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We present an energy diffusion theory approach for computing thermal and microcanonical unimolecular
reaction rates by solving the general energy diffusion equation. The solution naturally provides the rates in
the diffusion limit for fast reactions and the transition state theory (TST) limit for slow reactions. The reaction
rates between the two limits can be easily obtained by solving a one-dimensional Schro¨dinger-like equation
transformed from the diffusion equation. Employing a model system consisting of a set of harmonic oscillators
interacting with a heat bath, the thermal rates from the low-temperature TST regime to the high-temperature
diffusion regime are calculated to demonstrate their dependence on the size of the molecule. The approach
also provides a practical means of obtaining microcanonical rates at considerable savings of computer time
compared to trajectory simulations. The method is applied to the unimolecular dissociation of RDX (hexahydro-
1,3,5-trinitro-1,3,5-triazine), and its accuracy is demonstrated by comparison with the results from trajectory
and Monte Carlo variational transition state theory calculations.

I. Introduction

Thermal unimolecular reactions are governed by competition
between intermolecular and intramolecular processes. In the low-
collision-rate regime, collisional activation is the slower process
and thus the rate limiting step. In the high-collision-rate regime,
the intermolecular energy transfer is sufficient to maintain an
equilibrium distribution of the activated complex, and the
reaction can often be described by transition state theory (TST).
In this work, we focus on the weak-collision regime where the
average energy transfer per collision is small compared to the
thermal energy. The weak-collision limit has been extensively
studied.1-9 However, there is not a method available that
naturally provides the rates regardless of slow or fast energy
transfer.

We here present an energy diffusion theory treatment that
covers the whole range from the weak-collision to the TST limit.
The starting point is the widely used energy diffusion equa-
tion4,5,8 which consists of two parts: the Fokker-Planck
equation in energy space describing the collisional energy
transfer, and a term accounting for chemical reaction. The
solutions of the equation provide the rates over the entire range
between the two limits. In the limit of fast collisional energy
transfer, the equilibrium distribution is maintained and the rate
is simply the TST value. In the limit of slow collisional energy
transfer, energy activation is rate limiting and the equation gives
the weak-collision-limit result. In the intermediate region, where
the rate usually needs to be computed numerically, the energy
diffusion equation is transformed into a one-dimensional Schro¨-
dinger-like equation to facilitate the solution.

Although the most direct applications of the energy diffusion
theory are for thermal reactions, the theory can also be used to

compute the microcanonical rates of large molecules.10-15 The
basic idea is to consider the reaction coordinate as a subsystem
that interacts with a bath consisting of the rest of the modes.
The diffusion theory can then be applied in a straightforward
way by taking the average energy per mode as the effective
temperature. Generally speaking, at low energies where the
reaction is slower than IVR (intramolecular vibrational energy
redistribution) and thus rate limiting, statistical theories such
as RRKM (Rice-Ramsperger-Kassel-Marcus) are accurate.
At higher energies when the reaction becomes rapid and the
rate of IVR is comparable to or even smaller than that of the
reaction, the distribution near the transition state is depleted and
hence the true dynamic rate deviates from statistical predic-
tions.16 We have applied the energy diffusion theory to compute
the microcanonical rates for large molecules in the high-energy
(diffusion) regime by assuming that the IVR rate is much slower
and thus determines the dynamic rate.11-14 The present approach
enables us to obtain the reaction rates more generally for the
entire range of energies from the statistical to the diffusion
limit.

