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Time-dependent studies of the excited state dynamics of betaine-30 in acetonitrile at room temperature have
been carried out using a mixed classical/quantum molecular dynamics simulation methodology. Theπ-electron
system of the solute molecule is treated quantum mechanically using the semiempirical Pariser-Parr-Pople
Hamiltonian, including the solvent influence on electronic structure. The remaining interactions are treated
via empirical potentials. Transition probabilities between adiabatic electronic states are evaluated using surface
hopping methods, including all nuclear degrees of freedom in the coupling. The dynamics treats the (rigid)
solvent and the dihedral angles for relative rotation of rings of an otherwise rigid solute classically. The
contribution of all remaining solute intramolecular vibrations is included in the nonadiabatic coupling via an
approximate, but purely quantum mechanical, treatment. Analysis of the dynamics reveals that, after excitation
to the first excited state, the energy gap between ground and first excited states of the molecule exhibits an
ultrafast (∼100 fs) decrease due to the inertial response of the solvent that accounts for about 70% of the
solvent response, followed immediately by a further subpicosecond solvent component. The times and
amplitudes of these solvation components are in accord with the results inferred from resonance Raman
spectra, and the solvent contribution to the Stokes shift observed is in accord with values inferred from ground
state absorption spectral line shape analysis. However, we also find that the energy gap exhibits a slower
picosecond time scale response of comparable magnitude due to relative rotation of the central phenolate and
pyridinium rings. This relaxation has not been previously noted or incorporated in corresponding electron
transfer models. Analysis of contributions to the electronic nonadiabatic coupling shows that this is dominated
by a small set of high-frequency intramolecular modes of the betaine-30 molecule, with the solvent making
a relatively very small contribution, also in agreement with previous experimental inference.

I. Introduction

Both ultrafast spectroscopy and modern theory have played
major roles in the elucidation of the details and mechanisms of
intramolecular electron transfer (ET) in solution. In particular,
over the last 2 decades, the elucidation of the relative importance
of the contributions of solvent dynamics and of intramolecular
modes to ET rates is an issue that has been pursued in numerous
theoretical and experimental studies.1 Contemporary theories
of ET have typically treated the role of solvent on the level of
a dielectric continuum characterized by a Debye relaxation
spectrum with a single characteristic relaxation time. The
inclusion of inner sphere vibrational modes has been done
classically2,3 or quantum mechanically.4 A common feature of
these theories is that they predict a strong correlation of the ET
rate in barrierless cases with the relaxation time characteristic
of the solvent.5-8 Nonetheless, a number of ultrafast ET
reactions have been found to exhibit rates that vastly exceed
time scales for diffusional solvation dynamics.9-13 Ultrafast
components of solvent dynamics as well as inner sphere modes
or intramolecular vibrations have been posited as mechanisms
that can give rise to ET times that are faster than solvent
diffusional relaxation times.1,14

A particular molecular solute where the kinetics of ET have
been explored in a relatively comprehensive series of experi-
ments is betaine-30. The betaines consist of a covalently bound,
charge separated, ground state, shown schematically in Figure
1. The large sensitivity of the lowest energy electronic transition
to the local molecular environment has been exploited as the

basis for theET solvent polarity scales,15,16as a probe of micelle/
solution interfaces,17 and as a probe in other applications in
analytical chemistry.18,19ET occurs after photoexcitation of the
highly polar S0 ground state to the less polar S1 state of the
molecule, as shown schematically in Figure 1. The subsequent
kinetics of the photoexcited system have been measured via
ultrafast absorption spectroscopy in a series of experiments in
polar aprotic solvents20-26 and alcohols.11 In these experiments,
it was found that the rates for the S1 f S0 relaxation followed
characteristic average solvent response times in polar aprotic
solvents,11 with the ET rates in fast aprotic solvents comparable
to the solvent dynamical times. However, in slow solvents, these
ET rates were found to far exceed inverse solvation times. In
alcohols, an additional faster solvent dynamical contribution was
inferred to contribute to the ET dynamics.11

Figure 1. Schematic of the optically induced ground to first excited
state electronic transition and the subsequent reverse electron transfer.
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The observed ET kinetics of the system have been interpreted
in terms of a hierarchy of theoretical formalisms for ET rates
which focus on the quantitative role of medium dynamics and
of solute intramolecular modes. The limitations and successes
of each description in reproducing experimental trends have been
effectively used to delineate underlying mechanistic aspects of
the rates and to point out remaining uncertainties. It is these
uncertainties that motivate large scale simulations of the type
we pursue in the present work. To delineate the key open issues,
as well as to point out those results that one should expect to
be correctly described by a valid model, we briefly review
various theoretical modeling efforts. The formulation of Sumi
and Marcus2,3 treats the reaction dynamics via a medium
coordinate dependent ET rate with a diffusional evolution of
the medium coordinate and treats all modes classically. Ap-
plication of the formulation, with appropriate modification for
the nonequilibrium initial conditions appropriate to the photo-
initiated ultrafast experiments,24 was found to fall short of the
observed rates by orders of magnitude. This result was not
surprising since the enhancement of the rate of ET in the
strongly inverted regime via high-frequency inner sphere/
intramolecular modes had been appreciated earlier. In particular,
for the inverted regime, high-frequency vibrationally excited
states of the product manifold can provide reaction channels
with relatively small activation energies. The explicit incorpora-
tion of this effect into a theory which also incorporates solvent
dynamics (at the level of a single characteristic solvent response
time) was accomplished in the formulation of Jortner and
Bixon.4 There, the rate is described as a sum over product
vibronic channels of a rate that incorporates solvent diffusional
dynamics. Although the rates for the betaine-30 transition
evaluated via this formulation were much greater than those
obtained via the Sumi-Marcus expression, the rates failed to
manifest the apparent transition in the rate-limiting process from
solvent dynamical control in fast solvents to one relying
primarily on high-frequency intramolecular vibrations at low
temperature, where the solvent response is far slower than the
ET rate.24

A hybrid model formulated by Barbara and collaborators20,24

incorporates the diffusive dynamics of the Sumi-Marcus model,
the vibronic channels of the Jortner-Bixon model, and a very
rapidly responding classical intramolecular relaxation of the
solute. The low-frequency intramolecular component provides
a Gaussian energy width to the individual vibronic channels
for any value of the solvent coordinate. This model was able to
capture the temperature and solvent dependence of the experi-
mental data in polar aprotic solvents using parameters derived
from modeling of static spectra. Nevertheless, it was argued
more recently27,28 that, to properly describe the ET dynamics
of these systems, one must include the fact that the solvents
relax on multiple time scales, a potential limitation of the simple
hybrid model that had been noted by its developers.24 In
particular, it is widely appreciated that the response of polar
solvents to rapid perturbation in the solute-solvent interaction
includes at least one relaxation time that is far faster than the
diffusive time scale of the complete relaxation.29 This very rapid
component can account for a majority of the solvent relaxation
dynamics. In many cases, this is the initial so-called inertial, or
Gaussian, time scale, but it need not be, as in methanol, where
a subpicosecond exponential component is manifest. These
results for solvation dynamics have been demonstrated in
numerous ways, through experimental transient Stokes
shift measurements,30-33 via molecular dynamics (MD) simula-
tions,34-36 and via molecular theories of solvation dynamics.37-40

If the use of a multiple time scale solvent response is critical,
then one could also infer that an important limitation of the
Jortner and Bixon vibronic formulation4 is that to a single
average response time, which can be far longer than that actually
dominating the dynamics. It has in fact been argued that the
regime of solvent response that is critical to the ET rate varies
with the size of the activation barrier.27 In contrast, Bixon and
Jortner have presented clear theoretical arguments that activa-
tionless ET should, in fact, have only a weak dependence on
the excess energy above the diabatic curve crossing.41 Since
the contributing vibronic channels in the strongly inverted
regime should correspond to nearly activationless transitions
to vibrationally hot ground states, then, by analogy, they argue
that rates in the strongly inverted regime also have only a very
weak dependence on excess energy, and hence on solvent
relaxation dynamics.

