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The semiclassical (SC) initial value representation (IVR) provides a general and practical approach for including
quantum effects in classical molecular dynamics simulations. The linearized approximation (LA) to the SC-
IVR simplifies the description much further, reducing it to the well-known classical Wigner model (i.e., a
classical trajectory calculation with a Wigner distribution of initial conditions); the LA is able to describe
quantum effects well for short times (t j pâ) but not so for longer times. It is shown here how the full
SC-IVR approach, whichis able to describe quantum effects for long times, can be cast in a form very
similar in structure to the LA, with specific application to flux correlation functions relevant to chemical
reaction rates. This formulation may thus make it possible to carry out full SC-IVR calculations while still
retaining much of the simplifying aspects of its linearized approximation.

I. Introduction

There has been a rebirth of interest among several research
groups in using semiclassical (SC) theory as a practical way
for including quantum interference and tunneling effects in
classical molecular dynamics (CMD) simulations.1-8 These
recent efforts make use of an initial value representation (IVR)9

to implement the semiclassical approximation, thus reducing
the calculation to an average over the initial conditions of
classical trajectories. The primary difference of an SC-IVR
calculation from a conventional CMD one is that there is phase
information in the semiclassical calculation, from which the
quantum effects arise but which also makes the calculation more
difficult. Applications1-8 to a number of simple molecular
systems have shown that the SC-IVR provides a very useful
description of essentially all quantum effects in molecular
dynamics, so there is an intense ongoing effort to make these
calculations as practical as possible so that they can be used
for more complex molecular systems.

In a previous paper6f it was shown that a particular kind of
linearizationof the general SC-IVR expression for the reactive
flux correlation function (which is related10 to thermal rate
constants for chemical reactions) leads to an extremely simple
result for the correlation function, namely, the classical Wigner
model that has been obtained many times before from a variety
of approaches.11-14 Within this approximation the only differ-
ence from a conventional CMD, or classical trajectory calcula-
tion, is that the initial conditions are weighted by the Wigner
function corresponding to the Boltzmannized flux operator rather
than the classical Boltzmann and flux functions themselves.
(This is reviewed in section II below.) This linearized ap-
proximation to the SC-IVR is thus practical for systems with
many degrees of freedom, and in fact it has been applied6f,i to

several problems involving a reaction coordinate (or a two level
system6h) coupled to an infinite bath of harmonic oscillators
and found to give excellent results for the thermal rate constant
(by comparison to accurate quantum path integral calcula-
tions15,16). A more detailed study,6g however, showed that though
the linearized approximation to the SC-IVR describes quantum
effects in the flux correlation function accurately forshorttimes
(t j pâ), its description of longer time dynamics is that of
classical, not quantum, mechanics. This means that it is good
for describing quantum effects in direct barrier-crossing dynam-
ics, i.e., transition state theory-type dynamics,17 but not for
describing quantum effects in more complex phenomena, e.g.,
recrossing dynamics that violate transition-state theory behavior.

Because the linearized approximation to the SC-IVR, i.e., the
classical Wigner model, does some things quite well, it is
desirable to exploit its possibilities and build thereon. In this
paper I thus show how the full SC-IVR expression for the flux
correlation function can be written in the same form as its
linearized approximation, with a generalized distribution func-
tion replacing the Wigner function. This development is carried
out in section II, and section III concludes with a discussion of
further ways one may be able to simplify and implement it.

