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This paper addresses the issue of internal consistency in the molecular dynamics with quantum transitions
(MDQT) surface hopping method. The MDQT method is based on Tully’s fewest switches algorithm, which

is designed to ensure that the fraction of trajectories on each surface is equivalent to the corresponding average
quantum probability determined by coherent propagation of the quantum amplitudes. For many systems,
however, this internal consistency is not maintained. Two reasons for this discrepancy are the existence of
classically forbidden transitions and the divergence of the independent trajectories. This paper presents a
modified MDQT method that improves the internal consistency. The classically forbidden switches are
eliminated by utilizing modified velocities for the integration of the quantum amplitudes, and the difficulties
due to divergent trajectories are alleviated by removing the coherence of the quantum amplitudes when each
trajectory leaves a nonadiabatic coupling region. The standard and modified MDQT methods are compared
to fully quantum calculations for a classic model for ultrafast electronic relaxation (i.e., a two-state three-
mode model of the conically intersecting&hd $ excited states of pyrazine). The standard MDQT calculations
exhibit significant discrepancies between the fraction of trajectories in each state and the corresponding average
quantum probability. The modified MDQT method leads to remarkable internal consistency for this model
system.

I. Introduction The reason often cited for the internal inconsistency in MDQT
is the existence of classically forbidden transitions. In MDQT,

Trajectory surface hopping methods have been used exten energy is conserved during a transition by adjusting the classical
ivel r ring on multipl I ntial 7. - . . . i
sively to study processes occuring on multiple coupled potentia| velocities as if they were subjected to a force in the direction

energy surfaces. In these methods the system is divided into a £ th diabati i wor. If th . i h
guantum and a classical subsystem. The classical subsystem gl the nonadiabalic coupling vector. ere 1S not enoug
approximated as an ensemble of independent trajectories, an elocity n th's dlrect!on to maintain energy conservation, then
each trajectory moves classically on a single potential enérgy he transition is classically forbidden and is not allowed to occur.
surface with the possibility of instantaneous transitions among (In th's_ case, the component of vel_ocny n t_he d|rect|on_ of the
the surfaces. The various surface hopping methddsliffer nonadlaba_\tlc c_:oupllng is reversédr, in some |_mplementa_1t|ons,
mainly in how these transitions are incorporated. This paper the \{glocr[y IS not chgngeﬁ} Such classically forbldo!en
centers on the molecular dynamics with quantum transitions transitions !ead to an inconsistency betwgen the fraction of
(MDQT) method, which is based on Tully’s stochastic fewest tra]ecto.n.es in each statg and the correqundmg average quantum
switches algorithnd# In this algorithm the quantum amplitudes PrObab'I't¥H Th? mofs:hrlgoroui way to rf1|x Fh'sl pr%bler? IS to i
for all surfaces are propagated coherently along each indepen-'ncrease. € size o the guanium mechanical subsystem or to
dent trajectory, and the probability of a transition depends on use semiclassical formulatlons. Unfor'Funater, a suff|c!ently
the rate of change of the quantum probabilities determined from !arge quantum mechanical subsystem is oft_er_1 compu_tatlon_ally
the quantum amplitudes. The number of transitions is minimized |mpract|t_:al and, although a number of prom|s£|)ng semiclassical
by specifying that the flux of trajectories switching from one Lormglatlons haveh b_een _ﬁevelopelpl regeh’dy‘, t_he surface |
state to another is unidirectional over a specified time interval. opping approach is still appealing due to its conceptua

This algorithm is designed to ensure that the fraction of SIMPlicity and computational speed.

trajectories on each surface is equivalent to the corresponding  Classically forbidden transitions can be eliminated in the
average quantum probability. As has been noticed in the framework of the MDQT method in a number of ways. One

literature, however, this internal consistency is not always hypothesis is that the forbidden transitions should occur and
maintainec233The goal of this paper is to identify the reasons that the fundamental limitation is the method of velocity

for this discrepancy and to develop methods for improving the adjustment. In this case, classically forbidden transitions can
internal consistency of MDQT. These new methods are applied be eliminated by taking energy from other components of the
to a model of the conically intersecting 8nd S excited states ~ Vvelocities, delaying the transition until the energy is available
of pyrazine. This model system was chosen because it is ain the appropriate component of the velocities, or, if all else
classic example of ultrafast electronic relaxatfof® and was  fails, violating energy conservation. An alternative hypothesis
previously found to exhibit a significant discrepancy between is that the forbidden transitions should not occur and that the
the fraction of trajectories in each state and the correspondingfundamental limitation is the method of integrating the quantum

average quantum probability in MDQT calculatioHs. amplitudes. In support of this alternative view, Néw and
Stocks found that for the pyrazine model the agreement with
* Corresponding author. E-mail: hammes-schiffer.1@nd.edu. exact quantum calculations was much better for the fraction of