In fact, in alcohols,11 the hybrid model noted above was only
able to mimic experiment if the initial conditions for the solvent
coordinate were relaxed by a significant fraction essentially
instantaneously. These authors attributed this deviation from the
original hybrid model to a fast reorganization of the solvent-
solute hydrogen bonding, although they tentatively identified
the effect on the electronic transition rate with a concomitant
change in Franck-Condon factors associated with solute-
solvent vibrations, rather than with ultrafast components of the
solvation response per se.

Given the discussion above, it is clear that even in this
relatively well studied case, important questions remain. The
regime where solvent dynamics plays the dominant role is not
clearly established, and the importance of alternative time scales
for solvent relaxation is unclear. The role of intramolecular
vibrations, particularly low-frequency vibrations, is uncertain,
and the physical identity of such putative modes is not known.
At the most basic level, there is a lack of detail about the
potential energy surface on which the ground and excited-state
electronic relaxation processes occur prior and after the ET
event. Such details would be of great interest in making close
and informative connections with recent resonance Raman
studies of this system.42 Such Raman studies can reveal aspects
of both solvent dynamics and intramolecular nuclear-electronic
couplings. The models discussed above also use only one or
two effective vibrational modes. This simplification makes
implementation readily accessible, but the validity in describing
ET dynamics quantitatively is unknown.

These issues can be addressed by detailed molecular level
simulations that include the important quantum mechanical
degrees of freedom explicitly and a suitable algorithm to treat
nonadiabatic (NA) transitions between states. Here, we develop
and implement a practical model and algorithm which includes
all intramolecular and solvent degrees of freedom and an explicit
treatment of solute electronic structure. The treatment of the
electronic problem and its interface with the classical solvent
and classical modes of the solute is described in more detail
elsewhere;43 the approach we use is very similar in spirit to
that introduced long ago by Warshel and co-workers.44,45 For
the electronic dynamics, we implement the surface hopping
method of Tully (molecular dynamics with quantum transitions,
MDQT),46 where the system evolves on one electronic surface
at any time and hops stochastically between surfaces based on
the state-to-state transition amplitudes. The treatment of high-
frequency intramolecular vibrations used here is quite simplified,
but the extension to a more realistic treatment is described. The
algorithm is applied to the S1 f S0 ET dynamics in acetonitrile.
We explore the roles of multiple time scale solvent response
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and of the underlying solute potential surface and intramolecular
modes in the dynamics. We also examine the character of the
promoting modes responsible for stimulating the transition,
including consideration ofall solution degrees of freedom.

The paper is organized as follows. In section II, we describe
the methodology developed for this study. The methodology
represents one of the main contributions of this work. Section
III reports and discusses the results derived from the excited-
state trajectories of betaine-30. The conclusions are given in
section IV. We include a set of appendices that give the details
related to the algorithmic development.

II. Methodology

The computational expense of treating even a limited number
of degrees of freedom quantum mechanically in a molecular
dynamics (MD) simulation necessitates the use of approximate
methods of electronic structure. Elsewhere, we have developed
a MD model of betaine-3043 which includes theπ electron
degrees of freedom of the molecule and treats the remaining
electrons and nuclei as effective classical nuclear cores. Theπ
system is treated with the semiempirical Pariser-Parr-Pople
(PPP) SCF method47-49 with single excitation configuration
interaction (CI). The intramolecular degrees of freeedom are
constrained to be rigid, with the exception of rotation around
the six dihedral angles defining the relative orientation of the
seven rings (see Figure 1). These angles and the solute center
of mass and overall rotation are treated classically. The solvent
molecules are also treated classically and modeled by the MD
parametrization for acetonitrile of Edwards, Madden, and
McDonald.50 The electrostatic potential produced by the solvent
molecules couples to the betaine-30 electronic degrees of
freedom via a one electron contribution to the diagonal elements
of the Fock matrix. The transition energies are calculated using
single CI, which has proven to be very accurate in the PPP
method in the calculation of transition energies of heteronuclear
aromatic molecules.51 The model has proven to be accurate in
calculating the wavelength, intensity, and bandwidth of the
lowest energy transition of betaine-30 in acetonitrile, as well
as the shift in these compared to a nonpolar medium.43 In
particular, the width and band shape of the lowest energy
absorption (i.e., S0 f S1) are well reproduced by the model
when compared to that found from the experimental spectrum
in acetonitrile after removal of the vibronic contribution to the
band shape found from experiment. These facts indicate that
the treatment of the wave function and solvent for the ground
and lowest excited states of the molecule in solution are
sufficiently accurate for an examination of excited-state relax-
ation processes.

Calculation of the Excited-State Forces.The reader is
referred to ref 43 for complete details of the PPP Hamiltonian
used for betaine-30. The derivation of adiabatic excited-state
forces, required for the relevant dynamics, using this Hamilto-
nian is now discussed. The excited-state energies were calculated
using single excitation configuration interaction. The single
excitation configurational wave functions|ψifa〉 have matrix
elements

whereHel is the totalelectronicHamiltonian, which includes
the electron kinetic energy and electron-electron interactions
as well as the electron-core and electron-solvent interactions,

and the termVπ is the SCF ground-state energy eigenvalue (see
eq 2 of ref 43). The termsεi and{ci} are the molecular orbital
(MO) energy and coefficients of theith p-type orbital. The
functional form of the two electron repulsion matrix element,
γµν, is given by the Mataga-Nishimoto relationship52 in our
calculations. The total energy of the system when the betaine-
30 is in theIth CI state is given by

whereK is the total kinetic energy of the classical degrees of
freedom of the system,VTOT is the total ground-state potential,
andECI

I is theIth eigenvalue of the CI matrix defined by eq 1.
The total ground-state potential is given by

where the termsVC-C, VS-S, andVC-S denote the core-core
interactions of the betaine-30, the solvent-solvent, and core-
solvent interactions, respectively. Complete details of the terms
that make up eq 3 are given in ref 43. When the system is in
theIth excited state, the force on a nuclear coordinateR (which
can be either a solvent or betaine-30 atom) is given by

where the CI energy has been rewritten in terms of its
eigenvector coefficients{CI} and matrix elements given by eq
1, where an excitation involving promotion of an electron from
an occupied orbitali to an unoccupied orbitala has been
replaced by a single indexn. Accordingly, theIth CI eigenvector
vector is written as

The symbolX(R) (e.g.,V(R) in eq 4) denotes that the derivative
is taken with respect toR while neglecting the coordinate
dependence of the MO coefficients inX in evaluating the
derivative. As noted elsewhere,53,54the ground-state SCF energy
is a varitional minimum with respect to the MO coefficients;
hence, no terms due to gradients of the molecular orbital
expansion coefficients contribute to the ground-state nuclear
forces (i.e.,∂/∂R VTOT ) VTOT

(R) ). Likewise, the CI energy is a
variational minimum with respect to the CI eigenvector coef-
ficients; hence, their coordinate dependence can be neglected
in eq 4. However, derivatives of the matrix elementsAnm require
evaluation of gradients of the MO coefficients. These can be
approached through the use of the coupled perturbed Hartree-
Fock (CPHF) equations,55 wherein a derivative of a MO
coefficient is rexpressed in terms of derivatives of unitary
transformation matrix elements:

The sum in the above equation extends over both real and virtual
MOs. Using this relation, the final term of eq 4 can be shown
to be53,56

ETOT
I ) K + VTOT + ECI

I (2)

VTOT ) Vπ + VC-C + VS-S + VC-S (3)

FR ) -
∂

∂R
(VTOT + ∑

mn

Cm
I Cn

I Anm)

) -VTOT
(R) - ∑

mn

Cm
I Cn

I ∂

∂R
Anm (4)

|ΨI〉 ) ∑
n

Cn
I |ψn〉 (5)

