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Computer Simulation of the Excited State Dynamics of Betaine-30 in Acetonitrile

John Lobaugh and Peter J. Rossky*
Department of Chemistry and Biochemistry, bisity of Texas at Austin, Austin, Texas 78712-1167

Receied: May 17, 1999

Time-dependent studies of the excited state dynamics of betaine-30 in acetonitrile at room temperature have
been carried out using a mixed classical/quantum molecular dynamics simulation methodolagyel@bizon

system of the solute molecule is treated quantum mechanically using the semiempiricatHRaisePople
Hamiltonian, including the solvent influence on electronic structure. The remaining interactions are treated
via empirical potentials. Transition probabilities between adiabatic electronic states are evaluated using surface
hopping methods, including all nuclear degrees of freedom in the coupling. The dynamics treats the (rigid)
solvent and the dihedral angles for relative rotation of rings of an otherwise rigid solute classically. The
contribution of all remaining solute intramolecular vibrations is included in the nonadiabatic coupling via an
approximate, but purely quantum mechanical, treatment. Analysis of the dynamics reveals that, after excitation
to the first excited state, the energy gap between ground and first excited states of the molecule exhibits an
ultrafast ¢~100 fs) decrease due to the inertial response of the solvent that accounts for about 70% of the
solvent response, followed immediately by a further subpicosecond solvent component. The times and
amplitudes of these solvation components are in accord with the results inferred from resonance Raman
spectra, and the solvent contribution to the Stokes shift observed is in accord with values inferred from ground
state absorption spectral line shape analysis. However, we also find that the energy gap exhibits a slower
picosecond time scale response of comparable magnitude due to relative rotation of the central phenolate and
pyridinium rings. This relaxation has not been previously noted or incorporated in corresponding electron
transfer models. Analysis of contributions to the electronic nonadiabatic coupling shows that this is dominated
by a small set of high-frequency intramolecular modes of the betaine-30 molecule, with the solvent making
a relatively very small contribution, also in agreement with previous experimental inference.

I. Introduction A @

Both ultrafast spectroscopy and modern theory have played LANA R
major roles in the elucidation of the details and mechanisms of o I -
intramolecular electron transfer (ET) in solution. In particular, l o l + |
over the last 2 decades, the elucidation of the relative importance RIWN /R hv R Nl R
of the contributions of solvent dynamics and of intramolecular 6 _—/——
modes to ET rates is an issue that has been pursued in numerous € ket
theoretical and experimental studfe€ontemporary theories R R R R
of ET have typically treated the role of solvent on the level of 0 o)

a dielectric continuum characterized by a Debye relaxation S- s
[o]

spectrum with a single characteristic relaxation time. The
inclusion of inner sphere vibrational modes has been done Figure 1. Schematic of the optically induced ground to first excited
classically-2 or quantum mechanicaltyA common feature of state electronic transition and the subsequent reverse electron transfer.
these theories is that they predict a strong correlation of the ET y5sis for theEr solvent polarity scale¥16as a probe of micelle/
rate in barrierless cases with the relaxation time characteristic so|ytion interfaced’ and as a probe in other applications in
of the solvent™® Nonetheless, a number of ultrafast ET analytical chemistry®1°ET occurs after photoexcitation of the
reactions have been found to exhibit rates that vastly exceedpjghly polar $ ground state to the less polag State of the
time scales for diffusional solvation dynamfts? Ultrafast  molecule, as shown schematically in Figure 1. The subsequent
components of solvent dynamics as well as inner sphere modesinetics of the photoexcited system have been measured via
or intramolecular vibrations have been posited as mechanisms,jirafast absorption spectroscopy in a series of experiments in
that can give rise to ET times that are faster than solvent polar aprotic solvent826 and alcohold? In these experiments,
diffusional relaxation time&: it was found that the rates for the S* S relaxation followed

A particular molecular solute where the kinetics of ET have characteristic average solvent response times in polar aprotic
been explored in a relatively comprehensive series of experi- solvents!! with the ET rates in fast aprotic solvents comparable
ments is betaine-30. The betaines consist of a covalently boundto the solvent dynamical times. However, in slow solvents, these
charge separated, ground state, shown schematically in FigureET rates were found to far exceed inverse solvation times. In
1. The large sensitivity of the lowest energy electronic transition alcohols, an additional faster solvent dynamical contribution was
to the local molecular environment has been exploited as theinferred to contribute to the ET dynamits.
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The observed ET kinetics of the system have been interpreted If the use of a multiple time scale solvent response is critical,
in terms of a hierarchy of theoretical formalisms for ET rates then one could also infer that an important limitation of the
which focus on the quantitative role of medium dynamics and Jortner and Bixon vibronic formulatidnis that to a single
of solute intramolecular modes. The limitations and successesaverage response time, which can be far longer than that actually
of each description in reproducing experimental trends have beendominating the dynamics. It has in fact been argued that the
effectively used to delineate underlying mechanistic aspects of regime of solvent response that is critical to the ET rate varies
the rates and to point out remaining uncertainties. It is these with the size of the activation barriéf.In contrast, Bixon and
uncertainties that motivate large scale simulations of the type Jortner have presented clear theoretical arguments that activa-
we pursue in the present work. To delineate the key open issuestionless ET should, in fact, have only a weak dependence on
as well as to point out those results that one should expect tothe excess energy above the diabatic curve crogsiGince
be correctly described by a valid model, we briefly review the contributing vibronic channels in the strongly inverted
various theoretical modeling efforts. The formulation of Sumi regime should correspond to nearly activationless transitions
and Marcu3? treats the reaction dynamics via a medium to vibrationally hot ground states, then, by analogy, they argue
coordinate dependent ET rate with a diffusional evolution of that rates in the strongly inverted regime also have only a very
the medium coordinate and treats all modes classically. Ap- weak dependence on excess energy, and hence on solvent
plication of the formulation, with appropriate modification for relaxation dynamics.
the nonequilibrium initial conditions appropriate to the photo- In fact, in alcohold?! the hybrid model noted above was only
initiated ultrafast experiment$,was found to fall short of the  able to mimic experiment if the initial conditions for the solvent
observed rates by orders of magnitude. This result was notcoordinate were relaxed by a significant fraction essentially
surprising since the enhancement of the rate of ET in the instantaneously. These authors attributed this deviation from the
strongly inverted regime via high-frequency inner sphere/ original hybrid model to a fast reorganization of the solvent
intramolecular modes had been appreciated earlier. In particular,solute hydrogen bonding, although they tentatively identified
for the inverted regime, high-frequency vibrationally excited the effect on the electronic transition rate with a concomitant
states of the product manifold can provide reaction channels change in FranckCondon factors associated with solite
with relatively small activation energies. The explicit incorpora- solvent vibrations, rather than with ultrafast components of the
tion of this effect into a theory which also incorporates solvent solvation response per se.
dynamics (at the level of a single characteristic solvent response Gjyen the discussion above, it is clear that even in this

time) was accomplished in the formulation of Jortner and rejatively well studied case, important questions remain. The
Bixon.* There, the rate is described as a sum over product regime where solvent dynamics plays the dominant role is not
vibronic channels of a rate that incorporates solvent diffusional clearly established, and the importance of alternative time scales
dynamics. Although the rates for the betaine-30 transition for solvent relaxation is unclear. The role of intramolecular
evaluated via this formulation were much greater than those viprations, particularly low-frequency vibrations, is uncertain,
obtained via the SumiMarcus expression, the rates failed to and the physical identity of such putative modes is not known.
manifest the apparent transition in the rate-limiting process from At the most basic level, there is a lack of detail about the
solvent dynamical control in fast solvents to one relying potential energy surface on which the ground and excited-state
primarily on high-frequency intramolecular vibrations at low electronic relaxation processes occur prior and after the ET
temperature, where the solvent response is far slower than theevent. Such details would be of great interest in making close

