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We present an energy diffusion theory approach for computing thermal and microcanonical unimolecular
reaction rates by solving the general energy diffusion equation. The solution naturally provides the rates in
the diffusion limit for fast reactions and the transition state theory (TST) limit for slow reactions. The reaction
rates between the two limits can be easily obtained by solving a one-dimensionadigkerdike equation
transformed from the diffusion equation. Employing a model system consisting of a set of harmonic oscillators
interacting with a heat bath, the thermal rates from the low-temperature TST regime to the high-temperature
diffusion regime are calculated to demonstrate their dependence on the size of the molecule. The approach
also provides a practical means of obtaining microcanonical rates at considerable savings of computer time
compared to trajectory simulations. The method is applied to the unimolecular dissociation of RDX (hexahydro-
1,3,5-trinitro-1,3,5-triazine), and its accuracy is demonstrated by comparison with the results from trajectory
and Monte Carlo variational transition state theory calculations.

I. Introduction compute the microcanonical rates of large molecifle®. The
basic idea is to consider the reaction coordinate as a subsystem

between intermolecular and intramolecular processes. In the low-that interacts with a bath consisting of the rest of the modes.
collision-rate regime, collisional activation is the slower process '€ diffusion theory can then be applied in a straightforward

and thus the rate limiting step. In the high-collision-rate regime, W& by taking the average energy per mode as the effective
the intermolecular energy transfer is sufficient to maintain an €mperature. Generally speaking, at low energies where the
equilibrium distribution of the activated complex, and the reaction is slower than IVR (intramolecular vibrational energy
reaction can often be described by transition state theory (TST)'red|stnbut|on_) and thus rate limiting, statistical theories such
In this work, we focus on the weak-collision regime where the 8 RRKM (Rice-RamspergerKasset-Marcus) are accurate.
average energy transfer per collision is small compared to theAt higher energies when the reaction becomes rapid and the
thermal energy. The weak-collision limit has been extensively rate of IVR is comparable to or even smaller than that of the
studied!® However, there is not a method available that reaction, the distribution near the transition state is depleted and

naturally provides the rates regardless of slow or fast energy Nence the true dynamic rate deviates from statistical predic-
transfer. tions16 We have applied the energy diffusion theory to compute
We here present an energy diffusion theory treatment that the microcanonical rates for large molecules in the high-energy
covers the whole range from the weak-collision to the TST limit. (diffusion) regime by assuming that the IVR rate is much slower
The starting point is the widely used energy diffusion equa- @nd thus determines the dynamic réiteé The present approach
tion*58 which consists of two parts: the FokkePlanck enables us to obtain the reaction rates more generally for the
equation in energy space describing the collisional energy entire range of energies from the statistical to the diffusion
transfer, and a term accounting for chemical reaction. The limit.
solutions of the equation provide the rates over the entire range We first apply the method to compute the thermal rates for
between the two limits. In the limit of fast collisional energy a model system of a set of harmonic oscillators embedded in a
transfer, the equilibrium distribution is maintained and the rate heat bath. The purpose is to demonstrate that the theory naturally
is simply the TST value. In the limit of slow collisional energy  provides the reaction rates from the weak-collision to the TST
transfer, energy activation is rate limiting and the equation gives limit and also to investigate the dependence of the thermal rates
the weak-collision-limit result. In the intermediate region, where on the number of degrees of freedom of the molecule. We then
the rate usually needs to be computed numerically, the energyapply the method to calculate the microcanonical rates for the
diffusion equation is transformed into a one-dimensional Schro unimolecular dissociation of RDX. The accuracy of the method
dinger-like equation to facilitate the solution. is demonstrated by comparison with classical trajectory and
Although the most direct applications of the energy diffusion Monte Carlo variational transition state theory (MCVTST)
theory are for thermal reactions, the theory can also be used toresults.

Thermal unimolecular reactions are governed by competition
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Il. The Energy Diffusion Theory by taking the microcanonical ral€E) as the perturbation. The
e;eroth order lowest eigenvalue is zero and the corresponding
eigenfunction isPe((E). The lowest eigenvalue through first
order is then

We consider a system coupled to a heat bath. Because of th
stochastic nature of the collisions the evolution of the system
is described by a Markovian master equation

P(E, 1) _ ~ J KE)P(E) dE
at [ P.{E) dE

which is simply the transition state theory expression as expected
since in the case of a slow reaction the energy supply from the
bath is sufficiently fast to maintain an equilibrium distribution
of the system. In the limit of a fast reaction (lark(&)) where

the energy supply is rate limiting, systems reaching the top of
3he barrier can be considered to react instantly. Thus it can be
assumed that the probability function is zero for energies above

[ dE'IK(E, E)P(E, 1) — K(E, E)P(E, 1] —
KE)P(E, 1) (1)

9)

whereP(E, t) is the energy probability function of the system,
k(E) is the microcanonical rate constant, ak(E, E') is the
transition kernel. If the collisional energy transfer is small
compared to the thermal enerdgT, a Kramers-Moyal
expansion of the master equation up to second order leads to
simpler energy diffusion equati®f

