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The semiclassical (SC) initial value representation (IVR) provides a general and practical approach for including
guantum effects in classical molecular dynamics simulations. The linearized approximation (LA) to the SC-
IVR simplifies the description much further, reducing it to the well-known classical Wigner model (i.e., a
classical trajectory calculation with a Wigner distribution of initial conditions); the LA is able to describe
guantum effects well for short times$ £ AS) but not so for longer times. It is shown here how the full
SC-IVR approach, whiclis able to describe quantum effects for long times, can be cast in a form very
similar in structure to the LA, with specific application to flux correlation functions relevant to chemical
reaction rates. This formulation may thus make it possible to carry out full SC-IVR calculations while still
retaining much of the simplifying aspects of its linearized approximation.

I. Introduction several problems involving a reaction coordinate (or a two level

. . systeni") coupled to an infinite bath of harmonic oscillators
There has been a rebirth of interest among several researchyng found to give excellent results for the thermal rate constant

groups in using semiclassical (SC) theory as a practical way oy comparison to accurate quantum path integral calcula-
for including quantum interference and tunneling effects in tions'519. A more detailed stud$g however, showed that though

classical molecular dynamics (CMD) simulation$. These 6 |inearized approximation to the SC-IVR describes quantum
recent efforts make use of an initial value representation (\VR) effects in the flux correlation function accurately &rorttimes

to implement the semiclassical approximation, thus reducing (t < hp), its description of longer time dynamics is that of
the calculation to an average over the initial conditions of . assical not quantum, mechanics. This means that it is good
classical trajectories. The primary difference of an SC-IVR {4 jescribing quantum effects in direct barrier-crossing dynam-
calculation from a conventional CMD one is that there is phase j.s i e  transition state theory-type dynamiéut not for
information in the semiclassical calculation, from which the deécribi'ng quantum effects in more complex phenomena, e.g
quantum effects arise but which also makes the calculation MOr€acrossing dynamics that violate transition-state theory behavior.

difficult. Applications—8 to a number of simple molecular . . S .
systems have shown that the SC-IVR provides a very useful Be(_:ause t.he linearized approximation t.o the SC.:'IVR’ €., the
classical Wigner model, does some things quite well, it is

description of essentially all quantum effects in molecular A o o : .

dynamics, so there is an intense ongoing effort to make these‘lles'ratl)lt'f1 to e;:plm:] Its Fhosiltﬂms“(e;sn?gd build there%on.thln ft|h|s

calculations as practical as possible so that they can be use aper | thus show how the Tull ST-TVix expression for the Tiux
correlation function can be written in the same form as its

for more complex molecular systems. . . o . . e

. &%it was shown that a particular kind of I!nearlzed gpprommgtlon, with a gengrallzed dlstrlbut!on func-
. In a previous papeti p . tion replacing the Wigner function. This development is carried
linearizationof the general SC-IVR expression for the reactive out in section Il, and section Il concludes with a discussion of
flux correlation function (which is relaté® to thermal rate further ways on’e may be able to simplify and implement it
constants for chemical reactions) leads to an extremely simple '
result for the correlation function, namely, the classical Wigner . . .
model that has been obtained many times before from a variety!!- SC-IVR for the Flux-Side Correlation Function
of approaches!~1* Within this approximation the only differ-
ence from a conventional CMD, or classical trajectory calcula-
tion, is that the initial conditions are weighted by the Wigner
function corresponding to the Boltzmannized flux operator rather N e il
than the classical Boltzmann and flux functions themselves. Cis(t) = Tr[F(B) e "he "] (2.1)
(This is reviewed in section Il below.) This linearized ap-
proximation to the SC-IVR is thus practical for systems with The thermal rate constak(T) for a chemical reaction is given
many degrees of freedom, and in fact it has been aglical by its long time limit
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The flux-side correlation function is defined by the following
quantum trace expressiéh:
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k(T) n Qr(T) !mo Cfs(t) (22) f dql f dpt f dpl aqo(pt’qt) 1/2 aqO(pt ’qt) 1/2
CfS( ) - 27[;:[ | ap apr
whereQ; is the reactant partition function (per unit volume for ( ) . v ! ,
a bimolecular reaction). In eq 2.8 is the total molecular h(q,) [y |F(B)]q,0e!S P —S(pradlh (5 g)