ET rate?* and informative connections with recent resonance Raman
A hybrid model formulated by Barbara and collaborai®?é studies of this syster?. Such Raman studies can reveal aspects
incorporates the diffusive dynamics of the Surilarcus model, of both solvent dynamics and intramolecular nucteslectronic

the vibronic channels of the JortreBixon model, and a very ~ couplings. The models discussed above also use only one or
rapidly responding classical intramolecular relaxation of the two effective vibrational modes. This simplification makes
solute. The low-frequency intramolecular component provides implementation readily accessible, but the validity in describing
a Gaussian energy width to the individual vibronic channels ET dynamics quantitatively is unknown.

for any value of the solvent coordinate. This model was able to  These issues can be addressed by detailed molecular level
capture the temperature and solvent dependence of the experisimulations that include the important quantum mechanical
mental data in polar aprotic solvents using parameters deriveddegrees of freedom explicitly and a suitable algorithm to treat
from modeling of static spectra. Nevertheless, it was argued nonadiabatic (NA) transitions between states. Here, we develop
more recentl¥”28 that, to properly describe the ET dynamics and implement a practical model and algorithm which includes
of these systems, one must include the fact that the solventsall intramolecular and solvent degrees of freedom and an explicit
relax on multiple time scales, a potential limitation of the simple treatment of solute electronic structure. The treatment of the
hybrid model that had been noted by its developérin electronic problem and its interface with the classical solvent
particular, it is widely appreciated that the response of polar and classical modes of the solute is described in more detail
solvents to rapid perturbation in the solditlvent interaction elsewherd? the approach we use is very similar in spirit to
includes at least one relaxation time that is far faster than the that introduced long ago by Warshel and co-workérS.For
diffusive time scale of the complete relaxat®rT his very rapid the electronic dynamics, we implement the surface hopping
component can account for a majority of the solvent relaxation method of Tully (molecular dynamics with quantum transitions,
dynamics. In many cases, this is the initial so-called inertial, or MDQT),*® where the system evolves on one electronic surface
Gaussian, time scale, but it need not be, as in methanol, whereat any time and hops stochastically between surfaces based on
a subpicosecond exponential component is manifest. Thesethe state-to-state transition amplitudes. The treatment of high-
results for solvation dynamics have been demonstrated infrequency intramolecular vibrations used here is quite simplified,
numerous ways, through experimental transient Stokes butthe extension to a more realistic treatment is described. The
shift measurement8; 33 via molecular dynamics (MD) simula-  algorithm is applied to the;S—~ Sy ET dynamics in acetonitrile.
tions34-36 and via molecular theories of solvation dynanfits? We explore the roles of multiple time scale solvent response
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and of the underlying solute potential surface and intramolecular and the ternV/,, is the SCF ground-state energy eigenvalue (see

modes in the dynamics. We also examine the character of theeq 2 of ref 43). The termg and{c'} are the molecular orbital

promoting modes responsible for stimulating the transition, (MO) energy and coefficients of thigh p-type orbital. The

including consideration ofll solution degrees of freedom. functional form of the two electron repulsion matrix element,
The paper is organized as follows. In section Il, we describe y,.,, is given by the MatagaNishimoto relationshit? in our

the methodology developed for this study. The methodology calculations. The total energy of the system when the betaine-

represents one of the main contributions of this work. Section 30 is in thelth CI state is given by

Il reports and discusses the results derived from the excited-

state trajectories of betaine-30. The conclusions are given in EITOT =K+ Vior + E'CI )
section IV. We include a set of appendices that give the details
related to the algorithmic development. whereK is the total kinetic energy of the classical degrees of

freedom of the systenV/ror is the total ground-state potential,

andEy, is thelth eigenvalue of the CI matrix defined by eq 1.
The computational expense of treating even a limited number The total ground-state potential is given by

of degrees of freedom quantum mechanically in a molecular

Il. Methodology

dynamics (MD) simulation necessitates the use of approximate Vior =V, + Ve ct Vs st Ve s 3)
methods of electronic structure. Elsewhere, we have developed
a MD model of betaine-38 which includes ther electron where the term&/c_c, Vs-s, andVc-s denote the corecore

degrees of freedom of the molecule and treats the remaininginteractions of the betaine-30, the solvesblvent, and core
electrons and nuclei as effective classical nuclear coreszThe solvent interactions, respectively. Complete details of the terms
system is treated with the semiempirical Parigearr—Pople that make up eq 3 are given in ref 43. When the system is in
(PPP) SCF methdd“° with single excitation configuration  thelth excited state, the force on a nuclear coordifaferhich
interaction (Cl). The intramolecular degrees of freeedom are can be either a solvent or betaine-30 atom) is given by
constrained to be rigid, with the exception of rotation around ;

the six dihedral angles defining the relative orientation of the L

seven rings (see Figure 1). These angles and the solute center Fr= _EQ(VTOT + szCnAnm)

of mass and overall rotation are treated classically. The solvent mn

molecule§ are also treated glqssically and modeled by the MD R [ a0

parametrization for acetonitrile of Edwards, Madden, and = TOT szCnEzAnm 4)
McDonald?° The electrostatic potential produced by the solvent mn
molecules couples to the betaine-30 electronic degrees of
freedom via a one electron contribution to the diagonal elements
of the Fock matrix. The transition energies are calculated using
single ClI, which has proven to be very accurate in the PPP
method in the calculation of transition energies of heteronuclear
aromatic molecule®t The model has proven to be accurate in
calculating the wavelength, intensity, and bandwidth of the
lowest energy transition of betaine-30 in acetonitrile, as well |
as the shift in these compared to a nonpolar mediihm. W\ L= ZCnW’nD (5)
particular, the width and band shape of the lowest energy "
absorption (i.e., &— S;) are well reproduced by the model
when compared to that found from the experimental spectrum
in acetonitrile after removal of the vibronic contribution to the
band shape found from experiment. These facts indicate that
the treatment of the wave function and solvent for the ground
and lowest excited states of the molecule in solution are
sufficiently accurate for an examination of excited-state relax-

ation processes. . — R S .
Calculation of the Excited-State Forces.The reader is  [©'¢€S (i-€.0/0R Vror = Vidy). Likewise, the Cl energy is a
variational minimum with respect to the CI eigenvector coef-

referred to ref 43 for complete details of the PPP Hamiltonian ficients: h thei dinate d d b lected
used for betaine-30. The derivation of adiabatic excited-state "'C'€"tS; hence, heir coordinale dependence can bé neglecte

forces, required for the relevant dynamics, using this Hamilto- in eq 4. However, derivatives of the matrix elemefys require

nian is now discussed. The excited-state energies were calculate&valuat'%n gihgrad'mf of the fl\t/lr? coeﬁ;cgnts.tTgeséeHca? be
using single excitation configuration interaction. The single approached through the use ol the coupled perturbeéd Hartree

excitation configurational wave functiorig;..[1have matrix FOCk. (.CPH.F) equatioris, yvhereln a derl\(atl\(e of a M.O
elements coefficient is rexpressed in terms of derivatives of unitary

transformation matrix elements:

where the CI energy has been rewritten in terms of its
eigenvector coefficientsC'} and matrix elements given by eq
1, where an excitation involving promotion of an electron from
an occupied orbital to an unoccupied orbitah has been
replaced by a single index Accordingly, thelth Cl eigenvector
vector is written as

The symbolX® (e.g.,V®R in eq 4) denotes that the derivative
is taken with respect td&R while neglecting the coordinate
dependence of the MO coefficients X in evaluating the
derivative. As noted elsewhete>*the ground-state SCF energy

is a varitional minimum with respect to the MO coefficients;
hence, no terms due to gradients of the molecular orbital
expansion coefficients contribute to the ground-state nuclear

Wi—al(He = V)19, —p= 00 4p(€a — €) + 5c2
> e, = 6.6y, (1) E = chluf,:1 (6)

uv

whereHeg is the totalelectronicHamiltonian, which includes  The sum in the above equation extends over both real and virtual
the electron kinetic energy and electreglectron interactions ~ MOs. Using this relation, the final term of eq 4 can be shown
as well as the electrercore and electronsolvent interactions, to be3:56
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(IPN| 9 _ I ~I AR R el
szCn_ m— szCnAnm + Zzuké‘ks (7)
mn BR mn S

where the sum ovem,n is over the space of one-electron
excitaions, the sum ovégsis over all occupied and unoccupied
molecular orbitals, and' is the Lagrangian matrix where the
changes of Cl energy with respect to the MO coefficients are
collected. Note that the matrig' is independent of which

particular nuclear derivative is being calculated and need only

be calculated once. It is, however, a function of the CI
eigenvector coefficient§C'} and therefore must be calculated
for each CI state. The first-order unitary transformation matrix
derivatives are found through solving the CPHF equations,
which for a closed-shell system are writtert®as

virtualreal

B§P+ Z IZAai,qpuc?p (8)

