or eq 5 parametrically
as a function ofQ. The situation depicted here is one of strong vibronic
coupling asλ > ∆, and the lower Born-Oppenheimer surface is
therefore a double minimum; see eq 11.

ψLj(q,Q) ) φ(q;δ) øj(Q+δ) and

ψRj(q,Q) ) φ(q;-δ) øj(Q-δ) (8)

〈ψLj|HL|ψRj′〉 ) J〈øj(Q+δ)|øj′(Q-δ)〉 (9)

〈ψij|HD|ψi′j′〉 ) ∑
k

〈φi|∂HD

∂Qk
|φi′〉〈øj|Qk|øj′〉 ) ∑

k

Rk
ii ′〈øj|Qk|øj′〉

(2)

〈øj|Qk|øj′〉 ) [max(nj
k,n

j′
k)/2]1/2 (3)

HD )

[h0 + ∑
k

hνk

2
[Qk

2 + Q̇k
2] ∑

k

RkQk

∑
k

RkQk h0 + ∆ + ∑
k

hνk

2
[Qk

2 + Q̇k
2] ] (4)

HL )

[h0 +
∆

2
+ ∑

k

hνk

2
[(Qk + δk)

2 + J

Q̇k
2 - δk

2]

J h0 +
∆

2
+ ∑

k

hνk

2
[(Qk - δk)

2 +

Q̇k
2 - δk

2]
]

(5)

∆ ) 2|J| and δk ) Rk/hνk (6)

λk ) 2hνkδk
2 ) 2Rk

2/hνk (7)
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determined for each state:

Not only are these adiabatic surfaces anharmonic, but the
curvature atQ ) 0 is modified also so that the harmonic
approximation for the vibration frequencies yields

The upper surface thus increases in curvature while that for the
lower surface decreases. At∆ ) λk the curvature of the lower
state vanishes, and for larger coupling a double-minimum
potential is produced, as depicted in Figure 5. Clearly the
delocalized diabatic description is the most appropriate one for
small vibronic coupling (λk < ∆) while the localized diabatic
description is most appropriate for large coupling. Figures 1-3
show calculated adiabatic potential energy surfaces for pyrazine,
and surfaces for which the curvature is positive, near zero, and
negative are readily apparent, indicating differing degrees of
vibronic coupling strength (further, for all states of pyrazine
considered, Table 3 indicates all symmetry blocks which contain
double-minimum potentials).

In the localized diabatic approach, the dipole moment operator
is given by

wheree is the magnitude of the charge on the electron andr is
the Cartesian distance through which an electron moves when
transferred from one localized diabatic state to the other. It is
given by

In eq 12, the diagonal elements simply represent the dipole
moments of the two diabatic states. This operator in the
delocalized diabatic representation transforms to

in which case-er/2 is simply interpreted as the transition
moment linking the two delocalized diabatic states. Once either
the delocalized or localized diabatic Hamiltonians (eq 2 or 9)
are constructed and diagonalized, final vibronic-state dipole
moments and inter-vibronic-state transition moments may be
obtained from the appropriate electronic-dipole operator.

The electronic-dipole operators above may be transformed
into the Born-Oppenheimer representation using

where CL and CD parametrically diagonalize the electronic
HamiltoniansHL andHD, respectively. In this way the Born-
Oppenheimer dipole and transition-moment operators become
explicitly nuclear coordinate dependent, allotting intensity to
what would otherwise be “forbidden” transitions.