10.1021/jp991602b CCC: $18.00 © 1999 American Chemical Society
Published on Web 09/23/1999



9400 J. Phys. Chem. A, Vol. 103, No. 47, 1999 Fang and Hammes-Schiffer

trajectories in each state than for the corresponding average (a)

quantum probability. \Q_»\/
Adopting this alternative view, in a previous pajfewe

presented a modification of MDQT (denoted MDQT*) that W

eliminates classically forbidden transitions by utilizing modified P=E=1

velocities for the integration of the quantum amplitudes. In this e

approach, the nonadiabatic coupling between two states vanishes (b)

if a switch to the unoccupied state would be classically

forbidden. As a result, the quantum amplitudes between these =

two states are uncoupled so population is not transferred between \

these two states. According to the fewest switches algorithm, P=F

in this case the probability of a transition between these two

states vanishes. In ref 50 we applied both MDQT and MDQT* (©

to models representing single and double proton transfer and \_/

found that both MDQT and MDQT* maintained internal

consistency. In this paper we apply MDQT* to the pyrazine \/\\A‘/

model system to provide a more rigorous test of MDQT*. We N

show that even in the absence of classically forbidden switches B, >0

the MDQT* method does not maintain internal consistency for F=0

this model system. Figure 1. A schematic picture of the effects of divergent trajectories

Another reason for the lack of internal consistency in MDQT " MDQT simulations, wherd, andF, denote the average quantum
probability and the fraction of trajectories, respectively, in the upper

is that the diYefgence O_f independgnt trajectories may leif‘d to Astate. The populations for the two states are shown for (a) the initial
breakdown in the basic assumption of the fewest switches time, (b) an intermediate time, and (c) the final time. The different

algorithm. This basic assumption is that when a trajectory passesorientations of the arrows within (b) and (c) indicate that the trajectories
through a nonadiabatic coupling region with nonzero quantum are moving in different directions.
amplitudes for the other surfaces, an ensemble of virtually

identi_cal traject_ories (i.e., with similar quantum a_tmplitudes and tories on the lower state may diverge and follow different paths
classical coordinates and momenta) are apportioned among theas they leave the nonadiabatic coupling region. In Figure 1, the

other S“ffa?ces qccordlng to these quantum amphtude;. (N°teinternal consistency is maintained between the time shown in
Fh.a.t the trajectories are expect(_ed to vary S."ght.ly dug to different Figure 1a and the time shown in Figure 1b. The arrows in Figure
initial conditions.) Typically, this assumption is valid for one- 4 %' “ingicate that after the time shown in Figure 1b, the
d|men_3|ona_l systems mvoI_vmg a single pass th_rough a S'ngletrajectories on the lower state move out of the nonadiabatic
!non_ad|abat_|c coupling region. _Unfortunately, this assumption coupling region before the trajectories on the upper state have
is violated '_n many other situatios. ) passed through the nonadiabatic coupling region. The orienta-

A dramatic example of the breakdown of the fewest switches tjons of the arrows indicate that the trajectories on the lower
algorithm can be illustrated with a two-state model with two  state are moving in a different direction than those on the upper
nonadiabatic coupling regions. Assume all of the population state. Note that this situation is more likely for multidimensional
starts on the upper state, and when it passes through the firskystems. If the population flux is unidirectional (i.e., from the
nonadiabatic coupling region some of the population transfers ypper to the lower state) throughout the coupling region, this
down to the lower state. Assume also that there is a barrier ongivergence will not affect the final fraction of trajectories in
the lower state preventing the lower state population from each state. On the other hand, this divergence will lead to an
reaching the second nonadiabatic coupling region. In this case.internal inconsistency because the quantum amplitudes of the
when the upper state population passes through the seconjivergent trajectories will not be consistent with the quantum
nonadiabatic coupling region the quantum amplitudes of the amplitudes of the trajectories that continued to move on the
trajectories are nonzero for the lower state, but there are noexcited state. Thus, as illustrated in Figure 1c, the fraction of
trajectories on the lower state in this nonadiabatic coupling trajectories on each state may be correct after passing through
region. As a result, the population flux determined by the net thjs nonadiabatic coupling region, but the internal consistency
change in quantum probabilities for the trajectories on the upper || not be maintained. In this paper we present evidence that
state is inaccurate. (See ref 51 for a clear and Comprehensivqhis is the main source of the discrepancies noticed byéﬂu
analysis of such situations.) and Stock for the pyrazine model system.