— R _
(€p — €q)Ugp =

where the vectoBR and matrixA are given in Appendix A.
The efficient computation of the terny2s URE, . using the so-
called Z vector method is also outlined in Appendix A.
Elements of the Nonadiabatic Dynamics MethodIn this
section, the details and algorithm for implementing the MDQT
method® in the present context are described. We first outline
how the method is implemented with the MD model for betaine-

30 and the PPP semiempirical electronic structure approach used

for the electronic degrees of freedom. In the MDQT method,

or in adiabatic dynamics, the single state adiabatic force given

by eq 4 is used to evolve the nuclear trajectory. The Sthger
equation for the electronic degrees of freedorfor a given
configuration of nuclear coordinatésis given by

He(RiN W, (Rir) 0= (Eg(R) + V,(R) W, (R;n)D (9)

Here, the quantum mechanical state of the system is expanded

in the adiabatic CI states

|D(R,r )= ZB,(t)PI’lD (10)

Using the time-dependent Scklinger equation, equations of
motion for the expansion coefficientB,(t), can be derived

ihB, = B,(Eg, + V.) —ihZBJR-dIJ (11)
whered,; is the NA coupling vector given by
dyy = W[V, (12)

It should be noted that the ground state is included in the total
expansion of the wave function in the above expansion. Since
the ground-state Slater determinant does not couple to the single

excitation configurations, we have, using the notation in eq 5,
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ihB, = BEL, — ihZEJR-d,J (15)

The NA coupling vector can be expressed in a form suitable
for the semiempirical formulation used here by expanding the
Cl states in terms of their electronic configurations as given in
eqg>5

dIJ = zclanCrJnEy)nlwm[H_ zclnc‘r]nﬁy}MVRWmD
nm nm

=5 GG+ S CrCal¥n Vel (16)

The first term of eq 16 can be further simplified by using the
fact that the CI states diagonalize the Hamiltonian within the
space of one-electron excitations, viz.,

[Wil(He — V)IW,E= 0 17)

Taking the derivative of this expression, we have
VR, [(Hg — V)IW,0
= zchlr]CanAnm+ zclanCJmAnm—i_ ZCLC‘r]nVRAnm
mn mn mn
= Eg:|zcr]1VRcln + El(:lzclmVRan + zclnCrJnVR’Anm
n m mn (18)

Then, using the orthonormality of the CI states, one can show
that

ZCﬂVRCL == ZCLVRC}]] 19)

Substituting this relation into eq 18 and rearranging terms, it
can be shown that the first term of eq 16 can be written as

> GGV A
> ChVCh=———— (20)
n (ECI - ECI)

Simplification of the gradient term&py| VrymJin the second
term in eq 20 is done in Appendix B. The gradient terms
| VrymJare zero if the wave functions differ by more than
one spir-orbital. Hence, the only nonzero terms in the second
term in eq 16 will be (see Appendix B)

Wi —al VRY L= ‘/EZCLVRCZ
u
Uyl VL= V23 T (21)
u
@ al Vel jal = \/EXd;lch;
"

As with the calculation of the adiabatic force, the derivatives

[Wol= " Colyal= Colio= Il (13)
n
where|yolis the ground-state Slater determinant.
For numerical convenience, one can define
~ i st ,
B =B exp(E I vﬂ) (14)

in the above equation can be expanded in terms of the unitary
transformation matrix elements. Combining these results the

Equation 11 then becomes components of the NA coupling vector can be written
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d D: R tions, the semiclassical expression for this matrix element is
‘_WJ d used, as given in egs 11 and 15,

D V,; = —ikR-d,, (24)

This form suffices for the coupling due to the solvent degrees
of freedom and the internal relative ring rotations. Here, we

_ I_.J IJEL d
Zc C—i—ZCC =

c CJ_ o - .
z n~m R add the remaining NA coupling due to the intramolecular
_m + CI D 22) degrees of freedom a posterio to the equations of motion for
(EJ _ ) % w"‘ the electronic basis state expansion such that for given vibronic
o~ B states,
ZC C? (R)
. i
_ 4 2 wRed ihB, = BE, —ih Y B)|R-d; — — (25)
(E =) ‘ ih
Cl

o ) where the additional coupling has the form
where the changes of the MO coefficients with respect to the

nuclear coordinate in the NA coupling from the first and second W6 R2 g
terms of eq 16 have been collected in the veétbrThe vector ’ ‘

&Y is a function of the ClI eigenfunction coefficienf€'} and 2 5o,
{C%. The efficient calculation of the term2s upL,. can be
carried out using a modification of the Z vector method of e 2&, 9 HH‘ 9 D
Handy and Schaeférand is outlined in Appendix A. ~ —h ‘_‘IPJ I‘a By
The high-frequency intramolecular degrees of freedom of n (26)

betaine-30 play an important role in determining the absorption
width of the $ to S transition by giving rise to a vibronic ~ where|S;0and |oyOare the nuclear wave functions associated
progression which is manifest as a broadening of the absorptionwith the initial I th and finalJth electronic state, respectively.
on the high-frequency side. An estimate of the corresponding The kinetic energy operator has been written here in terms of
inner sphere reorganization energy found from fits of the the 3N — 6 normal modes of the betaine-30 molecule and the
absorption spectrum is approximately 720 ¢émwith a single second derivative terms due to the nuclear degrees of freedom
effective frequency of approximately 1600 cthi® This effective have been neglected in the second part of eq 26. We assume
qguantum mechanical mode also appears to play a critical rolethat the intramolecular nuclear wave function is a direct product
in providing an efficient channel for the reverse electron transfer of harmonic oscillator wave functions corresponding to tNe 3
(i.e., S — S) in model calculations, as noted in the Introduction. — 6 internal normal modes of the molecule; that is,
Given the expectation that quantum intramolecular modes play
an important role in the electron-transfer process that is being \8,0= 183085083+ 183V °0 (27)
modeled here, an inclusion of quantum intramolecular modes
of betaine-30 and how they couple the electronic states of the [(Wi|8/dgn| W,(is the electronic NA coupling associated with the
molecule is necessary. As noted earlier, the MD model that is Nth normal mode and the nuclear coupling tef@|d/dgn| 3,0
used here explicitly includes only those intramolecular vibrations factors into
associated with relative rotational motions of the rings of the
molecule. The remaining degrees of freedom are frozen out by E( i
the use of constraint.Further, a quantum mechanical descrip- ‘aq Bs
tion of the remaining modes is evidently required, based on "
model calculation$*A complete quantum mechanical descrip- |y 4 full treatment, we should evaluate the evolution in eq
tion of the internal modes and their dynamics would require 5 yig a sum over all possible channels, with evaluation of the
expanding the wave function in eq 10 in internal coordinates  Franck-Condon factors (eq 28) and appropriate account of the
as energies of each channel throulcf. eq 14). To do this in an
effective manner requires a relatively thorough analysis, iden-
|®(R,r,q,t)= ZB.,a(t)I‘P.(R,r,Q)EIJE.,Q(Q)D (23) tifying the active vibrational modes and their appropriate
o parametrization in a harmonic model. Such an analysis, with
connection to closely related experimental resonance Raman
data®? is not undertaken here. Rather, in the present work, we
make a very rough approximation that allows us to carry out
an initial exploration of the coupling due to the high-frequency
modes. Here, we assume that the minima of the internal normal
modes of the molecule have the same frequencies irtthe
and Jth electronic state, and are, furthent displaced. Under
this approximation, the individual nuclear NA coupling matrix
elements correspond only to single quanta changes and the
SFranck-Condon factors are either unity or zero so that