For the evaluation of both energies and transition moments,
the localized or delocalized diabatic formalisms, in the limit of
infinite vibrational basis sets, yield identical results; use of the
adiabatic approach, however, does not. First, we note that it
does yield the correct answers in both the limit of very small
vibronic coupling,λk , ∆, and the limit of very large vibronic

coupling,λk . ∆. In the first limit, eq 11 reduces to

This result is readily obtained by determining the change in
the level spacing shown in Figure 4 through application of first-
order perturbation theory using the matrix elements given by
eq 3. In the strong-coupling limit, the two localized potential
wells become very deep and the harmonic vibration frequencies
at the bottom approachνk. It is in the region of intermediate
coupling withλk ≈ ∆ that the adiabatic approximation performs
poorly; numerical examples of this are given elsewhere.25

Equations 4 and 5 embody explicit coupling between the nuclear
and electronic coordinates which alone results in nonzero values
for the matrix elements associated with Born-Oppenheimer
breakdown15

Once these nonadiabatic effects are included, the adiabatic
formalism yields the same results as do the diabatic formalisms.

To date the most significant attempts to interpret the excited-
state vibrations of pyrazine are the vibronic coupling calculations
of Fischer17 and the (hereto less-relevant) studies of the S1-S2

conical intersection by Domcke et al.10,11 Fischer performed
vibronic coupling calculations for the S1(1B3u) and T1(3B3u) states
interacting with other states viaν4, ν5, and ν10a using the
delocalized diabatic approach; see Figure 4 and eq 4. For T1-
(3B3u), he also allowed for spin-orbit interactions, primarily to
calculate transition moments for the S0 f T1 transitions. These
were empirical calculations, and unperturbed frequenciesν,
vibronic coupling constantsR, and state energy gaps∆ were
determined by fitting the available experimental data. Confi-
dence in the results stems from the ability of the calculations
to reproduce isotopic effects and singlet-triplet differences, but
the fitted triplet energy gaps differ significantly from those
evaluated by ab initio techniques47 and suggest an alternative
assignment of the observed electronic states; our recent ab initio
and density-functional calculations27 and other recent CCSD-
(T) calculations14 suggest that the original ab initio results are
reliable, but cannot discount the possibility that the energy gaps
are indeed as Fischer’s calculations suggest.17

A key assumption that is used in Fischer’s calculations17 is
that only the nearest state of appropriate symmetry is involved
in vibronic coupling with S1(1B3u) and T1(3B3u). There would
appear to be little doubt that the selected states are the most
important states, but nevertheless states of higher energy can
also contribute. In fact, as the (n,π*) transition involves
considerable lowering of intraring bond orders, any excited state
involving similar bond-order lowering would be expected to
contribute. Fischer implicitly accounts for this effect in his
calculations by optimizing the preinteraction vibration frequen-
ciesν, decreasing them significantly compared to the ground-
state values. However, he assumes that this process involves
no Duschinsky rotation, and that the vibrational modes do not
interchange in order. No estimates have been made of the
uncertainties of the energy-gap parameters deduced from the
model, and it is, in principle, possible that the differences in
the energy gaps found between Fischer’s results and those of
electronic-structure calculations could be attributed to neglect
of vibronic coupling with higher states.

The calculations which we perform here are all within the
adiabatic Born-Oppenheimer approximation. These have the

νk
( ) νk ( Rk

2/∆ (16)

〈φ((q,Q)| ∂

∂Q|φ((q,Q)〉 and 〈φ((q,Q)| ∂
2

∂Q2|φ((q,Q)〉
(17)

ψ-j(q,Q) ) φ-(q;Q) øj
-(Q) and

ψ+j(q,Q) ) φ+(q;Q) øj
+(Q) (10)

νk
( ) νk(1 ( λk/∆)1/2 (11)

MD ) [0 -er/2
-er/2 0 ] (12)

r ) 2δQzpt/(vibrational effective mass)1/2 (13)

ML ) [0 -er/2
-er/2 0 ] (14)

M ) CL
†(Q)MLCL(Q) ) CD

†(Q)MDCD(Q) (15)

Singlet and Triplet Excited States of Pyrazine J. Phys. Chem. A, Vol. 103, No. 48, 19999837



advantage that they include all interactions with high-lying
states, and in the analytical frequency calculations the Duschin-
sky matrixes are calculated rather than assumed. However, they
neglect the effects of the nonadiabatic coupling terms shown
in eq 17, which, for the most-important lowest-lying state, are
included in Fischer’s approach.17 These contributions are large
whenλk/∆ ≈ 1 corresponding to intermediate strength vibronic
coupling and are small otherwise. As deduced by Fischer,17 this
ratio is, in his notation,Vk

2/(hν∆Et′t), which evaluates to 0.31,
0.19, and 0.05 forν10a, ν4, and ν5, respectively. Hence,
nonadiabatic effects are expected to be most significant forν10a.