A breakdown of the fewest switches algorithm could also  This inconsistency can be alleviated by eliminating the
occur for a single pass through a single nonadiabatic coupling coherence of the quantum amplitudes between well-separated
region if the potential energy surfaces are of very different regions of nonadiabatic coupling. In this paper we present a
character in this region (leading to different quantum amplitudes method in which the quantum amplitudes are reset so that the
and classical coordinates and momenta of the trajectories onoccupied state has a quantum probability of unity after each
each state). Figure 1 depicts a schematic illustration of such atrajectory has left the nonadiabatic coupling region. (Note that
situation for a two-state model, wheRs and F; indicate the this type of resetting of the quantum amplitudes was also
average quantum probability and fraction of trajectories, re- proposed in ref 51. Also note that the resetting of the quantum
spectively, for the upper state in an MDQT simulation. As amplitudes will affect the number of classically forbidden
shown in Figure 1a, all of the population is assumed to start on transitions.) We emphasize that resetting the quantum amplitudes
the upper state. As the population passes through the nonadiais not a general solution to this inherent problem of mixed
batic coupling region, it starts to transfer down to the lower quantum/classical methods. Clearly this prescription would be
state. If the lower and upper state surfaces are similar throughoutinappropriate for systems where the quantum interference
the nonadiabatic coupling region, the internal consistency will between nonadiabatic coupling regions is importdst. For

be maintained. If the two surfaces differ, however, the trajec-



Internal Consistency in Trajectory Surface Hopping J. Phys. Chem. A, Vol. 103, No. 47, 1999101

many systems, however, such quantum interference effects areHerew; is the vibrational frequency anglandp; are the position
washed out due to decoherence in condensed phase systems @and momentum of thgth vibrational mode, wherg¢ = 1
averaging over a range of initial conditions. In these cases thisrepresents the tuning mode j = 2 represents the tuning mode
method for promoting internal consistency in MDQT is physi- v, andj = 3 represents the vibronic coupling modg, For
cally justified. We point out that similar methods involving the this model the mass corresponding to mpéemy = 1/w; with
removal of the coherence of the quantum amplitudes have beerthe appropriate units conversion. In this paper the coordinates
applied previously in conjunction with a variety of surface of the modes are expressed in vector notatiox a&s (X1, Xz,
hopping method$17.24Moreover, Rossky and co-workers have x3), I is the identity matrix, andi = 1. In the state-dependent
performed a thorough analysis of the treatment of coherence inpart of the HamiltonianEy is the vertical transition energy of
surface hopping?53 the diabatic staté and/cj(k) is the gradient of the excited state
An outline of this paper is as follows. Section Il presents the potentialk with respect tox at the ground state equilibrium
model system for internal conversion in pyrazine, including the geometry. The off-diagonal termxs is responsible for the
diabatic and adiabatic Hamiltonian matrices for this system. vibronic coupling between the two electronic states. The values
Section Il describes the methodology for fully quantum of the parameters for this model are given in Table | of ref 33.
dynamical and mixed quantum/classical MDQT calculations.  Although the diabatic representation is useful for fully
This section also presents modifications of MDQT to eliminate quantum dynamical calculations, the adiabatic representation
classically forbidden transitions and to remove the coherenceis more appropriate for surface hopping calculations. As shown
of the quantum amplitudes far from regions of nonadiabatic in ref 55, the transformation from the diabatic to the adiabatic
coupling. Section IV presents the results and compares therepresentation is given by
various methods, and section V presents our conclusions.