∂cµ
a

∂R
) ∑

l

cµ
l ula

R (6)

〈ψifa|(Hel - Vπ)|ψjfb〉 ) δijδab(εa - εi) +

∑
µν

cµ
j cν

a(2cµ
bcν

i - cµ
i cν

b)γµν (1)
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where the sum overm,n is over the space of one-electron
excitaions, the sum overk,s is over all occupied and unoccupied
molecular orbitals, andúI is the Lagrangian matrix where the
changes of CI energy with respect to the MO coefficients are
collected. Note that the matrixúI is independent of which
particular nuclear derivative is being calculated and need only
be calculated once. It is, however, a function of the CI
eigenvector coefficients{CI} and therefore must be calculated
for each CI state. The first-order unitary transformation matrix
derivatives are found through solving the CPHF equations,
which for a closed-shell system are written as55

where the vectorBR and matrixA are given in Appendix A.
The efficient computation of the term 2∑ks uks

Rúks
I using the so-

called Z vector method is also outlined in Appendix A.
Elements of the Nonadiabatic Dynamics Method.In this

section, the details and algorithm for implementing the MDQT
method46 in the present context are described. We first outline
how the method is implemented with the MD model for betaine-
30 and the PPP semiempirical electronic structure approach used
for the electronic degrees of freedom. In the MDQT method,
or in adiabatic dynamics, the single state adiabatic force given
by eq 4 is used to evolve the nuclear trajectory. The Schro¨dinger
equation for the electronic degrees of freedomr for a given
configuration of nuclear coordinatesR is given by

Here, the quantum mechanical state of the system is expanded
in the adiabatic CI states

Using the time-dependent Schro¨dinger equation, equations of
motion for the expansion coefficients,BI(t), can be derived

wheredIJ is the NA coupling vector given by

It should be noted that the ground state is included in the total
expansion of the wave function in the above expansion. Since
the ground-state Slater determinant does not couple to the single
excitation configurations, we have, using the notation in eq 5,

where|ψ0〉 is the ground-state Slater determinant.
For numerical convenience, one can define

Equation 11 then becomes

The NA coupling vector can be expressed in a form suitable
for the semiempirical formulation used here by expanding the
CI states in terms of their electronic configurations as given in
eq 5

The first term of eq 16 can be further simplified by using the
fact that the CI states diagonalize the Hamiltonian within the
space of one-electron excitations, viz.,

Taking the derivative of this expression, we have

Then, using the orthonormality of the CI states, one can show
that

Substituting this relation into eq 18 and rearranging terms, it
can be shown that the first term of eq 16 can be written as

Simplification of the gradient terms〈ψn|∇Rψm〉 in the second
term in eq 20 is done in Appendix B. The gradient terms
〈ψn|∇Rψm〉 are zero if the wave functions differ by more than
one spin-orbital. Hence, the only nonzero terms in the second
term in eq 16 will be (see Appendix B)

As with the calculation of the adiabatic force, the derivatives
in the above equation can be expanded in terms of the unitary
transformation matrix elements. Combining these results the
components of the NA coupling vector can be written

∑
mn

Cm
I Cn

I ∂

∂R
Anm ) ∑

mn

Cm
I Cn

I Anm
(R) + 2∑

ks

uks
Rúks

I (7)

(εp - εq)uqp
R ) Bqp

R + ∑
a

virtual

∑
i

real

Aai,qpuqp
R (8)

Hel(R;r )|ΨI(R;r )〉 ) (ECI
I (R) + Vπ(R))|ΨI(R;r )〉 (9)

|Φ(R,r ,t)〉 ) ∑
I

BI(t)|ΨI〉 (10)

ipḂI ) BI(ECI
I + Vπ) -ip∑

J

BJR4 ‚dIJ (11)

dIJ ) 〈ΨI|∇RΨJ〉 (12)

|Ψ0〉 ) ∑
n

Cn
0|ψn〉 ) C0

0|ψ0〉 ) |ψ0〉 (13)

B̃I ) BI exp( i
p
∫0

t
dt′Vπ) (14)

ipḂ̃I ) B̃IECI
I - ip∑

J

B̃JR4 ‚dIJ (15)

dIJ ) ∑
nm

Cn
I ∇RCm

J 〈ψn|ψm〉 + ∑
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Cn
I Cm

J 〈ψn|∇Rψm〉

) ∑
n
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I ∇RCn

J + ∑
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I Cm

J 〈ψn|∇Rψm〉 (16)

〈ΨI|(Hel - Vπ)|ΨJ〉 ) 0 (17)

∇R〈ΨI|(Hel - Vπ)|ΨJ〉

) ∑
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I Cm
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Cn
I ∇RCm

J Anm + ∑
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I Cm

J ∇RAnm

) ECI
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I + ECI
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J + ∑
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I Cm
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(18)

∑
n

Cn
J∇RCn

I ) -∑
n

Cn
I ∇RCn

J (19)

∑
n

Cn
I ∇RCn

J )

∑
mn

Cn
I Cm

J ∇ RAnm

(ECI
J - ECI

I )
(20)

〈ψifa|∇Rψ0〉 ) x2∑
µ

cµ
i ∇Rcµ

a

〈ψifb|∇Rψifa〉 ) x2∑
µ

cµ
b∇Rcµ

a (21)

〈ψifa|∇Rψjfa〉 ) x2∑
µ

cµ
j ∇Rcµ

i
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where the changes of the MO coefficients with respect to the
nuclear coordinate in the NA coupling from the first and second
terms of eq 16 have been collected in the vectorúIJ. The vector
úIJ is a function of the CI eigenfunction coefficients{CI} and
{CJ}. The efficient calculation of the term 2∑ks uks

Rúks
IJ can be

carried out using a modification of the Z vector method of
Handy and Schaefer56 and is outlined in Appendix A.

The high-frequency intramolecular degrees of freedom of
betaine-30 play an important role in determining the absorption
width of the S0 to S1 transition by giving rise to a vibronic
progression which is manifest as a broadening of the absorption
on the high-frequency side. An estimate of the corresponding
inner sphere reorganization energy found from fits of the
absorption spectrum is approximately 720 cm-1 with a single
effective frequency of approximately 1600 cm-1.20 This effective
quantum mechanical mode also appears to play a critical role
in providing an efficient channel for the reverse electron transfer
(i.e., S1 f S0) in model calculations, as noted in the Introduction.
Given the expectation that quantum intramolecular modes play
an important role in the electron-transfer process that is being
modeled here, an inclusion of quantum intramolecular modes
of betaine-30 and how they couple the electronic states of the
molecule is necessary. As noted earlier, the MD model that is
used here explicitly includes only those intramolecular vibrations
associated with relative rotational motions of the rings of the
molecule. The remaining degrees of freedom are frozen out by
the use of constraints.57 Further, a quantum mechanical descrip-
tion of the remaining modes is evidently required, based on
model calculations.4,24 A complete quantum mechanical descrip-
tion of the internal modes and their dynamics would require
expanding the wave function in eq 10 in internal coordinatesq,
as

where the total wave function is expanded in internal vibrational
state basis functions in addition to the electronic basis functions.
The expressions that result from substitution into the time-
dependent Schro¨dinger equation are given in ref 58. Such a
scheme is complex because of the large number of coupled
equations that result, and additional approximations are highly
desirable to put the equations in a form tractable for the present
purposes. Here, we focus on incorporation of the additional NA
coupling that arises due to the intramolecular quantum degrees
of freedom.