D. Analysis of the Potential-Energy Curves for T1(3B3u).
Interpretation of the potential-energy curves shown in Figure
1, obtained as B3LYP, B3LYP-TDDFT, CASSCF, and CASPT2
energies evaluated along CASSCF normal coordinates, as well
as the vibration frequencies shown in Table 4 deduced from
these curves, raise six issues.

(i) Interpretation of the Unphysical Analytical Frequencies
Appearing in Table 4.This issue has already been addressed in
detail in section IV.B: they arise from instabilities in the wave
function that also manifest themselves as discontinuous potential-
energy surfaces. In the potential-energy surface calculations,
these problems are overcome through the use of expanded active
spaces and state averaging, as detailed in Table 1.

(ii) Comparison of Calculated and Experimental Frequencies.
As mentioned in the overview, good agreement is obtained for
five of the eight observed frequencies, with discrepancies
appearing forν4, ν8a, andν10a. If ν12 had been observed, large
discrepancies would also be found for this mode as well, but
the theoretical predictions forν5 are reasonably self-consistent.

(iii) Comparison of Surfaces and Frequencies EValuated by
Different Electronic-Structure Methods.Quantitative differences
in the potential-energy surfaces appear for the totally symmetric
modesν1, ν6a, andν8a as changes in equilibrium geometry rather
than as changes in frequency. The CASSCF curvature is
distinctly larger than that predicted by the other methods for
ν16b, but all surfaces are qualitatively similar. For all other
modes, very similar results are predicted by the different
methods, with the exception ofν4 for which large differences
appear. The B3LYP and B3LYP-TDDFT results indicate a much
lower curvature (ν4 ) 371 and 333 cm-1, respectively) than
the CASSCF results (ν4 ) 1229 cm-1), while a much higher
curvature is predicted by CASPT2 (ν4 ) 2069 cm-1). From
Figure 3 the origin of the problems with CASSCF and CASPT2
can be seen. CASSCF incorrectly locates T2(3B1u) below T1-
(3B3u), and these states are mixed byν4 (b2g). Very strong
vibronic coupling resulting in a double-well potential for3B1u

is thus predicted by CASSCF, with the concurrent elevation of
the frequency of the upper state. Dynamic electron correlation
favors 3B3u over 3B1u and correctly reorders these states.
However, the conical intersection predicted at the CASSCF level
has profound effects on the CASPT2 results, with the dynamic
electron correlation energy decreasing rapidly as the geometry
is distorted. Hence, while CASPT2 adequately corrects CASSCF
energies, it is not able to correct the shape of the potential-
energy surface. A new computational method known as “mul-
tistate” CASPT2 has recently been developed by Finley,
Malmqvist, Roos, and Andre´s48 to obtain improved potential-
energy surfaces for problems of this type.