¥ x) = S'xp™ (4)

where the adiabatic basis states are expressed in vector notation
as

Il. Model System

The model system investigated in this paper is a two-state
three-mode model of the conical intersection of th¢'By,
(nr*)] and S['Bay(zr*)] excited states of pyrazine. This conical ad
intersection has been shown to trigger an ultrafagst-SS$; wad(x) _ Y1 (X) )
internal conversion process and a dephasing of the vibrational 3%
motion on a femtosecond time scafeé® The model used in

this paper includes a single vibronic coupling made. and and the diabatic basis states are expressed in vector notation as
two totally symmetric tuning modes,, ve, (Which modulate
the energetic separation of the electronic states). This model dia_ wflj'a
invokes the following standard simplificatiofs®°(1) the model Y dia (6)
Hamiltonian is constructed in a diabatic electronic basis; (2) V2
the harmonic approximation is invoked for the diabatic potential . .
energy surfaces and the vibrational frequencies are assumed tJ he transformation matrix can be expressed as
be equal for all of the unperturbed surfaces; and (3) interstate 3 cosp  sing
and intrastate coupling terms are approximated by linear terms S(xX) = ( . ) @)
in the normal coordinates. This model has been used throughout —Sing cos¢
the literature as a standard example of ultrafast electronic where¢ is defined by
relaxation34~39 (Note that other models for conical intersections
have also been studied with similar methé§s. _ AXg
The Hamiltonian is defined in terms of the two diabatic sin(2p) RIS
electronic basis statgg“and |y5°Cthat represent the two ( X)
lowest excited singlet states i(%nd $) of pyrazine. The A
Hamiltonian matrix in the diabatic representation can be COS(H) = ——— > (8)
expressed as (A" + 2°%5%)
and A is half the energy gap between the diabatic electronic
E, + Z (1) AXg surfaces ak:
A% = (T, + VI + @)

A%g E,+ Z KPx,

2
E,+ S| —|E + P 9)
SRR

In the first term,Ty is the kinetic energy expressed as Note that theS matrix is a double-valued function of the
coordinatesx. In this paper we define a unigug matrix by
N 3 ) following the prescription given in ref 56 of setting the signs
= /Zzwjpj (2) of S;; and S, equal to the sign ofa.
= Invoking the Borr-Oppenheimer approximation, the adia-

and Vy is a harmonic oscillator potential with respect to the batic Hamiltonian matrix is

electronic ground state equilibrium geometry = (T, + V)T +
- N 0.

3 2 42, 212
— (A4 A% 0

Vo=1,5 0x? 3 - 10

0 2]: WX () 0 E+(A2+12X321/2 (10)
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where

1
E== +
2

2 2
E,+ S| +([E + $«®x (11)
oz

The two adiabatic BornOppenheimer potential energy surfaces
are described by

Wi(x) = Hig = Ty (12)
(See ref 56 for a discussion of the non-Be@ppenheimer
terms in the adiabatic Hamiltonian.)

I1l. Methods

A. Fully Quantum Dynamical Method. The fully quantum
dynamical calculations were performed in the diabatic repre-
sentation to avoid numerical difficulties associated with the
double-valued nature of tfematrix. The time-dependent wave
function W(x,t) can be expressed in terms of the diabatic basis
states as
dia
1

dia

2 (13)

W,L) = 20y
wherey(x,t) is the vibrational wave function corresponding to
the diabatic stateéy? 0] Substituting this equation fo#(x,t)
into the time-dependent Scldinger equation using the diabatic
Hamiltonian matrix given in eq 10 leads to the two coupled
equations of motion

+ xa(X )y

727068 = V001 3(%,8) + VX053 3(x,)

757068 = Vor (001 2(%,8) + VX025 3(x,)

whereVj are matrix elements of the matrpt@2 — Tyl. We
solve these equations of motion using the predietarrector

i (14)

method with the discrete variable representation. These result
are converted to the adiabatic representation for comparison to
the surface hopping results using the projector operator defined

in ref 55.

B. Surface Hopping Methods.1. Standard MDQT Method
In surface hopping methods the classical subsystem move
according to the standard classical equations of motion

IW(X)
_ x

whereW(x) (defined in eq 12) is the potential energy of the
occupied adiabatic state. The time-dependent wave functio
describing the quantum mechanical state at tiriseexpanded

in terms of the two adiabatic states

W(x,t) = C(Hyix) + CHwix)

where Ci(t) are complex-valued expansion coefficients (i.e.,

= 5)

(16)

guantum amplitudes). Note that the adiabatic states are also time

dependent through the classical trajectrft). Substitution of
the wave function?’(x,t) into the time-dependent Sctdioger
equation using the adiabatic Hamiltonian matf%d given in

eq 10 leads to the following equations of motion for the quantum
amplitudes:

2

=

Fang and Hammes-Schiffer

wherex denotes the time derivatives of the coordinatesnd
dy; is the nonadiabatic coupling vector defined as

2
2 wajadD: SRS (18)
£

for j = k anddi = 0. In density matrix notation, the density
matrix elements are defined ag = C«C/", where the diagonal
density matrix elementa. are the occupation probabilities of
the adiabatic states, and the off-diagonal elemegtdescribe

the coherence. In practice, eqs 15 and 17 are integrated
numerically to simultaneously propagate the coordinates and
momenta X, p) and the quantum amplitudes.