We first apply the method to compute the thermal rates for
a model system of a set of harmonic oscillators embedded in a
heat bath. The purpose is to demonstrate that the theory naturally
provides the reaction rates from the weak-collision to the TST
limit and also to investigate the dependence of the thermal rates
on the number of degrees of freedom of the molecule. We then
apply the method to calculate the microcanonical rates for the
unimolecular dissociation of RDX. The accuracy of the method
is demonstrated by comparison with classical trajectory and
Monte Carlo variational transition state theory (MCVTST)
results.
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II. The Energy Diffusion Theory

We consider a system coupled to a heat bath. Because of the
stochastic nature of the collisions the evolution of the system
is described by a Markovian master equation

whereP(E, t) is the energy probability function of the system,
k(E) is the microcanonical rate constant, andK(E, E′) is the
transition kernel. If the collisional energy transfer is small
compared to the thermal energykBT, a Kramers-Moyal
expansion of the master equation up to second order leads to a
simpler energy diffusion equation5,6

HerePeq(E) is the equilibrium distribution

with F(E) being the density of states, andD(E) is the energy
diffusion coefficient which is just the second moment of the
transition kernelK(E′, E)

Assuming impulsive collisions in configuration space and
constant friction leads to8

whereê is the friction constant andF(E) the density of states
of the system.

Equation 2 can be solved by expandingP(E, t) as

whereµm andφm(E) are the eigenvalues and eigenfunctions of
the operator on the right-hand side of eq 2

If the lowest eigenvalueµ0 is appreciably smaller than that of
the first excited state, then at timest . 1/µ1 the dominant
contribution toP(E, t) comes from the lowest eigenfunction,
that is,

In this caseP(E, t) is an exponential function int, andµ0 is
obviously the rate constant.

The first term on the right-hand side of eq 7 describes the
energy supply from the bath to the system, and the second term
accounts for the chemical reaction. These two competing factors
determine the reaction rate. Analytical solutions of eq 7 in the
two limits are readily available. In the limit of a slow reaction
(small k(E)) where the chemical reaction is rate limiting, the
reaction rate can be obtained using first order perturbation theory

by taking the microcanonical ratek(E) as the perturbation. The
zeroth order lowest eigenvalue is zero and the corresponding
eigenfunction isPeq(E). The lowest eigenvalue through first
order is then

which is simply the transition state theory expression as expected
since in the case of a slow reaction the energy supply from the
bath is sufficiently fast to maintain an equilibrium distribution
of the system. In the limit of a fast reaction (largek(E)) where
the energy supply is rate limiting, systems reaching the top of
the barrier can be considered to react instantly. Thus it can be
assumed that the probability function is zero for energies above
the barrier and an analytical expression for the rate can be
derived.4,7,8 Therefore, the solution of eq 7 naturally provides
the rate constants for the entire region from slow to fast reaction
limit.

However, eq 7 is usually not solvable analytically for the
intermediate falloff region. To facilitate its numerical solutions,
we define a new functionø(E)

to eliminate the first derivative term in the equation and
transform it into a one-dimensional Schro¨dinger-like equation
with a variable mass 1/D(E)

For the sake of simplicity, in the study presented below we
assume the system is harmonic. For a set ofn harmonic
oscillators the density of states is

and the energy diffusion coefficient of eq 5 becomes

with â-1 ) kBT. Substituting eqs 12 and 13 into eq 7 yields

Using the RRK (Rice-Ramsperger-Kassel) expression fork(E)

with Eb being the barrier height, we solve eq 14 numerically to
obtain the eigenvalues, and the lowest one is the rate constant.
For n > 1, we employ the standard discrete variable representa-
tion (DVR) method. Forn ) 1, we do not obtain good
convergence with DVR, thus we first derive the analytical
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solutions of eq 14 without thek(E) term and then use them as
the basis functions to solve the full equation.