We begin with the NA coupling between two electronic state
I andJ given by the matrix element of the nuclear kinetic energy
operator. Conventionally, in mixed quantum classical simula-

tions, the semiclassical expression for this matrix element is
used, as given in eqs 11 and 15,

This form suffices for the coupling due to the solvent degrees
of freedom and the internal relative ring rotations. Here, we
add the remaining NA coupling due to the intramolecular
degrees of freedom a posterio to the equations of motion for
the electronic basis state expansion such that for given vibronic
states,

where the additional coupling has the form

where|âJ〉 and |RI〉 are the nuclear wave functions associated
with the initial I th and finalJth electronic state, respectively.
The kinetic energy operator has been written here in terms of
the 3N - 6 normal modes of the betaine-30 molecule and the
second derivative terms due to the nuclear degrees of freedom
have been neglected in the second part of eq 26. We assume
that the intramolecular nuclear wave function is a direct product
of harmonic oscillator wave functions corresponding to the 3N
- 6 internal normal modes of the molecule; that is,

〈ΨI|∂/∂qn|ΨJ〉 is the electronic NA coupling associated with the
nth normal mode and the nuclear coupling term〈RI|∂/∂qn|âJ〉
factors into

In a full treatment, we should evaluate the evolution in eq
25 via a sum over all possible channels, with evaluation of the
Franck-Condon factors (eq 28) and appropriate account of the
energies of each channel throughB̃ (cf. eq 14). To do this in an
effective manner requires a relatively thorough analysis, iden-
tifying the active vibrational modes and their appropriate
parametrization in a harmonic model. Such an analysis, with
connection to closely related experimental resonance Raman
data,42 is not undertaken here. Rather, in the present work, we
make a very rough approximation that allows us to carry out
an initial exploration of the coupling due to the high-frequency
modes. Here, we assume that the minima of the internal normal
modes of the molecule have the same frequencies in theIth
andJth electronic state, and are, further,not displaced. Under
this approximation, the individual nuclear NA coupling matrix
elements correspond only to single quanta changes and the
Franck-Condon factors are either unity or zero so that

〈ΨI| ∂

∂R
ΨJ〉 ) dIJ

R

) ∑
n

Cn
I ∂

∂R
Cm

J + ∑
nm
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I Cm
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∂R
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)

∑
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I Cm

J ∂

∂R
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(ECI
J - ECI

I )
+ ∑
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Cn
I Cm

J 〈ψn| ∂

∂R
ψm〉 (22)

)

∑
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Cn
I Cm

J Anm
(R)

(ECI
J - ECI

I )
+ 2∑

ks

uks
Rúks

IJ

|Φ(R,r ,q,t)〉 ) ∑
I,R

BI,R(t)|ΨI(R,r ,q)〉|êI,R(q)〉 (23)

VIJ ) -ipR4 ‚dIJ (24)

ipḂ̃I ) B̃IECI
I - ip∑

J

B̃J(R4 ‚dIJ -
VIJ

qm

ip
) (25)

VIJ
qm ) 〈ΨI|〈RI| ∑

n

3N-6

-
p2

2

∂
2

∂qn
2|âJ〉|ΨJ〉

≈ ∑
n

3N-6

-p2〈ΨI| ∂

∂qn
|ΨJ〉〈RI| ∂

∂qn
|âJ〉

(26)

|âJ〉 ) |âJ
1〉|âJ

2〉|âJ
3〉 ‚‚‚ |âJ

3N-6〉 (27)

〈RI| ∂

∂qn
|âJ〉 ) 〈RI

n| ∂

∂qn
|âJ

n〉∏
m*n

3N-6

〈RI
m|âJ

m〉 (28)

〈RI| ∂

∂qn
|âJ〉 ) 1

pxpωn

2
(29)
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The electronic NA coupling associated with thejth normal mode
can be found using the linear transformation coefficients{l}
between the Cartesian displacement coordinates and the normal
modes:

where the normal modes are given in terms of the Cartesian
displacements of the atoms from their equilibrium positions in
mass weighted coordinates,

The inclusion of the quantum intramolecular contribution to the
NA coupling necessitates a modification of the PPP model for
betaine-30 in order to account for the distance dependence of
the semiempiricalπ-electron overlap integral,â. The details of
this modification are outlined in Appendix E.

The sets of eigenfrequencies{ω} and normal mode trans-
formation coefficients{l} for betaine-30 were calculated from
an optimized ground-state geometry with MOPAC 6.059 using
the AM1 Hamiltonian. The calculation of the displacements
along the normal coordinates in eq 31 are made with respect to
the minimum energy geometry of the molecule in the reference
frame in which the normal modes were calculated:

whereRB30 is the vector of the betaine-30 atomic positions and
RB30

0 is the minimum energy reference geometry at which the
eigenvalues were calculated. The electronic NA coupling
elements〈ΨI|∂/∂qi|ΨJ〉 can be strongly dependent on the relative
rotational orientation of the molecule with respect to the
reference geometry of the molecule.60 To remove this depen-
dence of the electronic NA coupling elements on overall
rotations, the positions,RB30, and Cartesian elements,
〈ΨI|∂/∂Ri|ΨJ〉, must be expressed in a coordinate system that
obeys the Eckart conditions.60-62 This corresponds to applying
an overall translation and rotation to the positions,RB30, and
elements〈ΨI|∂/∂Ri|ΨJ〉 such that the displacements in the six
normal modes corresponding to translation and overall rotation
are zero. That is,

Details for this procedure are outlined in Appendix C.
Having established the details of the equations of motion for

the expansion coefficients given by eq 25, we now outline the
MDQT algorithm and modifications that must be made to it
for the MD model of betaine-30. The equations of motion for
the expansion coefficients{B̃} must be integrated in tandem
with the propagation of the MD trajectory for the nuclei. These
were integrated from molecular dynamics time stept to the next
time stept + dt using a fourth-order Runge-Kutta scheme.
Because of the highly oscillatory nature of the coefficients, a
much smaller time step was used to integrate eq 25; we useδt
) dt/1000. The computational expense of the calculation of the
electronic NA coupling matrix elements precludes calculation
of these elements at every one of the smaller time steps. As in

previous implementations,63 these slowly varying coupling
elements were linearly interpolated between MD time steps in
the integration of the coefficients.

In the fewest switches algorithm,46 the probability of a
transition occurring betweent andt + dt from stateK to I can
be shown to be

where

The integration ofbIK(t) was done numerically again using linear
interpolation for R4 ‚dIK(t) and VIK

qm(t). Transitions between
states are determined stochastically, based on the state-to-state
transition probabilities.

Although it turns out that it does not play an important role
in the present results, we also discuss the algorithm for energy
conservation when making a transition from one state to another.
In this circumstance, the MDQT procedure is to adjust the
velocities of the classical nuclei in order to maintain energy
conservation. This is done by adjusting the velocity components
of the nuclei along the NA coupling vectordIK(t). However,
the velocities are also subject to constraints forces which keep
the betaine-30 and solvent molecules rigid. The additional forces
that arise from an electronic transition must be adjusted to
account for these constraints. Therefore, constraints must be
applied to adapt the NA coupling vector so that the changes in
velocities are orthogonal to the internal degrees of freedom that
are constrained. The method for this is outlined in Appendix
D. Once this is done, the velocities of the molecules can be
adjusted as follows:

whereR4 i
′ is the Cartesian velocity vector of the sitei with mass

mi prior to the transition andd̃IK
i is the adjusted NA coupling

vector component for the sitei. The scaling factorγKI is given
by63

where

and

The positive root forγIK is used forbIK > 0 and the negative
for bIK < 0. A transition can occur ifγIK is real. If the particle
velocities have insufficient velocity components alongd̃IK

i ,
then the system does not make a switch and the velocity
components ofR4 along d̃IK

i are reversed using eq 36 and

PKfI )
∫t

t + dt
dt bIK(t)

B̃*K(t) B̃K(t)
. (34)

bIK(t) ) - 2Re[B̃I(t)B̃*K(t)R4 ‚dIK(t)] +

2p-1Im[B̃I(t)B̃*K(t)VIK
qm(t)] (35)

R4 i ) R4 'i - γKId̃IK
i /mi (36)