II. SC-IVR for the Flux-Side Correlation Function

The flux-side correlation function is defined by the following
quantum trace expression:10

The thermal rate constantk(T) for a chemical reaction is given
by its long time limit

Cfs(t) ) Tr[F̂(â) eiĤt/pĥe-iĤt/p] (2.1)
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whereQr is the reactant partition function (per unit volume for
a bimolecular reaction). In eq 2.1Ĥ is the total molecular
Hamiltonian andĥ ) h(q) is a Heaviside function that is 0 (1)
on the reactant (product) side of a surface that divides reactants
from products, whereq denotes all the coordinates of the system.
F̂(â) is the Boltzmannized flux operator,

whereâ is related to temperature in the usual way,â ) (kBT)-1,
and F̂ is the flux operator

The standard expression for the coordinate space, or Van
Vleck SC-IVR for the time evolution operator, is6a

where the integration variables (p0,q0) are the initial conditions
for classical trajectories,qt ≡ q(p0,q0,t) is the coordinate at time
t that results from these initial conditions, andSt the action
integral along it,

(F is the number of degrees of freedom of the system.) For
present purposes, however, it is useful for the moment to
consider trajectories running backward in time fromt to 0; thus,
the operator

propagates fromt to 0, and use of eq 2.5 gives

where here (pt,qt) are thought of as the initial conditions and
q0 ≡ q0(pt,qt) the final position; the action integralS-t is

where the integrand is the trajectory determined by the “initial
conditions” (pt,qt). By adjointing eq 2.6b, one has

where we have used primed variables as the integration variables
andq0′ ≡ q0(pt′,qt′). (Equation 2.8 is also obtainable directly
from the “standard” expression, eq 2.5, by using Liouville’s
theorem, i.e., that∫ dp0 ∫ dq0 ) ∫ dpt ∫ dpt, and also that∂qt/
∂p0 ) -∂q0/∂pt.)

Equations 2.6b and 2.8 are now used for the propagators in
the flux correlation function, eq 2.1, to give

with q0 ) q0(pt,qt), q0′ ) q0(pt′,qt). Next one performs a sum
and difference transformation of the integration variablespt

andpt′.

to give

where

Finally, we use Liouville’s theorem to change integration
variables in eq 2.10a from (pjt,qt) to (p0,q0), which are connected
to (pjt,qt) by the trajectory from 0 tot, giving

where

with qt ) qt(p0,q0), pjt(p0,q0), andq0
( andS-t

( from eqs 2.10b
and 2.10c. The meaning of eq 2.11 is indicated pictorially in
Figure 1. Given initial conditions (p0,q0) (at time t ) 0), one
integrates to timet, arriving at the phase point (pjt,qt); one now
integrates back to time 0 with “initial conditions” (at timet)
(pjt(∆p/2,qt) arriving at positionsq0

(. The action integralsS-t
(

are along the two “backward” trajectories.
The linearized approximation6f is obtained by linearizingq0

(

andS-t
( in the variable∆p:

k(T) ) Qr(T)-1 lim
tf∞

Cfs(t) (2.2)

F̂(â) ≡ e-(â/2)ĤF̂e-(â/2)Ĥ (2.3)

F̂ ) i
p
[Ĥ,ĥ] (2.4)

e-iĤt/p ) ∫dp0∫dq0[|∂qt(p0,q0)

∂p0
|/(2πip)F]1/2

×

eiSt(p0,q0)/p|qt〉〈q0| (2.5)

St(p0,q0) ) ∫0

t
dt′ [p(t′)‚q3 (t′) - H] (2.6)

eiĤt/p ≡ e-iH(0-t)/p (2.6a)

eiĤt/p ) ∫ dpt∫ dqt[|∂q0(pt,qt)

∂pt
|/(2πip)F]1/2

×

eiS-t(pt,qt)/p|q0〉〈qt| (2.6b)

S-t(pt,qt) ) ∫t

0
dt′ [p(t′)‚q3 (t′) - H] (2.7)

e-iĤt/p ) ∫ dpt′∫ dqt′[|∂q0(pt′,qt′)
∂pt′ |/(-2πip)F]1/2

×

e-iS-t(pt′,qt′)/p‚|qt′〉〈q0′| (2.8)

Cfs(t) )
∫ dqt ∫ dpt ∫ dpt′

(2πp)F
|∂q0(pt,qt)

∂pt
|1/2|∂q0(pt′,qt)