The surface hopping calculations in this paper are based on
the molecular dynamics with quantum transitions (MDQT)
surface hopping methdd:1> The MDQT method implements
Tully’s fewest switches algorithrif, which is designed to
correctly apportion trajectories among the states according to
the quantum probabilitiegCi(t)|? with the minimum required
number of quantum transitions. In this algorithm the probability
of switching states is defined in terms of the rate of change of
the occupation probabilities, which can be derived from eq 17

to be
a,= ) by (29)
k J; ]

where

by = —2Re€a]-*k>‘<-djk) (20)
The rate of change of the occupation probability for skedieie

to coupling with statg is by, so the change in the occupation
probability for statek due to coupling with statgover a short
time interval 6t is bdt. The number of state switches is
Sminimized by assuming that the flux of probability between
each pair of states results from probability transferring in only
one direction. According to this algorithm, the probability of
switching from the current stateto another statg during the
time interval between andt + ot is

)
="

whereby anday are assumed to remain approximately constant
during the short time intervait and thus can be evaluated either
at timet or at timet + Jt. If by < O then the occupation

S

gy(t.ot) = ma>(0 (22)

nProbability of the occupied statecan be viewed as increasing

due to coupling with state so the probability of switching from
statek to statej is zero. On the other hand, iy > O then the
occupation probability of the occupied stdtean be viewed

as decreasing due to coupling with stgteo the probability of
switching from state to statej is bydt/aw. References 14 and
22 illustrate that this algorithm achieves the correct statistical
populations of the states for model systems.

In order to determine whether a switch to any stateill
occur, a uniform random numbér(0 < £ < 1) is selected at
each time step in the trajectory. For example, for a two-state
system, if the occupied stake= 1 then a switch to state 2 will
occur if £ < gpo. If a switch to a different statg does occur
and if Wi, = Wi, then the velocities must be adjusted in order to
conserve total energy. The velocities should be adjusted as if
they were subjected to a force in the direction of the nonadiabatic
coupling vectoi* As derived in ref 15, the new velocitieg
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can be calculated as follows:

Xi =X~ Yy Lj/m (22)
wheredikj specifies thath component of the three-dimensional

vectordy, and

B+ B+ A [Wi(x) — W]

Vi = 20t » By <0 (23)
B — \Bi® + Ao [Wi(x) — W(x)]
Y= : ! Zaj ——, Bz 0 (24)
Kj
where
3 .
ayg =,y m(dy)? (25)
&
and
3 .
Bii= ) % (26)
Note that a switch can occur only if
B + Aoy [Wi(x) — W(x)] = 0 (27)

Otherwise, there is not enough velocity in the direction of the
nonadiabatic coupling vector to maintain energy conservation,
and the system remains in the initial quantum state. This
situation is denoted a classically forbidden transition. Within
the framework of standard MDQT, there are two different
approaches for determining the velocities after classically
forbidden transitions. In the first approach, the component of
velocity in the direction of the nonadiabatic coupling vector is

reversed; i.e., the velocities are changed according to eq 22 with

viy = Buloug® In the second approach, the velocities are not
adjusted®® In either approach, these classically forbidden
transitions lead to inconsistencies between the fraction of
trajectoriesFi(t) in each stateé and the corresponding average
guantum probabilityICi(t)|2C]

2. MDQT* Method for Eliminating Classically Forbidden
Switches Recently we presented a modified MDQT method
(denoted MDQT?*) originally proposed by Tufiyto eliminate
classically forbidden transitions. In MDQT* the quantum
amplitudes are integrated using modified velocitigs

2
=

G

(28)

and the velocity, replaces in eq 20 for the calculation dix
used to calculate the probability of switching from sthteo
statej. The modified velocities are defined as

(29)

wherexX is the classical velocity for the occupied st&teand
Xj, Xj, andx are the magnitudes of the three-dimensional vectors
X'j, X'j, andX, respectively. (Note that; = X;.)