Hamiltonian anch = h(q) is a Heaviside function that is 0 (1)
on the reactant (product) side of a surface that divides reactantswith go = qo(p:,at), o' = do(pt',qr). Next one performs a sum
from products, wherg denotes all the coordinates of the system. and difference transformation of the integration varialpes

F(B) is the Boltzmannized flux operator, andpy'.
o — A (BIAE S~ (BI2)H A
F(B)=e Fe (2.3) =P, — 2p
wherep is related to temperature in the usual ways (ksT) %,
andF is the flux operator b/ =p, + L Ap
. t t 2
N
F= E[H’h] (2.4) to give
The standard expression for the coordinate space, or Van f day, f dp, q
Vleck SC-IVR for the time evolution operator ffs C. () = f dA | o |1’2| |1/2
'S F oD
( ) (27h) Py
aq p e o
e " = [dpq [doo| [———|/(2ni h)] h(ay [, IF(ﬂ)Iqo (eSS (2.10a)
g SiPo. QO)/ﬁ|th]mO| (2.5) where
where the integration variablegy(qo) are the initial conditions Ao = qo(pti%,qt) (2.10b)
for classical trajectoriesy; = q(po,do,t) is the coordinate at time
t that results from these initial conditions, agdthe action . Ap
integral along it, S = S_t(;‘)t:I:?,qt) (2.10c)
St(po,qo)=fot dt’ [p(t)-q(t) — H] (2.6) Finally, we use Liouville's theorem to change integration

variables in eq 2.10a fronp{q;) to (po,go), which are connected
(F is the number of degrees of freedom of the system.) For to (Dt,0:) by the trajectory from 0 ta, giving
present purposes, however, it is useful for the moment to
consider trajectories running backward in time frota 0; thus, fdp qu

0
the operator Cis(t) = h[a(Po,do)] Fer(Podd)  (2.11a)

(27h)"

iAvh _ —iHO-Oh
e '=e (2.6a) where

propagates froni to 0, and use of eq 2.5 gives

S [ o ]

Fe(Podo) = dAp| |1’2| |”2

a0o(Pa)
P mo IF(ﬁ)Iqo TS S (2.11b)

/
/(zmh)F] ”

&g T, (2.6b)
with gt = gi(Po,do), Pt(Po.do), andgoe* andS_¢* from eqs 2.10b
where heref;,q;) are thought of as the initial conditions and and 2.10c. The meaning of eq 2.11 is indicated pictorially in

Jo = Jo(pu,Qy) the final position; the action integr&-; is Figure 1. Given initial conditionspg,do) (at timet = 0), one
integrates to timé, arriving at the phase poinp{q:); one now
S (pudy) = fto dt' [p(t)-¢(t') — H] (2.7) integrates back to time 0 with “initial conditions” (at tintg

(PeAp/2,qy) arriving at positiong|o™. The action integralS_¢*

where the integrand is the trajectory determined by the “initial &€ along the two “backward” trajectories.
conditions” y,q). By adjointing eq 2.6b, one has The linearized approximatiéhis obtained by linearizingo*®
andS_¢* in the variableAp:
IHt/ﬁ f dp[ f d

qo(pt ,qt 9]

_ A
i(=27ih) ] 0" = a5

|5—1(Px ad)h, 28
‘o (28) P WPu)_
where we have used primed variables as the integration variables = Qoo P,

andqo = qo(pt,qt'). (Equation 2.8 is also obtainable directly
from the “standard” expression, eq 2.5, by using Liouville’s S = (p q)
theorem, i.e., thaf dpo / dgo = / dp; / dp;, and also thadqy/ B T2
9po = —0Go/op.) 1 80o(P,.Cl)
Equations 2.6b and 2.8 are now used for the propagators in =S (Ppay) £ PPy & Ap (2.12b)
the flux correlation function, eq 2.1, to give 2 Py

(2.12a)
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Figure 1. Schematic depiction of the classical trajectories relevant to
eq 2.11. The trajectory begins at time 0 with initial conditiogg)

and evolves to the phase poin,p:) at timet; two trajectories are
then integrated backward in time, frano 0, starting from positiowj

but with momentap; + Ap/2, arriving at positiongje*.

