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Electron transfer dynamics in extensively branched macromolecules (dendrimers) is studied using time-
dependent quantum mechanical techniques. A split operator method that fully exploits the Cayley tree topology
of these macromolecules is developed within a tight-binding model Hamiltonian. Solvent effects are simulated
by time-dependent random fluctuations; this dephasing eliminates the localized oscillations that characterize
the nonsolvated dynamics, and results in decay of the electron density from an initially photoexcited state.
Electron transfer is asymmetric depending on the site of initial excitation, and solvent fluctuations in general
enhance the directed transport within the structure. Some dendrimers, particularly those with a certain extended
structures show enhanced transport toward their central nodes. The efficiency of electron transfer to the central
node depends on both the dendrimer structure and the characteristics of the solvent fluctuations.

I. Introduction

Dendrimers have been the topic of numerous synthetic studies
in the last few years. Sophisticated molecules with a wide range
of monomer units ranging from silicon to porphyrins have been
assembled with extensively branched tree structures.1 They are
currently the only synthetic realizations of the Cayley tree
structure;2 this novel topology, along with the existence of
precise control over the size of the product molecule, makes
dendrimers a useful model for investigating the dependence of
physical properties on molecular size and topology. Recent
experiments examining the physical and spectroscopic properties
of certain classes of dendrimers provide preliminary evidence
that some dendrimers may have applications in molecular
electronics, as LEDs3 and single-molecule photonic antennae.4

A number of theoretical papers have focused on the classical
simulation of dendrimer structure.5 Molecular dynamics simula-
tions of large dendrimers in solvent have successfully explained
phenomena like the uptake of small chromophores into a
dendrimer structure, for example.6 Effective coupling matrix
elements for electron transfer have been studied by Risser et
al.7 They have shown that the connectivity gives rise to different
electronic properties from those of corresponding linear poly-
mers. By focusing on the electron pathways model of electron
transfer8 in macromolecules, Risser et al.7 were able to show
that at certain levels of static disorder in the dendrimer
Hamiltonian, there is a growth of strong paths to the dendrimer
surface in comparison with their linear counterparts. Interest-
ingly, they have found that static disorder in dendrimers may
therefore increase coupling between the donor and acceptor sites.

Recent spectroscopic studies on two classes of dendrimer
structures have provided interesting results.9-11 The structures
are phenyl dendrimers, where the branching nodes are 1,3,5-
trisubstituted benzene and the node-to-node linkage is via
various bridging systems (see for example, ref 9). These
macromolecules are generally synthesized by a convergent
method,12 in which each of the three main branches are formed
independently. The final step of the synthesis then couples these
branches to a central molecule. This method is know to be
superior to divergent methods,13 where the dendrimer is grown

outward from an initial core; indeed, convergent synthesis
practically guarantees a Cayley tree structure in the product,
and the size limitations of that product are due solely to steric
interactions between elements of the outermost layer, or
"generation". By modifying the synthesis slightly, a selected
number of paradisubstituted benzenes (and accompanying
bridging groups) may be inserted between successive generations
of branching nodes. These structures, called extended Cayley
dendrimers, manifest different spectroscopic properties from
their compact counterparts. In extended structures, the electronic
absorption peak maximum exhibits a red shift with increasing
generation number, whereas in compact dendrimers no such shift
occurs. This energy gradient could be exploited to create an
energy funnel in these structures.9 The collective electronic
oscillator approach14 for calculating the absorption spectrum has
been applied to a series of these phenylacetylene-type dendrim-
ers.15 It has been shown that the electron-hole pairs that
contribute to the elementary collective excitations are well-
localized. This has enabled the calculation of the absorption
spectra of a series of dendrimers to be approximated from the
absorption profiles of the independent constituent oligomers,
and these show a red shift commensurate with the experimental
data.