In this paper we examine two different approaches for
defining the modified velocities within the framework of
MDQT*. In both approachesx; = 0 if a switch from the

J. Phys. Chem. A, Vol. 103, No. 47, 1999403

occupied statd to statej would be classically forbidden (i.e.,

if eq 27 is not satisfied). Otherwise, in the first approagtis

the velocity that would be obtained using the prescription in eq
22 to conserve total energy for a transition from the occupied
statek to statej, and in the second approakh= X. (Note that

in both approache%’y = x.) In both MDQT* approaches, if a
hop from statek to statej would be classically forbidden, the
nonadiabatic coupling between stakeandj vanishes (i.e., all
components ok are zero) so the flux of quantum probability
from statek to statej vanishes (i.e.bx = 0). According to the
fewest switches algorithm, in this case the probability of
switching from staté to statej is zero (i.e.gq = 0). Thus, the
classically forbidden transitions are eliminated.

We emphasize that MDQT* is not based on rigorous
theoretical grounds, but rather is a minor modification that
eliminates the classically forbidden transitions while maintaining
the appealing simplicity and computational speed of MDQT.
MDQT* is the same as MDQT in that the classical subsystem
moves according to standard classical equations of motion using
the positionsx and velocitiesx on the occupied staté.
Moreover, MDQT and MDQT* use the same fewest switches
algorithm and the same method for scaling velocities after a
state switch to conserve total energy. MDQT* differs from
MDQT only in the integration of the quantum amplitudes, which
invokes the modified velocities. In the first MDQT* approach,
the modified velocities are geometric averages of the velocities
in different states. In the second MDQT* approach, the modified
velocities are identical to the standard velocity used in MDQT
(i.e., the velocity for the occupied state) except that the modified
velocity is set to zero if a transition would be classically
forbidden. The second MDQT* approach is more appealing in
that it is identical to standard MDQT in the absence of classically
forbidden transitions. In both MDQT* approaches, however,
MDQT* is virtually identical to MDQT far from the nonadia-
batic coupling region (since the nonadiabatic coupling vanishes)
and in the strong coupling region (since the energy difference
between the coupled states is so small that the velocity
adjustment due to a transition would be negligible). Furthermore,
the results in ref 50 and in this paper indicate that the MDQT
and MDQT* methods lead to virtually identical adiabatic
populations (determined by the fraction of trajectories in each
adiabatic state) for a variety of model systems.

3. Remoal of Coherence of the Quantum Amplitudés
discussed in the Introduction, even in the absence of classically
forbidden switches, the fewest switches algorithm does not
always maintain consistency between the fraction of trajectories
Fi(t) and the average quantum probabilifiZ;|20] In standard
MDQT the quantum amplitudes are propagated coherently
throughout each trajectory. When independent trajectories
diverge, this coherent propagation may lead to an inconsistency
between the fraction of trajectories in each state and the
corresponding average quantum probability. This internal
inconsistency can be improved if the quantum amplitudes are
reset so that the quantum amplitude of the occupied state is
unity after passing through a nonadiabatic coupling region. In
this paper the quantum amplitudes are reset when the magnitude
of the nonadiabatic coupling vectdd;,] between the two
adiabatic states becomes smaller than a specified tolerance.
Clearly this resetting of the quantum amplitudes is not appropri-
ate for systems where the quantum interference between
nonadiabatic coupling regions is importdh#! This resetting
of the quantum amplitudes is physically justified, however, if
the quantum interference effects between the nonadiabatic
coupling regions are washed out by decoherence effects or by
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averaging over a range of initial conditions. In this paper the weaker, and the recurrences are completely damped out at later

resetting of the quantum amplitudes is used as a numerical tooltimes. In both MDQT methods, however, the quantum prob-

to correct a deficiency of the MDQT method. ability does not agree well with the fraction of trajectories,
C. Initial Conditions. The fully quantum calculations were indicating a significant internal inconsistency.

performed in the diabatic representation. In this case, the initial  As discussed in the Introduction, the reason most often cited
wavepacket is a Gaussian wavepacket on the second diabati¢or this lack of internal consistency in MDQT is the existence

electronic state: of classically forbidden transitions. Figure 3 depicts the time
dia evolution of the total number of classically forbidden transitions
Y (X)=0 for 5000 trajectories (corresponding to the results in Figure 2b).