γIK )
bIK ( xbIK

2 + 4aIK(ECI
K - ECI

I )

2aIK
(37)

aIK ) ∑
i

|d̃IK
i |2

2mi

(38)

bIK ) R4 ‚d̃IK (39)

〈ΨI| ∂

∂qj
|ΨJ〉 ) ∑

i

3N (l-1)j
i

xmi

〈ΨI| ∂

∂Ri
|ΨJ〉 (30)

qi ) ∑
j

3N

lj
ixmj∆Rj

0 (31)

∆RB30
0 ) RB30 - RB30

0 (32)

qj ) ∑
i

3N

li
jxmi∆Ri

0 ) 0 for j ) 3N - 5, 3N - 4, ..., 3N

(33)
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Simulation Details.Simulation details of the MD model used
here are described elsewhere43 and will only be summarized.
Simulations were run with a total of 1172 acetonitrile molecules
at room temperature and a solvent density of 0.7867 g/cm3. To
simulate the nonequilibrium process of photoexcitation and
subsequent relaxation, the MD trajectories were run by placing
the betaine-30 molecule in an excited state after the molecule
and solvent had been equilibrated in the ground state. The
subsequent excited state dynamics were generated with a time
step of 2 fs. For computational efficiency, the dynamics was
generated using only 50 single excitation configurations to
generate the excited-state energies and forces. These 50 were
chosen at every MD time step by selecting the 50 lowest energy
diagonal elements of the CI matrix defined by eq 1. These 50
lowest energy single excitation states were then used in
diagonalization to generate the excited-state energies and
molecular forces. It was verified that the ground-state absorption
spectrum for the three lowest energy transitions remained
unchanged when compared to the spectrum generated using all
possible single excitations. This indicated that the wave func-
tions used for the three lowest energy states were well-described
by the 50 lowest energy configurations within the space of single
excitations. Two types of trajectories were generated. In the first
type, of primary interest here, the betaine-30 was placed in the
first excited state. In the second type, the betaine-30 was placed
in the third excited state. The latter was done to explore the
dynamics corresponding to photoexcitation experiments22 that
use excitation wavelengths of both 800 and 400 nm which
correspond to the S0 f S1 and S0 f S3 transitions in the
experimental absorption spectrum.

III. Results

For this exploratory study, we have examined five trajectories
initiated in the S1 level of betaine-30. We have found that the
insight obtained from alternative trajectories is equivalent, and
therefore, below, we primarily discuss the results with reference
to a particular representative trajectory. To gain an understanding
of the details of the relaxation processes that occur after initial
excitation of the betaine-30, we first examine the energetics and
molecular details of individual trajectories.

The energies of the individual electronic states are shown in
Figure 2 as a function of time after the betaine-30 has been
placed in the first excited state. The electronic energies of the
states are defined as (see section II)

We note at the outset that evidence from comparison of
experimental and calculated results43 indicates that the ordering
of the S2 and S3 states from the present electronic description
are reversed, a result that can be seen from their polarities. As
will be evident below, the S2 and S3 states are computed to be
relatively close in energy, with the S0 and S1 states well
separated from them. Therfore, we focus the present work on
the S0 and S1 states.

As can be seen from Figure 2, the betaine-30 remains in the
first excited state for the 25 ps of the trajectory shown, as
discussed below. Examining Figure 2, it can be seen that,
immediately after excitation, the S0 state moves rapidly upward
by approximately 1 eV in energy over the first 100 fs of the
trajectory. The highest frequency fluctuations in the energy

levels are correlated with each other and have a small amplitude
of approximately 0.2 eV. Superimposed on the highest frequency
fluctuations is a larger amplitude variation of much lower
frequency. The low-frequency motion is more pronounced in
the S0 ground-state level (amplitude∼1 eV). The same features
can also be seen in the trajectory of the transition energies which
are shown in Figure 3. The transition energies are the energy
gaps between ground and excited states which are given by∆ESI

) ESI - ES0 ) ECI
I where

To ascertain the connection between specific molecular degrees
of freedom and the excitation energies of the betaine-30, we
first examine how the torsional angles of the molecule change
after excitation. The torsional ring angles as a function of time
are plotted in Figure 4. Our previousground statesimulation
results for betaine-30 in acetonitrile43 have shown that, in that
case, the torsional angles of the molecule only sample a narrow
range of angles ((4-8°), indicating that the rings are confined
to rotational potential energy wells by barriers much larger than
thermal energies. Figure 4 shows the ring angle trajectories for
the central ring angle (labeledθ in Figure 1), the two phenyl
rings attached to the pyridinium (φ in Figure 1), the torsional
angles subtended by the phenyl ring ortho to the nitrogen in
the pyridinium (ø), and the remaining angle for the two phenyl
rings attached to the phenolate group (ê). As can be seen from
Figure 4, the ring anglesø andê show no appreciable change
from the range of angles that are sampled in the ground state.
Further, it is clear that we need not distinguish between the
individual angles in pairs of anglesφ andê. However, the central
ring angleθ and the two side ring anglesφ do show considerable
deviation from the distributions that they sample in the ground
state43 (〈θ〉 ) 53° ( 4° and〈φ〉 ) 47° ( 4°, where the( denotes
the distribution width at half-height).

After excitation, the central ring angle both increases and
samples a larger range between 60° and 90°. In addition, the
side ring angle motion is correlated with the central ring, and
the side angles both increase as the central ring moves toward
90°. The motion of the central ring angle is readily determined
to be strongly correlated with the low-frequency large-amplitude
motion of the S0 f S1 energy gap (cf. Figure 3 and Figure 4).
As the central ring angle opens, the energy gap generally
decreases in value, as can be seen by comparing the first 5 ps
of the trajectory, shown as a separate frame in both Figures 3
and 4. The overall motion of the energy gaps is clearly correlated
with the changes in the central ring angle, with the transition
energies getting lower as the pyridinium and phenolate rings
approach 90° with respect to each other.

This behavior can be explained by an examination of the
calculated potential energy surfaces of the S0 and S1 states in
thegasphase. The gas-phase surfaces shown in Figure 5 were
generated as a function of the two ring anglesφ andθ. These
reduced surfaces were each found by first finding the minimum
energy structure of the molecule in the gas phase via a simulated
annealing MD calculation. The surfaces were then generated
by varying only the two anglesφ andθ and keeping the other
angles constrained at their gas-phase minimum energy values;
the twoφ angles were kept equal to each other. In the ground
state these two torsional angles have minimum energy values
which are 52° and 49°, respectively. At a torsional angle of 0°,
the π conjugation between the rings is maximized, but 90°
minimizes the steric repulsion between the pendant rings. The
S0 f S1 excitation involves the promotion of an electron from

γIK )
bIK

aIK
(40)

ESI
) ECI

I + Vπ + VC-C + VC-S I ) 1, 2, ... (41)

ES0
) Vπ + VC-C + VC-S (42)
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aπ orbital to aπ* antibonding orbital. This is found to decrease
the amount ofπ conjugation energy in the molecule. For the
central ring angleθ, this results in the potential energy minimum
being shifted close toθ ) 90°, where steric effects are
minimized. It is interesting to note that, in the ring angle
trajectories, large-amplitude motions occur in theφ angles when
θ ≈ 90°. This is due to the fact that S1 potential surface is very
flat along theφ coordinate along theθ ≈ 90° cut, as is evident
from Figure 5. The decrease in the transition energies after
excitation is also explained by Figure 5; the energy gap is
considerably smaller whenθ ≈ 90°.