(iV) Comparison of Harmonic Frequencies Obtained Analyti-
cally and Numerically.The numerical harmonic frequencies in
general are not exactly equal to the analytical ones as the
displacement is made along the CASSCF normal mode direc-
tion, not the native normal mode direction. The differences are

small, on the order of 10 cm-1, indicating that the form of
normal modes is usually robust. Another difference arises when
the analytical frequency is imaginary as the numerical frequency
is obtained from a harmonic expansion about the potential
minimum and remains real. In this case the numerical frequency
is the one most relevant to experiment, especially (as in the
case ofν10aby B3LYP) if the double-minimum potential is very
shallow. Analytical normal modes are only available for a
selected set of electronic-structure methods (herein CASSCF,
CIS, SVWN, and B3LYP) and are not currently available for
desirable methods such as CASPT2 and TDDFT approaches.
When the normal mode direction is insensitive to the compu-
tational method, it is possible to determine vibration frequencies
using advanced electronic-structure methods using the normal
mode directions determined by simpler schemes such as
CASSCF. However, for pyrazine there is one exception,ν12.
As the CASSCF wave function is unstable with respect to
distortion alongν12, the analytical CASSCF frequency is poorly
determined. It happens that the calculated frequency is 2723
cm-1 so thatν12 interacts erroneously with the CH stretch,ν13.
Hence, displacement along the CASSCFν12 direction provides
in this case a very poor coordinate for the numerical evaluation
of vibration frequencies by other methods.

(V) Importance of Diagonal Anharmonicity.For most modes,
anharmonicity has only a small affect, but its importance grows
as the vibronic coupling strength increases, becoming on the
order of 10 cm-1 for ν12, 30 cm-1 for ν4 andν5, and 100-300
cm-1 for ν10a. This pattern is qualitatively consistent with
Fischer’s vibronic coupling analysis,17 which was not required
for ν12, reflected small coupling forν4 and ν5, and indicated
large coupling forν10a. In fact the anharmonicity ofν10a is
readily apparent from Figure 1, with all methods indicating near-
zero or slightly negative curvature atQ ) 0. Quantitatively,
zero curvature is expected forλk/∆ ) 1, a value considerably
higher than that deduced by Fischer, 0.31. However, most
calculated harmonic vibration frequencies indicate thatν10a is
depressed in frequency from the ground-state value by ca. the
experimental value, 665 cm-1, the exception being CIS which
predicts a depression of 1900 cm-1. Anharmonic corrections
increase the predicted frequency to typically 200 cm-1 above
the observed frequency, however. This increase could be an
artifact as only diagonal anharmonicity is included in calcula-
tions, and as the CASSCF frequency is low so thatQzpt is large,
the Cartesian displacements inν10a involve large-amplitude
motions which are better represented using curvilinear coordi-
nates than (rectilinear) normal modes. Hence, off-diagonal
anharmonicity for this mode is expected to be large and act to
reduce the calculated vibration frequency. Nonadiabatic effects
arising from the vibronic coupling (eq 17) are also not included
in our calculation; these will depress the vibration frequency
and are largest whenλk/∆ ) 1.

(Vi) Differences between Direct and Time-Dependent DFT
Methodologies.While it is possible to perform direct density-
functional calculations for triplet excited states, no analogous
approach exists for singlet states due to spin contamination
problems.27 Time-dependent (TDDFT) approaches can be
equally applied in both cases, however, and so here we have
the opportunity to consider the performance of these more
approximate methods compared to direct evaluation. In general,
agreement between the two approaches is very good, to within
a few inverse centimeters. However, as the effects of vibronic
coupling increase, differences of up to 150 cm-1 appear.
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V. Conclusions

In general, we find that most computation methods perform
very well for ground-state vibrations, especially after scaling,
but variable results are obtained for the vibrations of T1(3B3u).
Of the eight modes for which frequencies have been firmly
assigned,17 good results are obtained for five:ν1, ν6a, ν9a, ν16a,
and ν16b. This includes the prediction of the rather unusual
frequency increase observed17,49 for ν16a (observed 65 cm-1,
calculations range between 51 and 130 cm-1), a result usually
interpreted in terms of vibronic coupling between S0(1Ag) and
S3(1Au). Also, the observed 40% reduction inν16b is well
reproduced, this mode posing49 an anomaly for theories which
assume that important vibronic coupling only arises with nearby
electronic states, which, in this case, are nonexistent. Indeed, it
is likely that most excited-state modes are well represented by
these theoretical approaches, just like ground-state modes.
However, this is not always the case for modes which are
involved in strong vibronic coupling. Interestingly, it is these
vibronically active modes which are readily detectable in
absorption and emission spectra, and hence they are the ones
for which the greatest interest often lies.