_ The classically forbidden transitions start to occur-atfs and

YIx) = Aexp[—,(x2 + x,° + x32)] (30) continue to occur at a constant rate of 0.02'fger trajectory

(i.e., 2% of the trajectories exhibit a classically forbidden

whereA is a normalization factor. Note that the exponential fransition each femtosecond). The absence of a significant
also includes a units conversion factor from use of the identity Number of classically forbidden transitions befer8 fs is due
wm = 1. to th_e use of initial conditions with 96% of the trajectories
The MDQT calculations were performed in the adiabatic Starting on the upper state. (All transitions from the upper to
representation. In this case, the initial conditions for the nuclear the lower state are allowed.) The substantial number of
variables were obtained from classical action-angle classically forbidden switches occurring afteb fs suggests

variables33.58 that this may be a cause of the internal inconsistency in these
calculations. On the other hand, the number of classically

x(0) = sin o forbidden transitions increases at a constant rate, whereas the
discrepancy between the quantum probability and the fraction
p(0) = cosq (31) of trajectories becomes virtually constant after 200 fs. This

observation suggests that the classically forbidden transitions

where the angles; are randomly picked from the interval [0, ~May not be the main cause of this discrepancy.

27]. Again, these expressions include a units conversion factor To determine the degree to which the classically forbidden
from use of the identityw;m = 1. Note that these initial  transitions are responsible for the significant internal inconsis-
conditions were chosen to allow direct comparison to the results tency illustrated in Figure 2a,b, we applied the MDQT* method
in ref 33. Discrepancies between the fully quantum and MDQT to this model system. Figure 2, ¢ and d, depicts the results of
initial conditions for the nuclear variables may be responsible the standard MDQT* method using the two different prescrip-
for small differences between the MDQT and fully quantum tions discussed in section Ill. The results are virtually identical
calculations. The initial conditions for the quantum probabilities for the two different prescriptions and are similar to the results
in the adiabatic representation were obtained by applying the of Figure 2b. The quantum probability still does not agree well
projection operator defined in ref 55 to the initial wavepacket with the fraction of trajectories for the MDQT* method. Thus,
in the diabatic representation. The fraction of trajectories starting these results indicate that the classically forbidden transitions
in each adiabatic state was chosen to be consistent with thesere not responsible for the large internal inconsistency.
quantum probabilities, and the phases of the initial quantum  As discussed in the Introduction, another cause of internal
amplitudes were set to zero. 5000 trajectories were propagatednconsistency is the divergence of the independent trajectories

with a time step of 0.012 fs for each calculation. in the ensemble, which may lead to a breakdown of the basic
assumption of the fewest switches algorithm. If the independent
IV. Results trajectories diverge while the ensemble is passing through the

In this section we present the results of the application of nonadiabatic coupling region and the flux of population is
the methods discussed in section Il to the model system for predominantly unidirectional throughout this region, the fraction
internal conversion in pyrazine described in section Il. Figure Of trajectories in each state could be accurate while the average
2 depicts the time evolution of the population (i.e., the quantum probabilities are inconsistent. In support of this
occupation probability) of the upper adiabatic state. For the fully hypothesis, Figure 4 depicts the distribution of quantum
quantum results we plof dx [3x,t)[2, and for the surface probabiliti¢s|C2(_t)|2afte(the en_semble has first passed through
hopping results we plot both the average quantum probability the nonadiabatic coupling region= 67.7 fs) for the calcula-
[C,(t)|20and the fraction of trajectorigB(t). The fully quantum tions shown in Figure 2d. Although30% of the trajectories
results are shown with solid lines and the surface hopping resultshave a quantum probability less than 0.1, the remaining
are shown with dashed lines. In all cases the population of the trajectories have quantum probabilities ranging from 0.1 to 0.95.
upper adiabatic state exhibits an ultrafast initial decay within These trajectories must have followed divergent paths when the
less than 50 fs, followed by a number of weak recurrences. €nsemble passed through the region of nonadiabatic coupling.

Figure 2a,b depicts the results of the standard MDQT method, AS a result, their quantum amplitudes are not representative of
where in Figure 2a the component of velocity in the direction the ensemble.
of the nonadiabatic coupling vector is reversed after a classically This source of the internal inconsistency can be eliminated
forbidden transition and in Figure 2b the velocities are not by removing the coherence of the quantum amplitudes when
altered after a classically forbidden transition. In both cases the each trajectory leaves the nonadiabatic coupling region. As
fraction of trajectories in the upper state for the MDQT discussed in section Ill, in our calculations the criterion for
calculations agrees qualitatively with the fully quantum results. resetting the quantum amplitudes to unity for the occupied state
As shown previously? the quantitative agreement is better for is the magnitude of the nonadiabatic coupling vedir|
the algorithm in which the velocities are not adjusted after becoming less than a specified tolerance. In our calculations,
classically forbidden transitions. In particular, for the results we used a tolerance of 0.1 au. To justify this choice, Figure 5
with velocity reversal (Figure 2a), the first few recurrences are depicts the magnitude of the nonadiabatic coupling vector for