9 —6
s e e
aqn m=n

where the total wave function is expanded in internal vibrational
state basis functions in addition to the electronic basis functions.
The expressions that result from substitution into the time-
dependent Schdinger equation are given in ref 58. Such a
scheme is complex because of the large number of coupled
equations that result, and additional approximations are highly
desirable to put the equations in a form tractable for the present
purposes. Here, we focus on incorporation of the additional NA
coupling that arises due to the intramolecular quantum degree

of freedom.
We begin with the NA coupling between two electronic state A
; . L 9 1 W,
I andJ given by the matrix element of the nuclear kinetic energy ‘_ Bl EZAl—= (29)
operator. Conventionally, in mixed quantum classical simula- aq, h 2
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The electronic NA coupling associated with jiienormal mode previous implementatiorf8, these slowly varying coupling

can be found using the linear transformation coefficig}s elements were linearly interpolated between MD time steps in

between the Cartesian displacement coordinates and the normatihe integration of the coefficients.

modes: In the fewest switches algorithff,the probability of a
transition occurring betweetnandt + dt from stateK to | can

B‘"a%‘%ﬂz %%Bﬂ‘%‘%ﬂ (30) be shown to be

t + dt
Jo Tdtby ()
. . . P = B* (t) B (t) : (34)
where the normal modes are given in terms of the Cartesian K K
displacements of the atoms from their equilibrium positions in
mass weighted coordinates, where

A by (t) = — 2ReB, (B (OR-d\ ()] +
4= Y mag 5D o0 Hm{B, B (VO] (35)

The inclusion of the quantum intramolecular contribution to the  The integration obi(t) was done numerically again using linear
NA coupling necessitates a modification of the PPP model for interpolation for R-di(t) and VAM(t). Transitions between

betaine-30 in order to account for the distance dependence Ofgiates are determined stochastically, based on the state-to-state
the semiempiricak-electron overlap integrafi. The details of

) L - . A transition probabilities.
this modification are outlined in Appendix E. Although it turns out that it does not play an important role
The sets of eigenfrequenci¢a} and normal mode trans-

. el ) in the present results, we also discuss the algorithm for energy
formation coefficient§ 1} for betaine-30 were calculated from  ¢onservation when making a transition from one state to another.

an optimized ground-state geometry with MOPAC*6.0sing In this circumstance, the MDQT procedure is to adjust the
the AM1 Hamiltonian. The calculation of the displacements g|ocities of the classical nuclei in order to maintain energy
along the normal coordinates in eq 31 are made with respect toconservation. This is done by adjusting the velocity components
the minimum energy geometry of the molecule in the reference ¢ the nuclei along the NA coupling vectali(t). However,

frame in which the normal modes were calculated: the velocities are also subject to constraints forces which keep
o 0 the betaine-30 and solvent molecules rigid. The additional forces

ARg30 = Rgzp — Resgo (32) that arise from an electronic transition must be adjusted to
account for these constraints. Therefore, constraints must be

whereRg3 is the vector of the betaine-30 atomic positions and applied to adapt the NA coupling vector so that the changes in
RQs0 is the minimum energy reference geometry at which the velocities are orthogonal to the internal degrees of freedom that

eigenvalues were calculated. The electronic NA coupling are constrained. The method for this is outlined in Appendix

elements®|9/dg|W;[can be strongly dependent on the relative D, Once this is done, the velocities of the molecules can be
rotational orientation of the molecule with respect to the adjusted as follows:

reference geometry of the molecfeTo remove this depen-
dence of the electronic NA coupling elements on overall
rotations, the positions,Rgs, and Cartesian elements,
W0/0R|W,;0) must be expressed in a coordinate system that . ) . .
obeys the Eckart conditio¥8:62 This corresponds to applying  WNereR; is the Cartesian velgicr[_y vector of the siteith mass
an overall translation and rotation to the positioRgzo, and m prior to the transition and, is the adjusted NA coupling
elementsW,|#/dR|W,0such that the displacements in the six vector component for the site The scaling factoyy, is given
normal modes corresponding to translation and overall rotation b
are zero. That is,

Ri = Rli - VKIaiIK/m (36)

_ by =+ \/ble + 4a|K(E(KZI - EICI)

3N
i . Y (37)
g =Y I/maR=0 for j=3N-5N-4, ., : 23y
|
(33) where
Details for this procedure are outlined in Appendix C. <
Having established the details of the equations of motion for ik
the expansion coefficients given by eq 25, we now outline the g = 5 (38)
MDQT algorithm and modifications that must be made to it T~ <Mm

for the MD model of betaine-30. The equations of motion for

the expansion coefficients8} must be integrated in tandem and

with the propagation of the MD trajectory for the nuclei. These .o~

were integrated from molecular dynamics time dtepthe next by = Redi (39)
time stept + dt using a fourth-order RungeKutta scheme.

Because of the highly oscillatory nature of the coefficients, a The positive root foryk is used forbx > 0 and the negative
much smaller time step was used to integrate eq 25; weuse for bk < 0. A transition can occur ifik is real. If the particle

= di/1000. The computational expense of the calculation of the velocities have insufficient velocity components alody,
electronic NA coupling matrix elements precludes calculation then the system does not make a switch and the velocity
of these elements at every one of the smaller time steps. As incomponents oR along dy are reversed using eq 36 and
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bik levels are correlated with each other and have a small amplitude

Yik = ai_ (40) of approximately 0.2 eV. Superimposed on the highest frequency
K fluctuations is a larger amplitude variation of much lower

frequency. The low-frequency motion is more pronounced in
the § ground-state level (amplitudel eV). The same features
can also be seen in the trajectory of the transition energies which
are shown in Figure 3. The transition energies are the energy
gaps between ground and excited states which are givaieRy

Simulation Details. Simulation details of the MD model used
here are described elsewh®rand will only be summarized.
Simulations were run with a total of 1172 acetonitrile molecules
at room temperature and a solvent density of 0.7867 §/Cm
simulate the nonequilibrium process of photoexcitation and |
subsequent relaxation, the MD trajectories were run by placing = Es. = Es, = E¢, where
the betaine-30 molecule in an excited state after the molecule
and solvent had been equilibrated in the ground state. The B, =Vat Vet Ves (42)
subsequent excited state dynamics were generated with a time

step of 2 fs. For computational efficiency, the dynamics was Tq ascertain the connection between specific molecular degrees
generated using only 50 single excitation configurations 10 of freedom and the excitation energies of the betaine-30, we
generate the excited-state energies and forces. These 50 wergyst examine how the torsional angles of the molecule change
chosen at every MD time step by selecting the 50 lowest energy after excitation. The torsional ring angles as a function of time
diagonal elements of the Cl matrix defined by eq 1. These 50 are plotted in Figure 4. Our previogsound statesimulation
lowest energy single excitation states were then used inresylts for betaine-30 in acetonitrifehave shown that, in that
diagonalization to generate the excited-state energies andgase, the torsional angles of the molecule only sample a narrow
molecular forces. It was verified that the ground-state absorption range of angles4—8°), indicating that the rings are confined
spectrum for the three lowest energy transitions remained tq rotational potential energy wells by barriers much larger than
unchanged when compared to the spectrum generated using allermal energies. Figure 4 shows the ring angle trajectories for
possible single excitations. This indicated that the wave func- the central ring angle (labeleflin Figure 1), the two phenyl
tions used for the three lowest energy states were weII-describeohngs attached to the pyridiniung(in Figure 1), the torsional

by the 50 lowest energy configurations within the space of single gngles subtended by the phenyl ring ortho to the nitrogen in
excitations. Two types of trajectories were generated. In the first {he pyridinium §), and the remaining angle for the two phenyl
type, of primary interest here, the betaine-30 was placed in therings attached to the phenolate grodp @As can be seen from
first excited state. In the second type, the betaine-30 was placeq:igure 4, the ring angleg and& show no appreciable change

in the third excited state. The latter was done to explore the from the range of angles that are sampled in the ground state.
dynamics corresponding to photoexcitation experinfértat  Fyrther, it is clear that we need not distinguish between the
use excitation wavelengths of both 800 and 400 nm which jndividual angles in pairs of anglgsand&. However, the central
correspond to the S~ S, and § — S transitions in the  ring angled and the two side ring angleésdo show considerable

experimental absorption spectrum. deviation from the distributions that they sample in the ground
statd? ([H0= 53° &+ 4° and[p[= 47° + 4°, where thet denotes
Ill. Results the distribution width at half-height).