PED 19 5 P(E, 1) the barrier and an analytical expression for the rate can be
— =5 -Z|D(E)PB)-z5 = | — KEPE, 1) (2) derived?”® Therefore, the solution of eq 7 naturally provides
a 29E 9E Peq(E) the rate constants for the entire region from slow to fast reaction
limit.
Here Pe((E) is the equilibrium distribution However, eq 7 is usually not solvable analytically for the
. intermediate falloff region. To facilitate its numerical solutions,
Pei(E) = p(E) e’BkBT/ J. dEp(E) e T (3) we define a new functiop(E)
with p(E) being the density of states, aB{E) is the energy (E) = ( D(E) )l/2¢(E) (10)
diffusion coefficient which is just the second moment of the Pef(E)
transition kerneK(E', E)
to eliminate the first derivative term in the equation and
D(E) = f dE'K(E', E)(E' — E)? (4) transform it into a one-dimensional Schioger-like equation

with a variable mass D(E)
Assuming impulsive collisions in configuration space and

o D(E)
constant friction leads to 1y (E) = — 7 (E) +
ke TE e D(E) [(PeP(E))"  1[(PP(E)')?
D(E)=—= J, dEp(E) (®) k(E) + ¥ - == E) (11
oE O P pe 2\ rpE | |1E Y
whereg is the friction constant and(E) the density of states For the sake of simplicity, in the study presented below we
of the system. ] assume the system is harmonic. For a setnofarmonic
Equation 2 can be solved by expandiR(E, t) as oscillators the density of states is
PEED) = anexp(int)dnE) ) E?
o p(E) = . 12)
(n—1)! |_|i=l hw;
whereum and¢m(E) are the eigenvalues and eigenfunctions of - -
the operator on the right-hand side of eq 2 and the energy diffusion coefficient of eq 5 becomes
E
B _19 3 9B | D(E)=§— (13)
(1) = 52| DEPAE) 52 Pd®) k(BE)$(E) (7) ng

with =1 = kgT. Substituting eqs 12 and 13 into eq 7 yields
If the lowest eigenvalug@g is appreciably smaller than that of

the first excited state, then at timés> 1ju; the dominant 7(E) = — EXH(E) +
contribution toP(E, t) comes from the lowest eigenfunction, H 2ns
that is,

eE[A® pn  n(n— 2)]}
KE) + —[— b MO ) 4)
P(E, 1) = 8 € "gy(E) @) { w2z B2

In this caseP(E, t) is an exponential function ity and g is
obviously the rate constant. E,\n?

The first term on the right-hand side of eq 7 describes the K(E) = V(l - E) (15)
energy supply from the bath to the system, and the second term
accounts for the chemical reaction. These two competing factorswith Ey being the barrier height, we solve eq 14 numerically to
determine the reaction rate. Analytical solutions of eq 7 in the obtain the eigenvalues, and the lowest one is the rate constant.
two limits are readily available. In the limit of a slow reaction Forn > 1, we employ the standard discrete variable representa-
(small k(E)) where the chemical reaction is rate limiting, the tion (DVR) method. Forn = 1, we do not obtain good
reaction rate can be obtained using first order perturbation theoryconvergence with DVR, thus we first derive the analytical

Using the RRK (Rice-RamspergerKassel) expression fd(E)



10310 J. Phys. Chem. A, Vol. 103, No. 49, 1999

1.0 T —

0.2

8.0 12.0

EpkgT

Figure 1. Scaled rate constants= k/krst versusEy/kgT for a model
system ofn harmonic oscillators. The results are for= 1, 4, 10, and
30. The parameters used are= 0.1 fs* and& = 0.01 fs'L.

solutions of eq 14 without thk(E) term and then use them as
the basis functions to solve the full equation.

Ill. Thermal Rate Constants

Consider a model system that consists of a set of harmonic
oscillators interacting with a heat bath. Using the RRK expres-
sion of eq 15 for the microcanonical rat€E), we have
numerically solved eq 14, and the lowest eigenvalue is the rate
constant. Figure 1 shows the scaled thermal«ate a function
of SEp, wherex is defined as the ratio of the calculated rate to
the TST valuex = kikrst, With krst = ve . The results are
forn=1, 4, 10, and 30. The frequency factor was chosen as
v = 0.1 fs1 and the friction constar = 0.01 fs'1. It is clear
that the reaction is in the energy diffusion controlled regime at
high temperatures and the TST regime at low temperatures. Th
transition to the TST regime moves to lower temperatures as
the number of degrees of freedom of the subsystem decrease
However, the results fon = 10 and 30 are not substantially
different. Since the dependence of the rates @amd& are not
sensitive ton when it is large, the results indicate that in the
transition region the thermal rates are not strongly dependent
on the size of the molecule except for very small molecules
with only a few degrees of freedom.