While the gas-phase surfaces can be used to interpret the
solution state dynamics after excitation, it should be emphasized
that there is considerable polarization of this surface by the
electric field of the solvent. This is evidenced by the fact that
the maximum in the S0 f S1 transition energy in the gas phase
is shifted from approximately 29 to 50 kcal/mol, with the solvent

increasing the separation of the surfaces shown in Figure 5.
Furthermore, our previous simulation results of betaine-30 in
the ground state43 have shown that the solvent polarization
substantially removes theθ torsional angle dependence of the
S0 f S1 transition energy in the vicinity of the ground state
minimum, where the torsional ring angles only sample a very
narrow distribution of angles. Conversely, the excited-state
trajectories show a dependence of the transition energies on the
central ring angle, a result that may be due in part to the much
larger range of angles that are sampled in the excited-state
trajectory and in part to the rather different solvent polarization
present in that case.

We now consider the shorter time dynamics. In Figure 3, a
rapid 1 eV drop in the S0 f S1 transition energy is seen which
takes place in the first 100-200 fs of the trajectory. This rapid
drop in transition energy takes place on a time scale faster than
any torsional motion in the betaine-30 molecule and is neces-

Figure 2. Time-dependent dynamics of the energy levels (see eqs 41 and 42) of betaine-30 after it has been placed in the first excited state S1 for
a typical trajectory. The occupied state is denoted by the crosses. The ground state, S0, is denoted by the dashed line. The excited states, S1, S2, and
S3, are denoted by the solid, long dashed, and dot-dashed lines, respectively. The two frames differ only in the time scale.

Excited State Dynamics of Betaine-30 in Acetonitrile J. Phys. Chem. A, Vol. 103, No. 47, 19999439



sarily due to solvent motion. This rapid drop immediately after
excitation has been seen in many other contexts, both in MD
simulations34-36 and in experiments.30-33 It occurs due to the
rapid inertial motion of the solvent molecules, subject to the
different forces present on the two electronic surfaces. The
energy gap initially exhibits a Gaussian time dependence as has
been shown by MD simulations36 and molecular theories.37-40

Longer time solvent dynamics also occurs on a subpicosecond
time scale, followed by relaxation dominated by intramolecular
torsional motion. It is interesting to note here that the solvent
contribution to the energy gap is associatedexclusiVely with a
rapid rise in the S0 energy level. This is consistent with the fact
that the S0 state is a charge separated state with a large dipole
moment while the S1 has a much smaller dipole moment.

It is of considerable interest to examine the energy gap
relaxation in more detail and to compare the dynamics exhibited
in the present work to that inferred from recent modeling of
resonance Raman spectra for the same system.42 In particular,
it is evident from Figure 3 and our earlier discussion that, here,
the energy gap relaxation exhibits (at least) three time scales.
The first, of the order of 100 fs, corresponds to the inertial
solvent time scale, and represents about 70% of the subpico-
second response in this trajectory. The second time scale, of
the order of 0.5 ps, is the diffusive solvent time scale. After
about 1 ps, the solvent is essentially completely relaxed. As

noted above, however, there is the potential for considerable
additional relaxation on a relatively much longer time scale,
due to torsional relaxation around the solute’s central dihedral
angle. The solvent relaxation contributes about 0.8 eV by 1 ps
after initial excitation to S1; the assignment to solvent alone is
evident from Figure 4. This energy relaxation would correspond
to a Stokes shift of about 6400 cm-1 and an inferred solvent
reorganization energy of about 3200 cm-1. This value is
comparable to the value of about 3600 cm-1 inferred by us for
the same model by analysis of solvent contributions toground

Figure 3. Time-dependent dynamics of the energy gaps∆ESI ) ESI -
ES0 of betaine-30 after it has been placed in the first excited state. The
energy gaps∆ESI, ∆ES2, and∆ES3 are denoted by the solid, long dashed,
and dot-dashed lines. The trajectory is the same as that shown in Figure
2.

Figure 4. Dynamics of the torsional ring angles of betaine-30 after
the system has been excited to the S1 state att ) 0. The labeling of the
various angles is given in Figure 1. The trajectory is the same as that
shown in Figure 2.
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stateabsorption line broadening,43 a result that also agrees with
the corresponding analysis ofexperimentalground-state absorp-
tion spectra.24 The total relaxation accessible including torsional
relaxation (observed here due to the long S1 lifetime of the
model) is about 10 000 cm-1.

In the cited resonance Raman spectral modeling, it was found
that an ultrafast component of the solvation dynamics was
needed to fit the measured results. In particular, McHale and
co-workers42 found that, in addition to a solvation time for
acetonitrile of about 0.6 ps, a time of 88 fs carrying an amplitude
of about 60% of the solvation response was needed. This form
for the solvent response is completely consistent with that seen
in the present work. However, the corresponding solvent
contribution to the reorganization energy inferred there, about
6000 cm-1, is notably larger than our best estimate43 of 3600
cm-1. The present observations suggest that a possible factor
in the comparison is the role of the slower torsional component
observed here. The resonance Raman spectral analysis does not
include a slower (classical) intramolecular component so that
any effects arising from this would be included in the component
attributed to the solvent. These authors42 have, in fact, suggested
the possibility of coupled contributions of solvent with solute
torsional degrees of freedom. We note that the torsional
relaxation seen here is much slower than the acetonitrile solvent
(and also much slower than the∼300 cm-1 modes representing
the lowest frequencies resolved in the Raman study42). Thus, it
is not clear without further detailed analysis whether the
contribution of the present dihedral motion would be significant
in describing the resonance Raman spectra.

As stated earlier, no transition back to the ground state in
fact occurs in the present S1 trajectories. The calculated transition
probabilities were found to be extremely low, on the order of
P1f0 ≈ 1 × 10-4 per MD time step. A computational study of
the estimated lifetime would require averaging over many

nonequilibrium trajectories and is not warranted, since the
experimental lifetime is known to be approximately 0.5 ps.24

Alternatively, a first-order lifetime can be estimated from an
accumulated transition probability expression

whereP1f0
i is the transition probability at every time MD step

which is accumulated overns time steps. A graph ofP1f0
MF as a

function of trajectory length for the above trajectory is shown
in Figure 6. A linear fit to ln[P1f0

MF ] gives an estimate of the
excited-state lifetime. The slopes of five trajectories were

Figure 5. Gas-phase potential energy surfaces for the ground and first excited states as a function of the central phenolate-pyridinium torsion
angleθ and the side ring angleφ. The minimum of the ground state surface is located atθ ) 52° andφ ) 49°. The minimum in the first excited
state is shifted toθ ) 90° andφ ≈ 65°. The arrows denote the relaxation of the system in these two coordinates after excitation to the first excited
state.

Figure 6. Graph of the accumulated transition probability as given in
eq 43 for the trajectory shown in Figure 2.

P1f0
MF ) ∏

i

ns

(1 - P1 f 0
i ) (43)
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averaged to give an estimated lifetime ofτ1f0 ) 29 ( 19 ps.
Clearly, this value is much larger than the experimentally
inferred subpicosecond result. It is reasonable to attribute this
difference to the relatively crude modeling of the intramolecular
vibrational contribution to the transition amplitude used here,
since all other aspects are treated much more completely.
Among other things, this limits vibrational transitions to∆V )
1 so that the higher lying vibrational states of the product cannot
be accessed from low lying vibrational states of S1. To explore
this interpretation in more detail, we need to examine the
separate contributions to the NA coupling from alternative
sources, which we do below.

The total NA coupling between the electronic states is given
by

where, here, the semiclassical contribution to the NA coupling,
R4 ‚dIJ, has been subdivided into the portions coming from the
solvent degrees of freedom and the betaine-30 nuclear degrees
of freedom. Because of the fact that internal vibrations in the
acetonitrile molecules are rigidly constrained, the only contribu-
tion from the solvent degrees of freedom to the NA coupling
comes from the intermolecular rotational and translational
degrees of freedom of the solvent molecules. Similarly con-
straints to the motion of the betaine-30 limit the semiclassical
contribution to the coupling to that from internal torsional ring
motion of the betaine-30. All the other intramolecular degrees
of freedom of the betaine-30 contribute to the NA coupling
quantum mechanically through the third term in the above
equation. We note that the NA coupling from the torsional
degrees of freedom is counted twice in the above formulation,
but as will be seen below, the contribution from the torsional
degrees of freedom is minimal and therefore correction for this
is not warranted.