For this exploratory study, we have examined five trajectories ~ After excitation, the central ring angle both increases and
initiated in the $ level of betaine-30. We have found that the samples a larger range betweer? @dd 90. In addition, the
insight obtained from alternative trajectories is equivalent, and side ring angle motion is correlated with the central ring, and
therefore, below, we primarily discuss the results with reference the side angles both increase as the central ring moves toward
to a particular representative trajectory. To gain an understanding90°. The motion of the central ring angle is readily determined
of the details of the relaxation processes that occur after initial to be strongly correlated with the low-frequency large-amplitude
excitation of the betaine-30, we first examine the energetics andmotion of the $— S; energy gap (cf. Figure 3 and Figure 4).
molecular details of individual trajectories. As the central ring angle opens, the energy gap generally

The energies of the individual electronic states are shown in decreases in value, as can be seen by comparing the first 5 ps
Figure 2 as a function of time after the betaine-30 has been of the trajectory, shown as a separate frame in both Figures 3
placed in the first excited state. The electronic energies of the and 4. The overall motion of the energy gaps is clearly correlated

states are defined as (see section II) with the changes in the central ring angle, with the transition
energies getting lower as the pyridinium and phenolate rings
Es =Eci+V,+VectVes 1=1,2,.. (41)  approach 90with respect to each other.

This behavior can be explained by an examination of the
We note at the outset that evidence from comparison of calculated potential energy surfaces of theaBd S states in
experimental and calculated restitisidicates that the ordering  the gasphase. The gas-phase surfaces shown in Figure 5 were
of the S and S states from the present electronic description generated as a function of the two ring angteand 6. These
are reversed, a result that can be seen from their polarities. Asreduced surfaces were each found by first finding the minimum
will be evident below, the Sand S states are computed to be energy structure of the molecule in the gas phase via a simulated

relatively close in energy, with theoSand § states well annealing MD calculation. The surfaces were then generated
separated from them. Therfore, we focus the present work onby varying only the two angle$ and 6 and keeping the other
the § and S states. angles constrained at their gas-phase minimum energy values;

As can be seen from Figure 2, the betaine-30 remains in thethe two¢ angles were kept equal to each other. In the ground
first excited state for the 25 ps of the trajectory shown, as state these two torsional angles have minimum energy values
discussed below. Examining Figure 2, it can be seen that, which are 52 and 49, respectively. At a torsional angle of,0
immediately after excitation, theyState moves rapidly upward  the & conjugation between the rings is maximized, buf 90
by approximately 1 eV in energy over the first 100 fs of the minimizes the steric repulsion between the pendant rings. The
trajectory. The highest frequency fluctuations in the energy Sy— S excitation involves the promotion of an electron from
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Figure 2. Time-dependent dynamics of the energy levels (see egs 41 and 42) of betaine-30 after it has been placed in the first exgifed state S
a typical trajectory. The occupied state is denoted by the crosses. The groundgsiatdeBSoted by the dashed line. The excited statgs,Sand
S;, are denoted by the solid, long dashed, and-daished lines, respectively. The two frames differ only in the time scale.

au orbital to ar* antibonding orbital. This is found to decrease increasing the separation of the surfaces shown in Figure 5.
the amount ofr conjugation energy in the molecule. For the Furthermore, our previous simulation results of betaine-30 in
central ring anglé, this results in the potential energy minimum the ground stafé have shown that the solvent polarization
being shifted close t&@ = 90°, where steric effects are substantially removes th@ torsional angle dependence of the
minimized. It is interesting to note that, in the ring angle S — S transition energy in the vicinity of the ground state
trajectories, large-amplitude motions occur in ¢ghangles when minimum, where the torsional ring angles only sample a very
0 ~ 90°. This is due to the fact that potential surface is very  narrow distribution of angles. Conversely, the excited-state
flat along thep coordinate along thé ~ 90° cut, as is evident trajectories show a dependence of the transition energies on the
from Figure 5. The decrease in the transition energies after central ring angle, a result that may be due in part to the much
excitation is also explained by Figure 5; the energy gap is larger range of angles that are sampled in the excited-state
considerably smaller whef ~ 90°. trajectory and in part to the rather different solvent polarization
While the gas-phase surfaces can be used to interpret thepresent in that case.
solution state dynamics after excitation, it should be emphasized We now consider the shorter time dynamics. In Figure 3, a
that there is considerable polarization of this surface by the rapid 1 eV drop in the §— S; transition energy is seen which
electric field of the solvent. This is evidenced by the fact that takes place in the first 166200 fs of the trajectory. This rapid
the maximum in the & S; transition energy in the gas phase drop in transition energy takes place on a time scale faster than
is shifted from approximately 29 to 50 kcal/mol, with the solvent any torsional motion in the betaine-30 molecule and is neces-
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Figure 3. Time-dependent dynamics of the energy gAfs, = Eg —

Es, of betaine-30 after it has been placed in the first excited state. The
energy gapéEs, AEs, andAEs, are denoted by the solid, long dashed,
and dot-dashed lines. The trajectory is the same as that shown in Figure

2.

sarily due to solvent motion. This rapid drop immediately after
excitation has been seen in many other contexts, both in MD
simulationg*~36 and in experiment& 32 It occurs due to the

rapid inertial motion of the solvent molecules, subject to the
different forces present on the two electronic surfaces. The

Ring Angles (deg)

Ring Angles (deg)

Ring Angles (deg)

energy gap initially exhibits a Gaussian time dependence as has
been shown by MD simulatiofsand molecular theorie¥ 40
Longer time solvent dynamics also occurs on a subpicosecond

time scale, followed by relaxation dominated by intramolecular
torsional motion. It is interesting to note here that the solvent

contribution to the energy gap is associagedlusiely with a

rapid rise in the energy level. This is consistent with the fact
that the g state is a charge separated state with a large dipole various angles is given in Figure 1. The trajectory is the same as that

moment while the Shas a much smaller dipole moment.

It is of considerable interest to examine the energy gap
relaxation in more detail and to compare the dynamics exhibited noted above, however, there is the potential for considerable
in the present work to that inferred from recent modeling of additional relaxation on a relatively much longer time scale,
due to torsional relaxation around the solute’s central dihedral

resonance Raman spectra for the same sy&teémparticular,
it is evident from Figure 3 and our earlier discussion that, here, angle. The solvent relaxation contributes about 0.8 eV by 1 ps

Figure 4. Dynamics of the torsional ring angles of betaine-30 after
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the system has been excited to thestate at = 0. The labeling of the

shown in Figure 2.

the energy gap relaxation exhibits (at least) three time scales.after initial excitation to § the assignment to solvent alone is

The first, of the order of 100 fs, corresponds to the inertial evident from Figure 4. This energy relaxation would correspond

solvent time scale, and represents about 70% of the subpico-to a Stokes shift of about 6400 cfand an inferred solvent
second response in this trajectory. The second time scale, ofreorganization energy of about 3200 ¢t This value is
the order of 0.5 ps, is the diffusive solvent time scale. After comparable to the value of about 3600 ¢ninferred by us for
about 1 ps, the solvent is essentially completely relaxed. As the same model by analysis of solvent contributiongrtmund
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Figure 5. Gas-phase potential energy surfaces for the ground and first excited states as a function of the central-pprdilaiten torsion

anglef and the side ring angl¢. The minimum of the ground state surface is locatel at 52° and¢ = 49°. The minimum in the first excited

state is shifted t@ = 90° and¢ ~ 65°. The arrows denote the relaxation of the system in these two coordinates after excitation to the first excited
state.

stateabsorption line broadenirf§,a result that also agrees with 1.0 . . . . . -
the corresponding analysis experimentaground-state absorp-
tion spectr&* The total relaxation accessible including torsional
relaxation (observed here due to the longligtime of the 0s | .
model) is about 10 000 cm.