IV. Microcanonical Rate Constants

We consider a molecule oN\8— 6 modes that are separated
into a reaction mode and\3— 7 bath modes. IN is large and
the energyE in the reaction mode is much smaller than the
total energyEita, the equilibrium distribution of the reaction
mode can be shown to be of the Boltzmann f8tm

Fed(E) = p(E) exp(~BE) (16)

wherep(E) is the density of states of the reaction mode And

€
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Figure 2. Microcanonical rate constants for the-INl bond fission in
RDX. The results are for the trajectory simulations (circles), the
diffusion theory (dashed curve), Monte Carlo variational transition state
theory (MCVTST) (triangle), and the RRK fit (solid line) to the
MCVTST results. The MCVTST results are taken from ref 19. The
diffusion theory results were fitted at a total energy of 300 kcal/mol to
the trajectory value (the fourth circle from the left) to obtain the friction
constant.

the reaction may be treated by the energy diffusion theory. Using
the harmonic approximation for the reaction coordinate, the
microcanonical rate can be obtained via eq 14 by substituting
eq 17 forg and letting the number of degrees of freedom of

the subsystem be 1.

For some simple reactions such as bond fissions, a reaction
coordinate can be easily identified. For more complicated
systems where there is not a simple reaction coordinate, one
can use the reaction path Hamiltonian théérgnd take the
intrinsic reaction coordinate as the subsystem and the normal
coordinates orthogonal to the reaction path as the bath. Thus,
the energy diffusion theory is readily applicable to general
systems. Within the harmonic approximation for the reaction
coordinate, the microcanonical rate can be obtained by solving
eq 14 once the barrier height, and the friction coefficient
are known. Assuming is independent of energy, we determine
& by fitting the rate constant calculated from eq 14 at a single
energy to the corresponding term from a trajectory calculation.
Then the rates at all energies can be obtained by solving eq 14.

As a specific example, we have applied the method to the
unimolecular dissociation of RDX. Trajectory simulations were
also performed for comparison. The primary reaction channels
are assumed to be a simple-N bond rupture and a concerted
ring fission as illustrated in Figure 1 of ref 14. Chambers and
Thompsor® have constructed a potential energy surface and
performed classical trajectory simulations on it. Because of the
availability of faster computers, we have recalculated trajectory
results on the same potential energy surface using larger
ensembles.

For the simple bond fission reaction in RDX, the-N bond
length was chosen as the reaction coordinate and the rest of the
modes as the bath. Figure 2 shows a comparison of the rate

is the effective temperature corresponding to the average energyonstants from the diffusion theory (dashed line), trajectory

per mode

B = kgT = Epiaf (3N — 6) (17)

calculations (circles), and MCVTST (triangles). The solid line
is a least-squares fit of the MCVTST rates to the RRK
expression, eq 15, with fitting parameters= 3.0 fs1 andn =

47. The barrieE, was chosen as the dissociation energy of the

Thus, for a polyatomic molecule with a large number of degrees N—N bond, E, = 47.8 kcal/mol. The diffusion theory results
of freedom, if a reaction coordinate can be identified, then the were obtained by solving eq 14 with the RRK fitting parameter
rest of the vibrational modes can be considered as a bath and’ = 3.0 fs™! used for the raté(E). The friction coefficientz
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Figure 3. Same as Figure 2 except for the ring fission reaction in
RDX.

was obtained by fitting the diffusion theory rate to the
corresponding trajectory rate B = 300 kcal/mol and then
used to calculate the rates at other energies. At low energies
the dynamic rates converge to the statistical values. At high
energies, the IVR becomes the slower and hence rate limiting
step, and thus the dynamic rates deviate more from the

corresponding statistical rates as the energy increases. It is clear

that the diffusion theory provides an accurate description from
the high energy dynamic regime down to the low energy
statistical regime.
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results indicate that for large molecules the transition from the
low-temperature TST regime to the high-temperature diffusion
regime is not sensitive to the size of the molecule.

The main purpose of this work is to provide a practical means
to compute the microcanonical rates for large molecules. The
present approach enables us to extend our previous sttidfes
of IVR-controlled reactions to the more general case whether
the rate of IVR is faster or slower than the rate of reaction.
Assuming constant friction, the method predicts the rate
constants for a wide range of energies by requiring only one
rate from a trajectory calculation at a single energy to determine
the friction coefficient. It thus provides a way of calculating
microcanonical rates at considerable savings of computer time
compared to the usual trajectory simulations. To test the
accuracy of the method, we have applied it to the two reaction
channels of the dissociation of RDX. In the simple-N bond
rupture the breaking bond was chosen as the subsystem while
in the more complicated ring fission reaction the intrinsic
reaction coordinate was chosen as the subsystem. Comparisons
with the trajectory and MCVTST results show that the method
gives accurate rates from the low-energy statistical regime to
the high-energy IVR-controlled region. Although the assumption

'of the energy diffusion theorythat the energy exchange

between the bath and the reaction coordinate is diffusiaay

not strictly hold, the calculated rate constants are nevertheless
quite accurate, suggesting that the present semiempirical method
provides a practical means of obtaining the microcanonical rates
for large molecules.
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V. Summary

(W.H.M.).
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