Internal Consistency in Trajectory Surface Hopping J. Phys. Chem. A, Vol. 103, No. 47, 1999105

1.0
0.8
c c
£ o6 2
© [
E 2
& 04 S
Q. o
0.2
0.0l
0 100 200 300 400 500
time(fs)
1.0 1.0
(d)
0.8 0.8
5 s
'g 0.6 g 0.6
3 3
8_ Odie 8.
0.2
0.0 ANVATAN :
200 500
time(fs)
1.0 1.0
(e) ®
0.8 0.8
c c
£ 06 2 06
g S
2 a
o o 04
o o ?
0.2l 1\
N .
0.0 M) XYY/ s
0

time(fs)

Figure 2. Time evolution of the population (i.e., the occupation probability) of the upper adiabatic state for fully quantum and surface hopping
calculations. The fully quantum results depjttx |1/)"§‘d(x,t)|2 (solid line), and the surface hopping results depict both the average quantum
probability IC,(t)|?(long dashed line) and the fraction of trajectorfegt) (short dashed line). (a) Standard MDQT with the component of velocity

in the direction of the nonadiabatic coupling vector reversed after classically forbidden transitions; (b) standard MDQT with no modificaion of th
velocities after classically forbidden transitions; (c) standard MDQT* with the modified velocity defined sucty {uaed in eq 29) is set to zero

if a transition to stat¢ would be classically forbidden and to the magnitude of the velocity that would be obtained by conserving total energy after
a transition to statg otherwise; (d) standard MDQT* with the modified velocity defined such #)aused in eq 29) is set to zero if a transition

to statej would be classically forbidden and tootherwise; () MDQT method of Figure 2b with quantum amplitudes reset so that the quantum
probability of the occupied state is unity whih,| < 0.1 au; (f) MDQT* method of Figure 2d with quantum amplitudes reset so that the quantum
probability of the occupied state is unity whéh,| < 0.1 au.
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Figure 3. Time evolution of the total number of classically forbidden  Figure 4. A normalized distribution of the quantum probabilities at
transitions for the 5000 MDQT trajectories corresponding to Figure timet = 67.7 fs for the MDQT* results shown in Figure 2d.

2b. 2, b and d) with the coherence removed using this method. In
three representative trajectories. Note that the tolerance washis case, the quantum probability agrees extremely well with
chosen to be close to the minimum value |di,| for these the fraction of trajectories. We emphasize that the resetting of
representative trajectories. Figure 2, e and f, depicts the resultsthe quantum amplitudes enforces the internal consistency by
of the MDQT and MDQT* methods (corresponding to Figure construction. As shown in Figure 2, however, this resetting of
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16— parisons of MDQT to fully quantum calculations for simple one-
1.4 l‘l dimensional model systems illustrate the potential accuracy of
12| by these method¥:?425 On the other hand, surface hopping
= i o methods have been shown to be inaccurate for certain types of
g 1011 o 7-29 i
= o8 { systemg. For example, surface hopping methods are
S problematic for processes involving an extended nonadiabatic
0.8 ; coupling region or a large number of successive recrossings of
0.4 a nonadiabatic coupling regié®3*Moreover, surface hopping
0.2 methods are not appropriate when tunneling of the classical

o} 10(; 200 w0 400' . degrees of freedom is important (i.e., for processes involving
time(fs) class!cally treated reacting H atoms). To determine when surface
hopping methods are accurate, these methods should be
Figure 5. Time evolution of the magnitude of the nonadiabatic compared to fully quantum results for a wide range of different
coupling vector|dyz| for three representative MDQT* trajectories  tyneg of models. Future work will center on testing the modified

corresponding to Figure 2d. The solid curve corresponds to a trajectory . p
that started on the lower adiabatic state, and the dashed curvesMDQT method presented in this paper for other model systems

correspond to trajectories that started on the upper adiabatic state. to determine the extent of its applicability.
the quantum amplitudes not only improves the internal consis-
tency but also slightly improves the agreement between the

surface.hopping and the exact quantum results for the adiabati%ith Gerhard Stock about the model system studied in this paper.
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