In the cited resonance Raman spectral modeling, it was found
that an ultrafast component of the solvation dynamics was 0.6 1
needed to fit the measured results. In particular, McHale and
co-workeré? found that, in addition to a solvation time for
acetonitrile of about 0.6 ps, a time of 88 fs carrying an amplitude 0.4 .
of about 60% of the solvation response was needed. This form
for the solvent response is completely consistent with that seen
in the present work. However, the corresponding solvent 02 f
contribution to the reorganization energy inferred there, about
6000 cnt?, is notably larger than our best estinfétef 3600
cm L. The present observations suggest that a possible factor %% 5" 20 100 150 200 250 300 350
in the comparison is the role of the slower torsional component time (ps)
observed here. The resonance Raman spectral analysis does ney
include a slower (classical) intramolecular component so that
any effects arising from this would be included in the component
attributed to the solvent. These autH8isave, in fact, suggested  nonequilibrium trajectories and is not warranted, since the
the possibility of coupled contributions of solvent with solute experimental lifetime is known to be approximately 0.52ps.
torsional degrees of freedom. We note that the torsional Alternatively, a first-order lifetime can be estimated from an
relaxation seen here is much slower than the acetonitrile solventaccumulated transition probability expression
(and also much slower than the800 cnT! modes representing
the lowest frequencies resolved in the Raman s&)dyhus, it Ns )
is not clear without further detailed analysis whether the Pg"f(): |_|(1— Pi_o (43)
contribution of the present dihedral motion would be significant [
in describing the resonance Raman spectra. .

As stated earlier, no transition back to the ground state in WhereP,_ is the transition probability at every time MD step
fact occurs in the present 8ajectories. The calculated transition ~ which is accumulated over, time steps. A graph o) as a
probabilities were found to be extremely low, on the order of function of trajectory length for the above trajectory is shown
P10~ 1 x 1074 per MD time step. A computational study of in Figure 6. A linear fit to InPg"fo] gives an estimate of the
the estimated lifetime would require averaging over many excited-state lifetime. The slopes of five trajectories were

MF
Pso

gure 6. Graph of the accumulated transition probability as given in
eq 43 for the trajectory shown in Figure 2.
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0.006

y y quantum intramolecular contribution. The semiclassical contri-
—-—- solvent . .
——— semiclassical butions from the betaine-30 and solvent degrees of freedom are
————— quantum vibration both approximately an order of magnitude smaller than the
total guantum intramolecular part. The implication of this is that,
within the context of the adiabatic reference point of the model
presented here, the coupling betweemaBd S that promotes
the transition can be well approximated by the contribution due
to intramolecular modes. Correspondingly, these modes are the
! \ primary recipients of the electronic energy during the NA
! no transition, in accord with the prevailing view discussed in the
Introduction. Of course, the observations made here do not imply
! . i J | that the dynamics of the other modes, including both solvent
) ) “?lz, %; . b 1 i and ring motions, are not_critical to the lifetime. The prgmise
Al s ‘ﬂ‘,my"\‘ i ol ;"Ib;}r“i':m of several of the models discussed in the Introductiéf’ 2%is
10.0 15.0 20.0 that the time-dependent energy gap between electronic states
time (ps) determines the particular vibrational product channels that are
Figure 7. Time dependence of the various contributions to the NA potentially a_ctivationless a_nd thus most active in the transition.
coupling between the ground and first excited states of betaine-30. TheCorrespondingly, the rate is modulated by the FranCkndon
solvent contribution to the NA coupling (the first term of eq 44) is factors associated with these states. The present model is unable
given by the dotdashed line. The semiclassical contribution fromthe to address this aspect; this will require a more realistic
betaine-30 degrees of freedom (the second term of eq 44) is given bydescription of mode displacements.
the long dashed line. The contribution from the betaine-30 intramo- The contributions to the NA coupling between the various

lecular vibrational degrees of freedom which has been estimated Iso furth K h L
quantum mechanically (the final term of eq 44) is given by the dashed States was also further broken down by the contribution made

0.004

NA Coupling (eV)

0.002 f

0.000 Wil
0.0

line. The trajectory is the same as that shown in Figure 2. from each normal mode. First, it was found that the majority
_ _ o (>80%) of the coupling was determined primarily by less than
averaged to give an estimated lifetimewf.o = 29 & 19 ps. 10 distinct normal modes. Furthermore, the character of these

Clearly, this value is much larger than the experimentally normal modes was high frequency 00 cnt?), and, consis-
inferred subpicosecond result. It is reasonable to attribute thistently, none of the modes included the low-frequency rotational
difference to the relatively crude modeling of the intramolecular ring torsional modes of the molecule. It is worth noting in this
vibrational contribution to the transition amplitude used here, context that resonance Raman studies for the same sifstem
since all other aspects are treated much more completely.reveal a comparable number of active modes and that these
Among other things, this limits vibrational transitionsAe = cover a similar range of frequencies, although two lower
1 so that the higher lying vibrational states of the product cannot frequency 300 cnt?) modes of relatively high displacement
be accessed from low lying vibrational states ef Bo explore were also identified in the Raman context. Further analysis of
this interpretation in more detail, we need to examine the the character of the active modes and how they contribute to
separate contributions to the NA coupling from alternative the NA coupling is clearly a key subject for future analysis.

sources, which we do below. ) o To examine the generality of the behaviors discussed above,
The total NA coupling between the electronic states is given e have also executed a trajectory initiated in the third excited
by state of our model. As noted earlier, this state appears to
. . correspond electronically to the,Sather than $ state so that
— Sol, ySol B30, 4B3 m A )
Vi = —iR(R™dy" + R™d); 0) + Vi (44) we do not focus on the details of the results here. However,

) ) o . ultrafast pump-probe experiments have been reported for the
where, here, the semiclassical contribution to the NA coupling, excitation of ground-state molecules at 400 nm, which corre-
R-d,;, has been subdivided into the port|_ons coming from the sponds to a §— S excitation?2 One of the main experimental
solvent degrees of freedom and the b.etalne-SO.nuc.Iear Qegree%suns from this study was that the spectral dynamics for
of freedom. Because of the fact that internal vibrations in the gycitation at 800 nm (which corresponds te S S;) were
acetonitrile molecules are rigidly constrained, the only contribu- ;gistinguishable from those that resulted from excitation at 400
tion from the solvent degrees of freedom to the NA coupling m The interpretation attached to this result was that internal
comes from the intermolecular rotational and translational ¢onyersion from §— S; was extremely rapid <200 fs)
degrees of freedom of the solvent molecules. Similarly con- yowed by the $— S, transition process. For the third excited
straints to the motion of the betaine-30 limit the semiclassical gtate in our simulations. with considerably smaller energy gaps
COhFI’IbUtIOI‘I to the .coupllng to that from. internal torsional ring  petween excited states, we do find that the system reaches the
motion of the betaine-30. All the other intramolecular degrees S, state in less than 500 fs. As for initiation on thesEate, the
of freedom of the betaine-30 contribute to the NA coupling Na coupling is completely dominated by the intramolecular
quantum mechanically through the third term in the above inrational component. However, the coupling matrix elements

equation. We note that the NA coupling from the torsional gre found to be +2 orders of magnitude larger than those for
degrees of freedom is counted twice in the above formulation, e § — 5, transition. Thus, we find that these simulation results
but as will be seen below, the contribution from the torsional are consistent with the very short residence times in higher

_degrees of freedom is minimal and therefore correction for this oycited states that were inferred experimentally.
is not warranted.