In particular, the application of CASSCF-based methods to
study excited-state vibrations of molecules of the size of
pyrazine appears fraught with difficulties. For analytical CASS-
CF frequency calculations, unstable wave functions are likely
and will lead to possibly undetected erroneous frequencies. To
avoid this problem, active spaces must be carefully chosen and
extensive state averaging may be necessary.50 Not all vibrational
modes are beset with these problems, of course, and many
degrees of freedom can be faithfully modeled using CASSCF;
the limitation is, however, that it is modes associated with
vibronic activity that lead to unstable wave functions and
discontinuous potential-energy surfaces, but it is these modes
for which the greatest interest usually lies. Other difficulties
arise as dynamic electron correlation, accounted for in CASPT2
but not in CASSCF calculations, often controls the relative
energies of excited states. If CASSCF incorrectly places the
excited state of interest above or very close to another excited
state, its potential-energy surface will be dominated by conical
intersection effects. While CASPT2 may correct the relative
energies of the states, it is not capable of correcting the shape
of the potential energy surface in such instances. Hence,
anomalous results are obtained, and the use of the new multistate
CASPT2 method48 appears essential.

CIS appears preferable to CASSCF for the determination of
analytical frequencies as discontinuities and unstable wave
functions rarely arise; this method is typically much more
efficient as well. However, we obtained quality results only for
the modes that do not involve vibronic coupling. Erratic results
were obtained for modes that do involve vibronic coupling, with
the frequency lowering being dramatically overestimated for
ν10a andν12 but almost nonexistent forν4.

It is clear from these calculations that, even possibly for
singlet states, density-functional normal coordinates would be
much easier to use than CASSCF and possibly also CIS normal
coordinates in the construction of potential-energy curves using
methods such as CASPT2.

Indeed, the best results were obtained using density-functional
theory, with both the simplistic SVWN functional and the
sophisticated B3LYP functional producing quantitatively ac-
curate results for vibronically inactive modes and realistic
descriptions of modes involving vibronic coupling. For example,
in T1(3B3u) the observed frequency ofν10ais reduced by a factor
of 4 from its ground-state value due to vibronic coupling, and

the calculations predict factors of 3-5. Hence, the most
vibronically active mode is correctly identified. A large depres-
sion of ν4 and a small depression ofν5 are also predicted, in
good agreement with experiment. This is a significant achieve-
ment as originally16 it was thought thatν5 was depressed the
most and moved to a lower frequency thanν4, later experi-
ments17 showing that this is not the case. The only credible
estimates ofν12 are those obtained from the analytical density-
functional approaches which predict 667 cm-1 (B3LYP) and
831 cm-1 (SVWN). These results do indicate significant
vibronic activity, the ground-state value being 1021 cm-1. This
mode has not been experimentally assigned for T1(3B3u) although
it is observed6,50,51 at 636 cm-1 for S1(1B3u). The B3LYP
analytical frequency for the spin-contaminated27 “average” S1-
T1 pair is 646 cm-1, and so a crude estimate of the actual
frequency in T1 would be 636+ 2 × (667- 646)) 678 cm-1;
an infrared active mode has been observed30 in T1 at 690 cm-1,
and we have assigned this frequency toν12 in Table 4. Density-
functional methods may thus prove very useful in the interpreta-
tion of excited-state molecular spectra, and new functionals are
being developed for this purpose.52

Analytical frequency calculations for excited states often
predict some small imaginary vibration frequencies. From these
calculations, an example isν10afor which the B3LYP frequency
is 84i cm-1. In such cases, it is essential that the potential surface
be determined for finite displacements along the normal mode
as the resulting surface most likely contains a very shallow local
minimum. In this case, harmonic analysis of the resulting surface
about its minimum predicts a vibration frequency of 276 cm-1,
and it is clear that the double-minimum potential cannot sustain
localized zero-point vibration. While anharmonic corrections
increase the frequency further to 374 cm-1, the observed value
is 254 cm-1. Hence, the result which is obtained directly from
the analytical frequency calculation provides a rather poor
description of the molecular vibration.