Qo Pt

and we note thao(pt,qr) and po(p:,q:) are equal tajo and po,
respectively, the integration variables in eq 2.11a. With the
linearized approximations in eq 2.12, and neglecting Ape
dependence of the Jacobian determinants in eq 2.11b, th
function Fet of eq 2.11b becomes

1999

3o Q .
Fer(Podo) = J dAp |3_I3t| 0t 5 £°Ap F(B)|do —
a : N
%aipoﬂp "Po'(aqo/dpt).Ap/h (2.13a)
t

Changing integration variables frofkp to Aq,

a
&.Ap

A9= 5,

(2.13c)

then gives the Wigner functiéh for Fe in this linearized
approximation,

qo _ %Aq&*ipo‘Aq/ﬁ

FulPodo) = f daa [d + 50/F()
(2.13¢)

The linearized approximation has the great advantage that the

Jacobian factofaqo(pt,qi)/dpt] completely cancels out; not only
does this simplify matters by not having to calculate it but it

also eliminates problems that arise in long-time and/or chaotic
dynamics when this factor becomes very large. The fact that it
totally cancels out in the linearized approximation suggests that

its effects may be small even in the full version of the SC-IVR
if it is handled appropriately.

Equation 2.11 is thus the desired result of the present work.

It expresses the full SC-IVR for the flux-side correlation

function, i.e., there are no approximations involved in going
from eq 2.9 to eq. 2.11, in precisely the same form as its
linearized approximation, with the functidf(po,qo) replacing

the Wigner function. This formulation also suggests a convenient
way of evaluating eq 2.11. Using Monte Carlo sampling based

on the Wigner functiory(po,Qo), €9 2.11a can be written as

Ci(t) = C2\(1)- AC(t) (2.14a)
where Ci/(t) is the linearized approximation for the correla-
tion function (i.e., the classical Wigner model) and the correction
factor AC(t) is given by a Monte Carlo average of

[Fei(Po:d0)/ F(Po,do)] (2.14b)

Miller

Another possibly useful variation is to use the Kubo version

of F(B) rather than the split operator version in eq 2.3. This
ist®

. i~ _an
Frunel) = glhe ™
so that eq 2.11b becomes

i opo” 12 Mo 112 + -
Fei(Po:dlo) = @f dAp 'a_g| la_pt| (h(a,") — h(a, ))
Go"le "go TS (2.110)

with g: = q«(Po,do), Pt = P«(Po.do)- In this case one would first
integrate the trajectory with initial conditionpdgo) from 0 to
t. From eq 2.11a, it is required thatbe on the product side of
the dividing surface. One then integrates froback to 0, with

dhitial conditions p=Ap/2y); got andgo™ must lie on different

sides of the dividing surface, or else the integrand of eq 2.11c
is zero. These conditions, along with the matrix element of the
Boltzmann operator, limit the range of the integration variables.

Finally, it is useful to illustrate the basic result fBes, eq
2.11b, for the elementary example of a one-dimensional free
particle. Here, the 6~ t trajectory gives

G=0ot po(%)

Py = Po

and the two backward trajectorigs;~ 0, give

_ A t
o <o P
so that
Ap t
quZQO:F7pE
and
+__ t{ . Ap?
S = 2m(p°i 2)

With the split operator version d#(3), for example, eq 2.11b
thus gives

t m Apt «
P 2n2g ming

il Py lA_pzl ~itpoAp/(hm)
ex;{ hZﬂ[Zqo + 2( ml) } e

or with the change of integration variable A@ = Apt/m,

Fes(Po:Go) = f dA

m Aq o«
7h?g Mihp
“Mon 2 4 1y 2| imoadn
exp{hzﬁ(Zqo + 2Aq )] e

Fer(Poo) = f dAq

which is identical to the Wigner function in this case. The
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with go* and S_¢* still given by eqgs 2.10b and 2.10c, and