The magnitude of the total NA coupling between the ground
and first excited state,|V10|, and it’s three components are
graphed as a function of time in Figure 7 for the trajectory
considered in the other figures. As can be seen from the figure,
the total NA coupling is determined almost completely by the

quantum intramolecular contribution. The semiclassical contri-
butions from the betaine-30 and solvent degrees of freedom are
both approximately an order of magnitude smaller than the
quantum intramolecular part. The implication of this is that,
within the context of the adiabatic reference point of the model
presented here, the coupling between S0 and S1 that promotes
the transition can be well approximated by the contribution due
to intramolecular modes. Correspondingly, these modes are the
primary recipients of the electronic energy during the NA
transition, in accord with the prevailing view discussed in the
Introduction. Of course, the observations made here do not imply
that the dynamics of the other modes, including both solvent
and ring motions, are not critical to the lifetime. The premise
of several of the models discussed in the Introduction4,24,27,28is
that the time-dependent energy gap between electronic states
determines the particular vibrational product channels that are
potentially activationless and thus most active in the transition.
Correspondingly, the rate is modulated by the Franck-Condon
factors associated with these states. The present model is unable
to address this aspect; this will require a more realistic
description of mode displacements.

The contributions to the NA coupling between the various
states was also further broken down by the contribution made
from each normal mode. First, it was found that the majority
(>80%) of the coupling was determined primarily by less than
10 distinct normal modes. Furthermore, the character of these
normal modes was high frequency (>600 cm-1), and, consis-
tently, none of the modes included the low-frequency rotational
ring torsional modes of the molecule. It is worth noting in this
context that resonance Raman studies for the same system42

reveal a comparable number of active modes and that these
cover a similar range of frequencies, although two lower
frequency (∼300 cm-1) modes of relatively high displacement
were also identified in the Raman context. Further analysis of
the character of the active modes and how they contribute to
the NA coupling is clearly a key subject for future analysis.

To examine the generality of the behaviors discussed above,
we have also executed a trajectory initiated in the third excited
state of our model. As noted earlier, this state appears to
correspond electronically to the S2, rather than S3, state so that
we do not focus on the details of the results here. However,
ultrafast pump-probe experiments have been reported for the
excitation of ground-state molecules at 400 nm, which corre-
sponds to a S0 f S3 excitation.22 One of the main experimental
results from this study was that the spectral dynamics for
excitation at 800 nm (which corresponds to S0 f S1) were
indistinguishable from those that resulted from excitation at 400
nm. The interpretation attached to this result was that internal
conversion from S3 f S1 was extremely rapid (<200 fs),
followed by the S0 f S1 transition process. For the third excited
state in our simulations, with considerably smaller energy gaps
between excited states, we do find that the system reaches the
S1 state in less than 500 fs. As for initiation on the S1 state, the
NA coupling is completely dominated by the intramolecular
vibrational component. However, the coupling matrix elements
are found to be 1-2 orders of magnitude larger than those for
the S1 f S0 transition. Thus, we find that these simulation results
are consistent with the very short residence times in higher
excited states that were inferred experimentally.

IV. Conclusions

The excited state dynamics of betaine-30 in acetonitrile at
room temperature has been studied using combined quantum
and classical MD simulations. Theπ electronic degrees of

Figure 7. Time dependence of the various contributions to the NA
coupling between the ground and first excited states of betaine-30. The
solvent contribution to the NA coupling (the first term of eq 44) is
given by the dot-dashed line. The semiclassical contribution from the
betaine-30 degrees of freedom (the second term of eq 44) is given by
the long dashed line. The contribution from the betaine-30 intramo-
lecular vibrational degrees of freedom which has been estimated
quantum mechanically (the final term of eq 44) is given by the dashed
line. The trajectory is the same as that shown in Figure 2.

VIJ ) -ip(R4 Sol‚dIJ
Sol + R4 B30‚dIJ

B30) + VIJ
qm (44)
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freedom of the betaine-30 have been treated quantum mechan-
ically using the semiempirical PPP electronic structure
method,47-49,64 including perturbation by the solvent. Methods
for carrying out time-dependent dynamics, including transitions
between molecular electronic states of the molecule have been
introduced using the MDQT algorithm46 suitably modified for
the PPP method and the internal geometric constraints of the
solute molecule and solvent. An approximate quantum mechan-
ical estimate of the nonadiabatic coupling between the electronic
states due to the internal modes of betaine-30 has been used.
This estimate does not take into account normal mode displace-
ments between states.

Exploratory simulations reveal that excitation from S0 to the
first excited-state S1 leads to energy level dynamics that are
governed by both the solvent and internal torsional angles of
the molecule. The initial response of the energy gap between
S0 and S1 is governed by the motion of the solvent, with
amplitudes and subpicosecond time scales that are consistent
with many earlier studies of solvation dynamics in acetonitrile
and with resonance Raman studies of betaine-30 in acetonitrile.42

However, a slower subsequent dynamics of the energy levels
and gaps is governed by the internal central phenolate-
pyridinium torsional angle of the molecule. This further energy
gap relaxation in the first few picoseconds following excitation
is substantial, amounting to about 50% of that due to the solvent
response. In the S1 state, the central rings of the molecule rotate
toward a geometry where they are perpendicular to each other
and sample a much wider distribution of angles than they do in
the ground state. This is due both to steric effects and a
decreasedπ conjugation energy in the excited state.

Although the possible role of torsional modes has been noted
elsewhere,42 and fast intramolecular classical degrees of freedom
have been invoked in modeling,24 the inclusion of a relatively
slow, but large-amplitude, component in the energy gap
relaxation has not been addressed in ET modeling of this system.
The identification of the specific mode here is also new. It is
of considerable interest for future work to determine whether
this internal rotation can be associated with those invoked in
models and if inclusion of such a degree of freedom can be a
benefit to the modeling of resonance Raman spectra. In any
case, it would appear from these results that the a priori
separation of solvent and intramolecular degrees of freedom
from experimental data alone is, at best, very challenging.

While excitation gives rise to a response from the solvent
and a change in the internal geometry of the molecule, the
nonadiabatic couplings between the electronic states are found
to be determined almost exclusively by a small number of high-
frequency internal molecular modes of the betaine-30. Because
of the very approximate model used for treating these high-
frequency modes here, we have not been able to directly address
the relative importance of the different solvent dynamical time
scales on the back ET rate S1 f S0. With improvements to this
aspect of the model, and inclusion of multiple vibronic channels
for relaxation, this question can be addressed and closer
connection to resonance Raman experiments can be made. This
will be the topic of future studies.

Appendix A: Evaluation of Nuclear Derivatives

The coupled perturbed Hartree-Fock (CPHF) equations are
given by

whereFqp
′ is given by

The matrix elementsFµυ are the Fock matrix elements in the
atomic orbital representation. Using the definitions of the Fock
matrix elements for the PPP Hamiltonian given by eq 4 in ref
43, the above equation becomes

where the matrixA can be shown to be

where

The vectorB is given by

where

The matrix elementsHµυ are the one-electron Hamiltonian PPP
matrix elements,64 Pµν is the density matrix defined byPµν ) 2
∑i

real cµ
i cν

i .
To avoid explicitly solving the CPHF equations for each

nuclear derivative we first rewrite eq 8 in matrix form

which can be solved through matrix inversion

Rewriting eq 7 in matrix notation and substituting eq A8 into
7

The vector-matrix productúIG-1 ) ZI need only be evaluated
once per CI state, as opposed to 3N times (whereN is the total
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number of classical nuclei in the simulation) as it would be if
the CPHF equations foruR were solved directly for each nuclear
coordinate. SinceuR is no longer solved for directly, the NA
coupling vector from eq 22 must now be rewritten in terms of
BR:

The vector-matrix product,úIJG-1 ) ZIJ, is evaluated once
for every pair of CI states.