Often it is possible to “diabatize” Born-Oppenheimer
potential-energy surfaces. This involves taking the computed
surfaces and constructing a diabatic electronic Hamiltonian of
the form of either eq 4 or eq 5 from these. While all calculation
methods indicate that significant vibronic coupling is involved
with ν12 of T1(3B3u), attempts at diabatizing the calculated
surfaces for T1(3B3u) and T5(3B2g) have proven unsuccessful.
This indicates that the dominant state involved with T1(3B3u)
lies higher in energy than T5(3B2g). While ν12 has been
identified6,51,52 in the spectrum of S1(1B3u), it is yet to be
identified in the spectrum of T1(3B3u). For weak vibronic
coupling, perturbation theory predicts that the frequency depres-
sion is given byRk

2/∆ (eq 16), whereas the absorption intensity
is proportional toRk

2/∆2. Hence, vibronic coupling to higher
excited states will be proportionally more effective in reducing
the vibration frequency than in providing intensity, and this
could explain the lack of observation of this mode in the
spectrum of the triplet state.

All calculations forν8a suggest that its frequency should be
300-400 cm-1 higher than that of the absorption line assigned17

to it at 1234 cm-1. To investigate this further, we evaluated the
frequency forν8a in S1(1B3u) analytically using CASSCF, CIS,
and (spin-contaminated27) B3LYP. Again, the calculated values
(see the Supporting Information) exceed the observed17 value
of 1373 cm-1 by 200-300 cm-1, indicating that there may be
some specific problem with this mode. However, all methods
predict that the triplet-state frequency should exceed that of the
singlet state by 20-40 cm-1, whereas the observed assignment
places the triplet frequency lower by 139 cm-1. Further, all
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calculations predict that perdeuteration should reduce the
frequency by 30-50 cm-1, whereas the experimental assign-
ments indicate an increase of 31 cm-1. It is hence quite likely
that the very weak line observed16 at 1234 cm-1 in the S0 f T1

spectrum is not due toν8a. In the phosphorescence excitation
spectrum29 of pyrazine a line at 1410 cm-1 is observed and
attributed to 8a10 6a1

0 10a2
0. This is questionable as 10a2

0 itself
is poorly identified and no other sequence band involving both
6a1

0 and 10a20 is reported. On the basis of our calculations, it
appears reasonable that the band at 1410 cm-1 be assigned to
ν8a.

It is a general observation15,17that vibronic coupling between
two electronic states usually has the effect of depressing all
frequencies of a particular symmetry of the lower state such
that the relative ordering of the modes remains invariant. This
picture no longer remains generally true if significant vibronic
coupling to a number of excited states occurs, however. Often,
in assigning the spectra of excited states, it is necessary to
assume some particular ordering of the excited-state frequencies.
This is tantamount to assuming properties of the appropriate
Duschinsky rotation matrix. A priori Born-Oppenheimer
analytical frequency calculations have the advantages that they
make no assumptions as to the number of states involved in
the vibronic coupling, and the Duschinsky matrixes are deduced
from the calculations. The Duschinsky-matrix summary table,
Table 3, indicates for which irreducible representations in any
of the excited states considered the relative order of normal
modes swap (“S”) or the normal modes strongly mix (“M”).
We see that, for the out-of-plane modes, which are often the
most vibronically active modes, very few deviations from simple
behavior are reported, in line with the general observations
discussed earlier. However, the in-plane b2u and b3g modes are
involved in a large number of mode swaps. These swaps are
associated with specific bond weakening that arise due to the
electronic transition.