The_ magmt_ude of the total NA c_o’upllng between the ground IV. Conclusions
and first excited statelVig|, and it's three components are
graphed as a function of time in Figure 7 for the trajectory = The excited state dynamics of betaine-30 in acetonitrile at
considered in the other figures. As can be seen from the figure,room temperature has been studied using combined quantum
the total NA coupling is determined almost completely by the and classical MD simulations. The electronic degrees of
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freedom of the betaine-30 have been treated quantum mechan- oF,,

ically using the semiempirical PPP electronic structure Fop= ZCE—'CE (A2)
method?’4%-84including perturbation by the solvent. Methods w  OR

for carrying out time-dependent dynamics, including transitions ) ) )
between molecular electronic states of the molecule have been! '€ Matrix elements,,, are the Fock matrix elements in the
introduced using the MDQT algorithifisuitably modified for atomic orbital representation. Usm_g th_e def|_n|t|ons of the_Fock
the PPP method and the internal geometric constraints of theMatrix elements for the PPP Hamiltonian given by eq 4 in ref
solute molecule and solvent. An approximate quantum mechan-43: the above equation becomes

ical estimate of the nonadiabatic coupling between the electronic virtualreal
states due to the internal modes of betaine-30 has been used. — R _ gR R

€, — €,)Us, = By, + i ao 8
This estimate does not take into account normal mode displace- (6 = <q)tp = Bop Z ZAa"qp . ®

ments between states.

Exploratory simulations reveal that excitation fromits the where the matri>A can be shown to be
first excited-state Sleads to energy level dynamics that are
governed by both the solvent and internal torsional angles of A= — }qu_quCp + }zxﬂycqcp
the molecule. The initial response of the energy gap between % 2%, al vl v 24 al “
S and § is governed by the motion of the solvent, with
amplitudes and subpicosecond time scales that are consistent 2
with many earlier studies of solvation dynamics in acetonitrile
and with resonance Raman studies of betaine-30 in acetofftrile. \where
However, a slower subsequent dynamics of the energy levels ' .
and gaps is governed by the internal central pheneolate Xa = 2((:;4(;3 + CZCIV) (A4)
pyridinium torsional angle of the molecule. This further energy
gap relaxation in the first few picoseconds following excitation The vectorB is given by
is substantial, amounting to about 50% of that due to the solvent 1 1
response. In the;State, the central rings of the molecule rotate _r _ ,,, R R
toward a geometry where they are perpendicular to each othequp =H a —Zc/‘jcpP Vy.'(”) + Eijctepﬂﬂy‘f‘ﬂ) +
and sample a much wider distribution of angles than they do in a

. . PP R A5

the ground state. This is due both to steric effects and a z 1CuP ooV up (AS)
decreasedr conjugation energy in the excited state. w=p

Although the possible role of torsional modes has been noted
elsewheré? and fast intramolecular classical degrees of freedom

+

Xgreichy,, (A3)

ai ~uu
u=p

2&

where

have been invoked in modelifgthe inclusion of a relatively oH,,
slow, but large-amplitude, component in the energy gap H’qp = ZCE—CE (AB)
relaxation has not been addressed in ET modeling of this system. @ OR

The identification of the specific mode here is also new. It is

of considerable interest for future work to determine whether ) in \ i ]

this internal rotation can be associated with those invoked in Matrix eilementﬁ, Puv is the density matrix defined by, = 2

models and if inclusion of such a degree of freedom can be aZi CC ) o ) )

benefit to the modeling of resonance Raman spectra. In any 10 avoid explicitly solving the CPHF equations for each

case, it would appear from these results that the a priori nuclear derivative we first rewrite eq 8 in matrix form

separation of solvent and intramolecular degrees of freedom virtualreal

from experimental data alone is, at best, very challenging. _ R _ R _ pR
Whilepexcitation gives rise to a response )f/rom the gsol‘c\’/ent (€p ~ €q)Uap Z ZAa"qpqu_ Bap

and a change in the internal geometry of the molecule, the

nonadiabatic couplings between the electronic states are found GuR=RR (A7)

to be determined almost exclusively by a small number of high-

frequency internal molecular modes of the betaine-30. Becausewhich can be solved through matrix inversion

of the very approximate model used for treating these high- & R

frequency modes here, we have not been able to directly address u'=G B (A8)

the relative importance of the different solvent dynamical time

scales on the back ET rate S S. With improvements to this

aspect of the model, and inclusion of multiple vibronic channels

for relaxation, this question can be addressed and closer 9

connection to resonance Raman experiments can be made. This ZC'mC'n—Anrn = ZC'r,nC'nA,(fr?1 + 2¢'uR

will be the topic of future studies. mn oR mn

The matrix elementsl,, are the one-electron Hamiltonian PPP

Rewriting eq 7 in matrix notation and substituting eq A8 into

. . — d
Appendix A: Evaluation of Nuclear Derivatives zCI”‘CI”a_RA"m: ZC%CLA%T% +2£'G71BR
The coupled perturbed Hartre€ock (CPHF) equations are mn mn
given by

i)
> ChCiAm= D CuCAm + 2ZB%  (A9)
mn aR mn

(€5~ €op=F'qp (A1)
The vectormatrix productt’'G=1 = Z, need only be evaluated

WhereF'qp is given by once per Cl state, as opposed t tBnes (whereN is the total
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number of classical nuclei in the simulation) as it would be if
the CPHF equations farR were solved directly for each nuclear
coordinate. SinceR is no longer solved for directly, the NA
coupling vector from eq 22 must now be rewritten in terms of
BR:

S CoAD
8 mn
&Jl‘a_RlpJD: dy = — T ZZUESCLJS
(ECI - ECI) S

> CiCrAm
mn

- (Eél - EICI)

> GG
_ mn

+ zé‘IJG*lBR
(A10)

=+ ZZ,JBR
J |
(ECI - ECI)

The vector-matrix product,{NG—1 = Zy3, is evaluated once
for every pair of ClI states.

Appendix B: Simplification of Gradient Matrix Elements
between Slater Determinants

The simplification of gradient terms of the forf,| Vrym[
can be carried out by recognizing th&t acts as a one electron

Lobaugh and Rossky

2 Seclif
—I Cc.C —
‘BR‘ z R
:zciciu‘i
&R

Focusing our attention on the first term of eq B4, off-diagonal
elements(k|d/0R|vL] are approximated to be zero under the zero
differential overlap approximation (i.e., the orthonormality of
the atomic orbital basis functions) which was assumed in the
implementation of the PPP method for betaine-30 as outlined
in ref 43. Assuming that the atomic orbital basis functions are
real, one can show that derivatives of the diagonal matrix
elements are zero due to orthonormalilty, i.e.,

e 2l = 0

These two results demonstrate that the first term in eq B4 is
zero. In a similar fashion, one can show using the orthonormality
of the MOs that the second term is zero as well

D* ac,

v |vid —

Z "R

_ ac

VD+ ZCL—M
u

R (B4)

(BS)

3 ac, ac,
—0it= S Gvie,— + vie,—
R Z “OR R
ac,
—25cd—=0 (B6)
£ R

It can be thus concluded that all diagonal elements of the form

operator. Therefore, Slater determinants that differ by more than i 5/sRjiCare zero and eqs B2a and B2b are both zero. Off-

one spin-orbital will be zero, i.e.,

Wi ol VeI ,LF 0 (B1)

The remaining matrix elements for the one-electron excitations

and ground-state Slater determinants will be

occupied
ol Valypo= ) VRl (B2a)
1
occupied
ol VRlti—a= Y IVRIC- D VglitH (3 Vglal]

: (B2b)

Bl VRlYo0= V208 Vgli D (B2c)

Wil VRIY o 0= V2| Vili0 (B2d)

1ol Velthi—p0= V20| Vgl bl (B2e)

The ket|ilis the state ket for th&h real space MO, which
is expanded in terms of atomic orbital basis functions

liC= zq,wm (B3)

There are two types of MO matrix elements in eqs B2a
diagonal elements of the typéld/oR|i0) and off-diagonal
elements of the forri]a/0R|al] Expanding the diagonal elements
using (B3),0]|d/0R|iCithen become

diagonal elements, however, are not zero and, using the previous
results, are given by

P ac?
H‘—‘aﬂz Zc'u—ﬂ (B7)
aR T O0R
Hence, one obtains the result shown in eq 21,
@l Vet o= «/52c;ch2
u
(B8)

Wi pl VRYi oL = \/EZCZVRCZ
"