∂pt′
|1/2 ×

h(qt)〈q0′|F̂(â)|q0〉 ei[S-t(pt,qt)-S-t(pt′,qt)]/p (2.9)

pt ) pjt - ∆p
2

pt′ ) pjt + ∆p
2

Cfs(t) )
∫ dqt ∫ dpjt

(2πp)F ∫ d∆p |∂q0
+

∂pjt
|1/2 |∂q0

-

∂pjt
|1/2

h(qt) 〈q0
+|F̂(â)|q0

-〉 ei[S-t
--S-t

+]/p (2.10a)

q0
( ) q0(pjt(

∆p
2

,qt) (2.10b)

S-t
( ) S-t(pjt(

∆p
2

,qt) (2.10c)

Cfs(t) )
∫ dp0 ∫ dq0

(2πp)F
h[qt(p0,q0)] Feff(p0,q0) (2.11a)

Feff(p0,q0) ) ∫ d∆p |∂q0
+

∂pjt
|1/2 |∂q0

-

∂pjt
|1/2 ×

〈q0
+|F̂(â)|q0

-〉 ei[S-t
--S-t

+]/p (2.11b)

q0
( ≡ q0(pjt(

∆p
2

,qt)
= q0(pjt,qt) ( 1

2

∂q0(pt,qt)

∂pjt
‚∆p (2.12a)

S-t
( ≡ S-t(pjt(

∆p
2

,qt)
= S-t(pjt,qt) ( 1

2
p0(pjt,qt)‚

∂q0(pjt,qt)

∂pjt
‚∆p (2.12b)
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and we note thatq0(pjt,qt) andpj0(pt,qt) are equal toq0 andp0,
respectively, the integration variables in eq 2.11a. With the
linearized approximations in eq 2.12, and neglecting the∆p
dependence of the Jacobian determinants in eq 2.11b, the
function Feff of eq 2.11b becomes

Changing integration variables from∆p to ∆q,

then gives the Wigner function18 for Feff in this linearized
approximation,

The linearized approximation has the great advantage that the
Jacobian factor|∂q0(pt,qt)/∂pt| completely cancels out; not only
does this simplify matters by not having to calculate it but it
also eliminates problems that arise in long-time and/or chaotic
dynamics when this factor becomes very large. The fact that it
totally cancels out in the linearized approximation suggests that
its effects may be small even in the full version of the SC-IVR
if it is handled appropriately.

Equation 2.11 is thus the desired result of the present work.
It expresses the full SC-IVR for the flux-side correlation
function, i.e., there are no approximations involved in going
from eq 2.9 to eq. 2.11, in precisely the same form as its
linearized approximation, with the functionFeff(p0,q0) replacing
the Wigner function. This formulation also suggests a convenient
way of evaluating eq 2.11. Using Monte Carlo sampling based
on the Wigner functionFw(p0,q0), eq 2.11a can be written as

whereCfs
LA(t) is the linearized approximation for the correla-

tion function (i.e., the classical Wigner model) and the correction
factor ∆C(t) is given by a Monte Carlo average of

Another possibly useful variation is to use the Kubo version
of F̂(â) rather than the split operator version in eq 2.3. This
is19

so that eq 2.11b becomes

with qt ) qt(p0,q0), pjt ) pt(p0,q0). In this case one would first
integrate the trajectory with initial conditions (p0,q0) from 0 to
t. From eq 2.11a, it is required thatqt be on the product side of
the dividing surface. One then integrates fromt back to 0, with
initial conditions (pjt(∆p/2,qt); q0

+ andq0
- must lie on different

sides of the dividing surface, or else the integrand of eq 2.11c
is zero. These conditions, along with the matrix element of the
Boltzmann operator, limit the range of the integration variables.

Finally, it is useful to illustrate the basic result forFeff, eq
2.11b, for the elementary example of a one-dimensional free
particle. Here, the 0f t trajectory gives

and the two backward trajectories,t f 0, give

so that

and

With the split operator version ofF̂(â), for example, eq 2.11b
thus gives

or with the change of integration variable to∆q ) ∆pt/m,

which is identical to the Wigner function in this case. The

Figure 1. Schematic depiction of the classical trajectories relevant to
eq 2.11. The trajectory begins at time 0 with initial conditions (q0,p0)
and evolves to the phase point (qt,pj t) at time t; two trajectories are
then integrated backward in time, fromt to 0, starting from positionqt

but with momentapj t ( ∆p/2, arriving at positionsq0
(.