Recently, Kok et al.30 observed the infrared absorption
spectrum of pyrazine T1 as the transient change in the
phosphorescence spectrum (in dodecane matrix at 1.3 K)
induced by infrared laser excitation. The spectrum appears
among that of the S0 ground state and that of the matrix and
hence requires careful analysis. A total of seven bands within
the region of 250-1600 cm-1 were attributed to infrared-active
vibrations of pyrazine T1, these being located at 565, 584, 623,
690, 820, 939, and 1103 cm-1. To interpret these data, all
calculated infrared-active non-CH vibration frequencies are
shown in Table 5 for both S0 and T1, along with known or
potential assignments. Earlier, we assigned the line at 690 cm-1

to ν12, and this assignment is discussed no further.
Tomer et al.29 have tentatively assigned an observed line in

the phosphorescence excitation spectrum observed at 800 cm-1

as the overtone band 111
0 16b1

0, suggesting 563 cm-1 for ν11.
This frequency coincides with a very weak peak found by Kok
et al.30 at 565 cm-1. Like ν16b, ν11 is of b3u symmetry. All
computational methods produce continuous potential-energy
surfaces in the two b3u modes, and the results forν16b are quite
good, with errors ranging from 5 to 95 cm-1. However, the
computed analytical vibration frequencies forν11 exceed 565
cm-1 by 136-234 cm-1, while, for S0, these methods produce
errors in the calculated frequency of just-18 to +46 cm-1.
The strongest argument supporting the assignment ofν11 ) 565
cm-1 comes from the analogy with S1 for which ν11 is firmly
assigned53 as 577 cm-1, with our CASSCF and CIS calculations
both predicting small changes forν11 between S1 and T1.
However, these assignments imply thatν11 is depressed further

thanν16b as a result of vibronic coupling, and hence one would
expect to see 1110 in both the S0 f S1 and S0 f T1 spectra, but
the required lines have not been observed. Nevertheless,
anomalies of this type are well-known53 for S1. Another apparent
inconsistency in the experimental data is that the peak in their
spectrum which Kok et al. assign toν11 in S0 is one of the most
intense peaks in the spectrum, while that for T1 is extremely
weak.

Unfortunately, it is not possible to suggest assignments for
the bands observed30 at 584, 623, 820, 939, and 1103 cm-1.
The calculated frequencies with which we would hope to
correlate these bands, obtained as the observed S0 frequency
plus the calculated frequency change in going from S0 to T1,
are 1330-1400 cm-1 for ν19a, 1320-1350 cm-1 for ν19b, 1130-
1240 cm-1 for ν18b, 1140 cm-1 for ν14, and 1080-1100 cm-1

for ν18a. Of particular note isν18 for which all methods predict
a significant frequencyincreasein T1 compared to the (ob-
served) S0 value of 1063 cm-1. In the experimental spectra many
of the lines attributed to T1 fundamentals were very weak, while
strong lines observed at 811, 1029, and 1076 cm-1 were
assigned30 to crystal site effects. It could be that some of these
strong lines actually correspond to pyrazine fundamentals
instead. Also, the dodecane crystal matrix absorbs strongly in
the 1200-1400 cm-1 region, and it is possible that pyrazine
fundamentals located in this congested region were obscured.
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frequencies, normal modes, displacements, and reorganization
energies expressed in terms of normal mode contributions, and
complete Duschinsky rotation matrixes for the ground state S0-
(1Ag) and the excited states S1(1B3u), S2(1B2u), S3(1Au), T2(3B1u),
T3(3Au), T4(3B2u), T5(3B2g), and T6(3B1u) of pyrazine evaluated
using a selection of SVWN, B3LYP, CIS, SCF, MP2, and
CASSCF methodologies. This information is available free of
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