III. Thermal Rate Constants

Consider a model system that consists of a set of harmonic
oscillators interacting with a heat bath. Using the RRK expres-
sion of eq 15 for the microcanonical ratek(E), we have
numerically solved eq 14, and the lowest eigenvalue is the rate
constant. Figure 1 shows the scaled thermal rateκ as a function
of âEb, whereκ is defined as the ratio of the calculated rate to
the TST value,κ ) k/kTST, with kTST ) νe-âEb. The results are
for n ) 1, 4, 10, and 30. The frequency factor was chosen as
ν ) 0.1 fs-1 and the friction constantê ) 0.01 fs-1. It is clear
that the reaction is in the energy diffusion controlled regime at
high temperatures and the TST regime at low temperatures. The
transition to the TST regime moves to lower temperatures as
the number of degrees of freedom of the subsystem decreases.
However, the results forn ) 10 and 30 are not substantially
different. Since the dependence of the rates onν andê are not
sensitive ton when it is large, the results indicate that in the
transition region the thermal rates are not strongly dependent
on the size of the molecule except for very small molecules
with only a few degrees of freedom.

IV. Microcanonical Rate Constants

We consider a molecule of 3N - 6 modes that are separated
into a reaction mode and 3N - 7 bath modes. IfN is large and
the energyE in the reaction mode is much smaller than the
total energyEtotal, the equilibrium distribution of the reaction
mode can be shown to be of the Boltzmann form10

whereF(E) is the density of states of the reaction mode andâ
is the effective temperature corresponding to the average energy
per mode

Thus, for a polyatomic molecule with a large number of degrees
of freedom, if a reaction coordinate can be identified, then the
rest of the vibrational modes can be considered as a bath and

the reaction may be treated by the energy diffusion theory. Using
the harmonic approximation for the reaction coordinate, the
microcanonical rate can be obtained via eq 14 by substituting
eq 17 forâ and letting the number of degrees of freedom of
the subsystemn be 1.

For some simple reactions such as bond fissions, a reaction
coordinate can be easily identified. For more complicated
systems where there is not a simple reaction coordinate, one
can use the reaction path Hamiltonian theory17 and take the
intrinsic reaction coordinate as the subsystem and the normal
coordinates orthogonal to the reaction path as the bath. Thus,
the energy diffusion theory is readily applicable to general
systems. Within the harmonic approximation for the reaction
coordinate, the microcanonical rate can be obtained by solving
eq 14 once the barrier heightEb and the friction coefficientê
are known. Assumingê is independent of energy, we determine
ê by fitting the rate constant calculated from eq 14 at a single
energy to the corresponding term from a trajectory calculation.
Then the rates at all energies can be obtained by solving eq 14.

As a specific example, we have applied the method to the
unimolecular dissociation of RDX. Trajectory simulations were
also performed for comparison. The primary reaction channels
are assumed to be a simple N-N bond rupture and a concerted
ring fission as illustrated in Figure 1 of ref 14. Chambers and
Thompson18 have constructed a potential energy surface and
performed classical trajectory simulations on it. Because of the
availability of faster computers, we have recalculated trajectory
results on the same potential energy surface using larger
ensembles.

For the simple bond fission reaction in RDX, the N-N bond
length was chosen as the reaction coordinate and the rest of the
modes as the bath. Figure 2 shows a comparison of the rate
constants from the diffusion theory (dashed line), trajectory
calculations (circles), and MCVTST (triangles). The solid line
is a least-squares fit of the MCVTST rates to the RRK
expression, eq 15, with fitting parametersν ) 3.0 fs-1 andn )
47. The barrierEb was chosen as the dissociation energy of the
N-N bond,Eb ) 47.8 kcal/mol. The diffusion theory results
were obtained by solving eq 14 with the RRK fitting parameter
ν ) 3.0 fs-1 used for the ratek(E). The friction coefficientê

Figure 1. Scaled rate constantsκ ) k/kTST versusEb/kBT for a model
system ofn harmonic oscillators. The results are forn ) 1, 4, 10, and
30. The parameters used areν ) 0.1 fs-1 andê ) 0.01 fs-1.