Feff(p0,q0) = ∫ d∆p |∂q0

∂pjt
| 〈q0 + 1

2

∂q0

∂pj
‚∆p|F̂(â)|q0 -

1
2

∂q0

∂pjt
‚∆p〉 e-ip0‚(∂q0/∂pjt)

‚

∆p/p (2.13a)

∆q ≡ ∂q0

∂pjt
‚∆p (2.13c)

Fw(p0,q0) ≡ ∫ d∆q 〈q0 + 1
2
∆q|F̂(â)|q0 - 1

2
∆q〉 e-ip0‚∆q/p

(2.13c)

Cfs(t) ) Cfs
LA(t)‚∆C(t) (2.14a)

[Feff(p0,q0)/Fw(p0,q0)] (2.14b)

F̂Kubo(â) ) i
pâ

[ĥ,e-âĤ]

Feff(p0,q0) ) i
pâ∫ d∆p |∂p0

+

∂pjt
|1/2 |∂q0

-

∂pjt
|1/2 (h(q0

+) - h(q0
-))

〈q0
+|e-âH|q0

-〉 ei[S-t
--S-t

+]/p (2.11c)

qt ) q0 + p0( t
m)

pjt ) p0

q0
( ) qt + (pjt ( ∆p

2 )(- t
m)

q0
( ) q0 -

∆p
2

t
m

S-t
( ) - t

2m(p0 ( ∆p
2 )2

Feff(p0,q0) ) ∫ d∆p
t
m

m

πp2â
∆pt

mipâ
×

exp{-m

p2â[2q0
2 + 1

2(∆pt
m )2]} e-itp0∆p/(pm)

Feff(p0,q0) ) ∫ d∆q
m

πp2â
∆q

mipâ
×

exp[-m

p2â(2q0
2 + 1

2
∆q2)] e-ip0∆q/p

9386 J. Phys. Chem. A, Vol. 103, No. 47, 1999 Miller



important thing to notice is that the integration over∆p (or ∆q)
is well localized.

III. Concluding Remarks

The purpose of this short note has been to show that the SC-
IVR expression for the flux-side correlation function can be
cast in a form very similar to its linearized approximation. This
suggests new computational approaches that may have advan-
tages over existing ones. We also note some similarities in
structure of the present formulation to the “forward-backward”
IVR presented before,6m though it is not equivalent to it. At the
present time one is still investigating various strategies for
implementing the SC-IVR approach, so various formulations
may suggest useful approaches or other approximations.

For example, it may be useful to makepart of the linearized
approximation but not all of it. Thus, suppose one neglects the
∆p dependence in the Jacobian factors in eq 2.11b but retains
it elsewhere, then

so that one can change integration variables in eq 2.11b from
∆p to ∆q,

and the expression for the effective distribution function
becomes

with q0
( andS-t

( still given by eqs 2.10b and 2.10c, and

One expects the dependence on the Jacobian factor,∂qt/∂p0, to
be weak, since there is no dependence at all in the linearized
approximation.
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∂q0
(

∂pjt
)

∂q0(pjt,qt)

∂pjt
) -

∂qt(p0,q0)

∂p0

∆q ≡ ∂q0(pjt,qt)

∂pt
‚∆p

) -
∂qt(p0,q0)

∂p0
‚∆p

Feff(p0,q0) ) ∫ d∆q 〈q0
+|F̂(â)|q0

-〉‚ei[S-t
--S-t

+]/p (3.1)

pjt ) pt(p0,q0)

qt ) qt(p0,q0)

∆p ) -(∂qt(p0,q0)

∂p0
)-1

‚∆q
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