1ol Vet o= \/EZCLVRCL
u

Appendix C: Compliance with Eckart Conditions

The positions of the atoms of the betaine-30 molecule must
be rotated and translated to a reference frame such that only
3N — 6 of the normal modes of the molecule have finite
displacements:

3N
=Y IWmAR =0 for j=3N-5N-4, . N
I
(C1)

The Cartesian displacement vectaRY,, (whose components
are AR,-O in the above equation), is the difference between the
betaine-30 coordinates in the MD simulation at a given time
step after overall rotation and translationRgzo, and the
coordinates of the molecule in it's minimum energy gas-phase
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configuration,Rgm, ie., Appendix D: Nuclear Velocity Adjustments with
Molecular Constraints

0 _ 0
ARg30= Rgzo — Rz (C2) Adjusting the nuclear velocities along components parallel

) _ . to the NA coupling vectod,; maintains energy conservation
The normal-mode frequencies and transformation coefficients \yhen a NA transition occurs. However. the presence of

are, of course, calculated at the configuratRiy, Equation  intramolecular constraints means that the NA coupling vector
C1 can only be satisfied by choosing the CO_O_rdmbz‘te system suchmust be adjusted prior to adjusting the velocities by subtracting
that the positions satisfy the Eckart conditiAs? The first out the vector components along the derivative of the constraints.
condition is tr|V|a”y satisfied by mak|ng the center of masses This is done by app|y|ng constraint conditions in form of
coincident with the origin of the coordinate system: Lagrange multipliers to the coupling vector itself. One considers
N N dj;/m for a sitei to be a NA force to which a constraint may be
0 applied. Following the method of Ciccotti, Ferrario, and
sz‘ n ZmiR‘ =0 (C3) Rycaert® we subdivide the nuclear sites of a molecule into

' ' two sets. The first set consists of primary atoms between which

The vectorsR; and R denote the coordinates of thigh distance constraints are applied. The second set is composed
betaine-30 atom position in the two respective geometries. The Of aloms whose positions are expressed as linear combinations
second Eckart conditions correspond to the static equivalent of ©f the primary atom positions. There will primary constraints

the angular moment between the two sets of coordinates being®! the form

Zero: 2 2
op=db— IR —RI*=0 (D1)

N
Zm(Ri x R) =0 (C4) whereds is the distance between the sigsandR;. In practice,
[ these sites need not be primary nuclear positions themselves
. " L ) ) within the molecule, they can be linear combinations of primary
This condition can be satisfied by applying a suitably chosen py¢jear site positions if an entire group of atoms within the
rotation matrix, T, to the betaine-30 positions from the MD  yqjecule is being treated as a rigid whole, but for the sake of
simulation. The procedure for finding such a rotation matrix is clarity it will be assumed that they represent the primary atomic

outlined in ref 65 and is not repeated here. With the rotation ysijtions themselves. The constraint conditions on the secondary
matrix in hand, the matrix element of the NA coupling in @ 5ioms. of which there will bes, are given by

normal mode coordinate systef,|3/dg|W,[) can be found.

The notation of eq 30 is changed slightly to clarify the Mo
transformation of the Cartesian matrix elements using the 7,= YC,yR —r,=0 (D2)
rotation matrix =

N 3 (l—l)g,k where there arg, primary sites. The NA force vectors are also
i ! d divided into primary and secondary groups, to which the
Fwlrsy 1w | s
3q] 1 aRi,k

\/— constraint conditions using the method of Lagrange multipliers
my are applied.
The Cartesian elements of the NA coupling matrix, g di I 1 V(i T)
W,|8/0R | W, are calculated after application of the rotation AN N VO BB (D3)
' - i“P
to the betaine-30 positions. The rotation matrix transforms the m m =1m ' ;\ m

positions,R;, to ones that satisfy the Eckart conditions: - "
dke dx ™ Va(llﬁ'fﬁ)

TR, =R, (C6) =
M M A My

(D4)
Rewriting eq C6,
wherelp anduys are the Lagrange multipliers for the primary
‘T’Ri = |§i (C7) and secondary constraint conditions. The adjusted NA coupling
vectorsd,,, andd;; will be used to adjust the velocities as per
one sees that the Cartesian derivatives in eq C5 may be rewrittereq 36. Next, we use the fact that the adjusted NA force vectors

as for the secondary sites must obey eq D2:
5 3R, j e nodl
R, - (C8) —=>Cy (D5)
IR IR IRy m & m

Using this relation, the element&l|3/dq;|W,[] can now be  Using this equation it is possible solve for the secondary
expressed in terms of the Cartesian NA coupling matrix elements Lagrange multipliers, and show that
that are found in the MD simulationW¥,|3/0R; || W,

9 N 3 3 (17T
L eeaEll

Ip
aIIK =P - ’ZLAPAiP (D6)

%J\‘PJD (©9)

where
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S

Np Ng
Aip = Viop — Z ; CoiPos—ViOp
1=1o,p=1 m
The matrixA is given by
O ™ CyiCy

AM:R+; m,

The first term of eq D6p;, is given by

ns
b =dy — ; CaiA;/%T/i
a,/=1
where
die ™ Cﬁid:K
+

T,=— .
m, & m

Now all that remains to is to find the set Lagrange multipliers
for the primary constraints. This can be done taking the equation
for the scaled velocities (eq 36) and inserting eq D6dgr

. . Yik Yk 2
R — R = _Hpi + HZ\A’PAiP

We now subtractR; — R)) from both sides of (D11) to obtain

P B

. . b [ Ap
Ry = R = —7i a - a + le,zliP

m

If R;; is the difference in velocities between two sites that have
a primary constraint between them, then the dot produ&;of
with each term of the left-hand side of eq D12 will be zero,

ie.,

RiJ.Rii = F.z'ij'Rii =0

because the velocities along the derivative of the constraintﬁuv - eXp(_”CX(Ruv -
should be zero both before and after they are adjusted for the
NA transition. This implies that there atg equations of the

form
s Ap A

= ;&PRH. i P

m

P B

m M

These equations can be rewritten in matrix form

R;

B=A4
where the vectoB is given by

RH.(&_&)
i m o m
B=|:

pk pn
Rkn-(— - —)
The matrixA has eleménts

) RU_(Am A,

(D10)

(D11)

(D12)

(D13)

(D14)

(D15)

(D16)

(D17)

Lobaugh and Rossky

TABLE 1: Parameters for the Numerical Fit to the
Lindberg®” Equation for the Semiempirical Overlap Integral
CX

site X ucx (bohr?)

C 0.67931
N 0.80659
O 0.89987

(D7)

B (hartrees)

—0.083032
—0.074106
—0.095542

B (hartrees bohr)

0.031686
0.029008
0.035262

(D8)
where the indexn denotes a pair of site) that make up the
mth constraint. The matriA can then be inverted to find the
primary Lagrangian constraints. With the constraints in hand
the adjusted primary NA coupling vectods, can be found
(D9) fron[1)5eq D6 and the secondary NA coupling vectdfs from
eq Db.

Appendix E: Distance-Dependenif Parameter

In the implementation of the PPP method for betaine-30 in
ref 43, the semiempiricaf-electron overlap integrgb was
treated as a constant. This was appropriate since the relative
motion between chemically bonded pairs of atoms was con-
strained. Furthermore, gradient termgafeed not be included
in that case for the semiclassical NA coupling tetmR in eq
25 because there are no nuclear velocities with components
along the bonds of the molecule. However, the gradient of
terms must be included when evaluating the NA coupling matrix
elements in eq 25 for the quantum intramolecular contribution
to the NA coupling. The overlap integral in our previous
implementation was evaluated using the Linderberg approxima-
tion:¢7

ds
— (K2 —1 v
ﬁ/w - (h /rne)R,m/ dR{m/

(ED)

whereh is Planck’s constant over me is the electron mass,
andS,, is the overlap integral between atomic orbitalandv
which are separated by the distari¢. To evaluate eq E1 and
its gradients in the calculations, we use a numerical fit to an
evaluation of this a priori expression with standard Slater orbital
parameter§® The fitting expression used is

BT + 57 (R,, — R (E2)
The values of the parameters for eq E2 are listed in Table 1.
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