Feq(E) = F(E) exp(-âE) (16)

â-1 ) kBT ) Etotal/(3N - 6) (17)

Figure 2. Microcanonical rate constants for the N-N bond fission in
RDX. The results are for the trajectory simulations (circles), the
diffusion theory (dashed curve), Monte Carlo variational transition state
theory (MCVTST) (triangle), and the RRK fit (solid line) to the
MCVTST results. The MCVTST results are taken from ref 19. The
diffusion theory results were fitted at a total energy of 300 kcal/mol to
the trajectory value (the fourth circle from the left) to obtain the friction
constantê.
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was obtained by fitting the diffusion theory rate to the
corresponding trajectory rate atEtotal ) 300 kcal/mol and then
used to calculate the rates at other energies. At low energies,
the dynamic rates converge to the statistical values. At high
energies, the IVR becomes the slower and hence rate limiting
step, and thus the dynamic rates deviate more from the
corresponding statistical rates as the energy increases. It is clear
that the diffusion theory provides an accurate description from
the high energy dynamic regime down to the low energy
statistical regime.

The ring fission reaction in RDX is a more interesting case
and also provides a more stringent test of the theory. The RDX
molecule breaks into three methylene nitramine (CH3NNO2)
molecules when three C-N bonds in the ring rupture. There is
no identifiable simple reaction coordinate for this reaction due
to the highly coupled nature of the modes. For this kind of
complicated system we use the idea of the intrinsic reaction
coordinate (IRC) and take the IRC as the subsystem and the
transverse vibrational modes as the bath. A plot of the potential
energy along the minimum-energy path for the ring fission in
RDX is given in Figure 2 of ref 18 with a barrier of 37 kcal/
mol. The ring fission reaction rates calculated by diffusion theory
(dashed line), classical trajectories (circles), MCVTST19 (tri-
angles), and the RRK fit19 to the MCVTST rates (solid line)
are compared in Figure 3. The RRK fitting parameters areν )
0.5 fs-1 andn ) 57. The diffusion theory results were obtained
by fitting to the trajectory result atEtotal ) 300 kcal/mol to
determine the friction coefficientê. Again, diffusion theory gives
good agreement with the statistical results at low energies and
the dynamic results at higher energies.

V. Summary

We have presented an approach for obtaining thermal and
microcanonical unimolecular reaction rates by solving the
general energy diffusion equation. The basic assumption is that
the energy exchange between the bath and the subsystem is
diffusive and hence the evolution of the energy distribution of
the subsystem can be described by the energy diffusion equation.
The solution of the equation naturally covers the entire range
from the weak-collision limit to the TST regime, and the rate
constants can be easily obtained by solving a one-dimensional
Schrödinger-like equation.

We have demonstrated the method by computing thermal
rates for a model system in which the molecule is assumed to
be a set of harmonic oscillators embedded in a heat bath. The

results indicate that for large molecules the transition from the
low-temperature TST regime to the high-temperature diffusion
regime is not sensitive to the size of the molecule.

The main purpose of this work is to provide a practical means
to compute the microcanonical rates for large molecules. The
present approach enables us to extend our previous studies10-14

of IVR-controlled reactions to the more general case whether
the rate of IVR is faster or slower than the rate of reaction.
Assuming constant friction, the method predicts the rate
constants for a wide range of energies by requiring only one
rate from a trajectory calculation at a single energy to determine
the friction coefficient. It thus provides a way of calculating
microcanonical rates at considerable savings of computer time
compared to the usual trajectory simulations. To test the
accuracy of the method, we have applied it to the two reaction
channels of the dissociation of RDX. In the simple N-N bond
rupture the breaking bond was chosen as the subsystem while
in the more complicated ring fission reaction the intrinsic
reaction coordinate was chosen as the subsystem. Comparisons
with the trajectory and MCVTST results show that the method
gives accurate rates from the low-energy statistical regime to
the high-energy IVR-controlled region. Although the assumption
of the energy diffusion theorysthat the energy exchange
between the bath and the reaction coordinate is diffusivesmay
not strictly hold, the calculated rate constants are nevertheless
quite accurate, suggesting that the present semiempirical method
provides a practical means of obtaining the microcanonical rates
for large molecules.
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