Appendix B: Simplification of Gradient Matrix Elements
between Slater Determinants

The simplification of gradient terms of the form〈ψn|∇Rψm〉
can be carried out by recognizing that∇R acts as a one electron
operator. Therefore, Slater determinants that differ by more than
one spin-orbital will be zero, i.e.,

The remaining matrix elements for the one-electron excitations
and ground-state Slater determinants will be

The ket|i〉 is the state ket for theith real space MO, which
is expanded in terms of atomic orbital basis functions

There are two types of MO matrix elements in eqs B2a-e,
diagonal elements of the type〈i|∂/∂R|i〉 and off-diagonal
elements of the form〈i|∂/∂R|a〉. Expanding the diagonal elements
using (B3),〈i|∂/∂R|i〉 then become

Focusing our attention on the first term of eq B4, off-diagonal
elements,〈µ|∂/∂R|ν〉, are approximated to be zero under the zero
differential overlap approximation (i.e., the orthonormality of
the atomic orbital basis functions) which was assumed in the
implementation of the PPP method for betaine-30 as outlined
in ref 43. Assuming that the atomic orbital basis functions are
real, one can show that derivatives of the diagonal matrix
elements are zero due to orthonormalilty, i.e.,

These two results demonstrate that the first term in eq B4 is
zero. In a similar fashion, one can show using the orthonormality
of the MOs that the second term is zero as well

It can be thus concluded that all diagonal elements of the form
〈i|∂/∂R|i〉 are zero and eqs B2a and B2b are both zero. Off-
diagonal elements, however, are not zero and, using the previous
results, are given by

Hence, one obtains the result shown in eq 21,

Appendix C: Compliance with Eckart Conditions

The positions of the atoms of the betaine-30 molecule must
be rotated and translated to a reference frame such that only
3N - 6 of the normal modes of the molecule have finite
displacements:

The Cartesian displacement vector,∆RB30
0 (whose components

are∆Ri
0 in the above equation), is the difference between the

betaine-30 coordinates in the MD simulation at a given time
step after overall rotation and translation,RB30, and the
coordinates of the molecule in it’s minimum energy gas-phase

〈ΨI| ∂

∂R
ΨJ〉 ) dIJ
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J Anm
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configuration,RB30
0 , i.e.,

The normal-mode frequencies and transformation coefficients
are, of course, calculated at the configurationRB30

0 . Equation
C1 can only be satisfied by choosing the coordinate system such
that the positions satisfy the Eckart conditions.60-62 The first
condition is trivially satisfied by making the center of masses
coincident with the origin of the coordinate system:

The vectorsRi and Ri
0 denote the coordinates of theith

betaine-30 atom position in the two respective geometries. The
second Eckart conditions correspond to the static equivalent of
the angular moment between the two sets of coordinates being
zero:

This condition can be satisfied by applying a suitably chosen
rotation matrix,T, to the betaine-30 positions from the MD
simulation. The procedure for finding such a rotation matrix is
outlined in ref 65 and is not repeated here. With the rotation
matrix in hand, the matrix element of the NA coupling in a
normal mode coordinate system,〈ΨI|∂/∂qj|ΨJ〉, can be found.

The notation of eq 30 is changed slightly to clarify the
transformation of the Cartesian matrix elements using the
rotation matrix

The Cartesian elements of the NA coupling matrix,
〈ΨI|∂/∂Ri,k|ΨJ〉, are calculated after application of the rotation

to the betaine-30 positions. The rotation matrix transforms the
positions,R̂i, to ones that satisfy the Eckart conditions:

Rewriting eq C6,

one sees that the Cartesian derivatives in eq C5 may be rewritten
as

Using this relation, the elements,〈ΨI|∂/∂qi|ΨJ〉, can now be

expressed in terms of the Cartesian NA coupling matrix elements
that are found in the MD simulation,〈ΨI|∂/∂R̂i,l|ΨJ〉:

Appendix D: Nuclear Velocity Adjustments with
Molecular Constraints

Adjusting the nuclear velocities along components parallel
to the NA coupling vectordIJ

i maintains energy conservation
when a NA transition occurs. However, the presence of
intramolecular constraints means that the NA coupling vector
must be adjusted prior to adjusting the velocities by subtracting
out the vector components along the derivative of the constraints.
This is done by applying constraint conditions in form of
Lagrange multipliers to the coupling vector itself. One considers
dIJ

i /mi for a sitei to be a NA force to which a constraint may be
applied. Following the method of Ciccotti, Ferrario, and
Rycaert,66 we subdivide the nuclear sites of a molecule into
two sets. The first set consists of primary atoms between which
distance constraints are applied. The second set is composed
of atoms whose positions are expressed as linear combinations
of the primary atom positions. There willlb primary constraints
of the form

wheredP is the distance between the sitesRi andRj. In practice,
these sites need not be primary nuclear positions themselves
within the molecule, they can be linear combinations of primary
nuclear site positions if an entire group of atoms within the
molecule is being treated as a rigid whole, but for the sake of
clarity it will be assumed that they represent the primary atomic
positions themselves. The constraint conditions on the secondary
atoms, of which there will bens, are given by

where there arenb primary sites. The NA force vectors are also
divided into primary and secondary groups, to which the
constraint conditions using the method of Lagrange multipliers
are applied.

whereλP andµâ are the Lagrange multipliers for the primary
and secondary constraint conditions. The adjusted NA coupling
vectorsd̃IK

i and d̃IK
R will be used to adjust the velocities as per

eq 36. Next, we use the fact that the adjusted NA force vectors
for the secondary sites must obey eq D2:

Using this equation it is possible solve for the secondary
Lagrange multipliers,µâ, and show that

where
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The matrixA is given by

The first term of eq D6,pi, is given by

where

Now all that remains to is to find the set Lagrange multipliers
for the primary constraints. This can be done taking the equation
for the scaled velocities (eq 36) and inserting eq D6 ford̃IK

i

We now subtract (R4 j - R4 j
′) from both sides of (D11) to obtain

If R4 ij is the difference in velocities between two sites that have
a primary constraint between them, then the dot product ofR4 ij

with each term of the left-hand side of eq D12 will be zero,
i.e.,

because the velocities along the derivative of the constraint
should be zero both before and after they are adjusted for the
NA transition. This implies that there arelb equations of the
form

These equations can be rewritten in matrix form

where the vectorB̃ is given by

The matrixÃ has elements

where the indexm denotes a pair of sites (i,j) that make up the
mth constraint. The matrixÃ can then be inverted to find the
primary Lagrangian constraints. With the constraints in hand
the adjusted primary NA coupling vectorsd̃IK

i can be found
from eq D6 and the secondary NA coupling vectorsd̃IK

R from
eq D5.

Appendix E: Distance-Dependentâ Parameter

In the implementation of the PPP method for betaine-30 in
ref 43, the semiempiricalπ-electron overlap integralâ was
treated as a constant. This was appropriate since the relative
motion between chemically bonded pairs of atoms was con-
strained. Furthermore, gradient terms ofâ need not be included
in that case for the semiclassical NA coupling termdIJ‚R4 in eq
25 because there are no nuclear velocities with components
along the bonds of the molecule. However, the gradient ofâ
terms must be included when evaluating the NA coupling matrix
elements in eq 25 for the quantum intramolecular contribution
to the NA coupling. The overlap integral in our previous
implementation was evaluated using the Linderberg approxima-
tion:67

wherep is Planck’s constant over 2π, me is the electron mass,
andSµν is the overlap integral between atomic orbitalsµ andν
which are separated by the distanceRµν. To evaluate eq E1 and
its gradients in the calculations, we use a numerical fit to an
evaluation of this a priori expression with standard Slater orbital
parameters.68 The fitting expression used is

The values of the parameters for eq E2 are listed in Table 1.
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