Intermolecular electron transfer studies have been conducted
on a variety of systems. For example, encapsulated electroactive
molecules have been synthesized with iron-sulfur cluster
cores.16 Photoinduced electron transfer rates from metallopor-
phorin dendrimers to solvated MV2+ ions have been recorded
spectroscopically17 and electron transfer from dendrimeric
metallophthalocyanines to MV2+ has been monitored via
fluorescence quenching.18 Other studies have used electron spin
resonance to study electron transfer from carboxylated den-
drimers to C60 as a function of the number of dendrimer
generations.19 Recently, intermolecular photoinduced experi-
ments have been carried out on a series of phenylacetylene
dendrimers with geometries very similar to the phenylacetylene
dendrimers studied spectroscopically as photonic antennae.20

These measurements are a prelude to studies on intramolecular
electron transfer with suitable donor and acceptor functionalities.
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These studies demonstrate that dendrimers can act as suitable
bridging media for electron transfer between redox centers, and
indicate the feasibility to effect photoinduced electron transfer
in dendrimers with a suitable choice of electron/donor func-
tionality at the core and on the periphery.

A study of electron transfer within dendrimers is therefore
timely. In particular, this study focuses on the electron dynamics
of photoinduced electron transfer in both condensed and
extended dendrimeric structures. The role of solvent fluctuations
on electron transfer is examined and the behavior compared
with linear donor-bridge-acceptor molecules. Unlike the work
of Risser et al.,17 our research focuses on the time evolution of
electron population dynamics within the dendrimeric structure.
In order to extend this to more sophisticated models in the future,
we have developed a split-operator method that exploits the
unique dendrimer connectivity, and incorporates time-dependent
solvent fluctuations as discussed in Section II. In Section III,
the electron transfer dynamics is simulated for several classes
of condensed and extended dendrimer structures. The effects
of changes in dendrimer size, and particularly geometry, are
examined. Changes induced by solvent fluctuations are studied
both in terms of the magnitude and time scales of the solvent
fluctuations. A discussion of the experimental ramifications of
these results is presented in the final section.

II. Methods

We have devised an algorithm for the time evolution of an
initial photoexcited state. The algorithm, DEVO (dendrimer
eVolution), is a split operator method and it is specifically
designed to perform quantum-dynamic simulations of electron
transport in dendrimers. Although DEVO is applicable to both
electron and exciton dynamics, this study is concerned exclu-
sively with electron dynamics following photoexcitation. The
tight-binding Hamiltonian for electron transport in a dendrimer
is written as

where we use the parameter values of Felts et al.:21 ε ) 1500
cm-1 for the donor and acceptor sites and zero for all other
sites;â ) 300 cm-1 for nearest neighbors and zero otherwise.
Further details on the workings of the DEVO algorithm may
be found in Appendix A.

TheΦ (t) term represents the influence of the solvent on the
electron process

Both the on-siteφi and off-diagonalµij components are
described as uncorrelated Gaussian noise, and in this model
represent a way of incorporating the solvent influences into a
calculation of the electron dynamics. Unlike more phenomeno-
logical approaches,23 these effects can be incorporated into the
model using further calculations. For example, for electron
transfer in a particular dendrimer in a specific solvent, these
fluctuating matrix elements can be obtained from simulations
of the system. In particular, on-site fluctuations could be
determined from ab initio reaction field calculations and off-
diagonal coupling matrix elements could be determined by
calculating the fluctuating site-site distances using classical
molecular dynamics simulations and correlating these with
changes in the bond integral.22 We represented different solvents
by changing the magnitude of the fluctuations and/or the

characteristic updating timeτsolv of the fluctuations. The three
different solvation regimes are characterized by the magnitude
of the standard deviations of the two types of fluctuations:〈φi-
(t), φi(t′)〉 ) σi ‚ δ(t - t′) and〈µij(t), µij(t′)〉 ) σij ‚ δ(t - t′). We
setσi ) 0.04εi andσij ) 0.0001âij in the nearly-coherent regime
I; σi ) 0.1εi andσij ) 0.01âij in regime II; finally, σi ) 0.25εi

and σij ) âij for the strongly solvated regime III. The
organometallic center and radially symmetric arrangement of
organic centers is reminiscent of donor/acceptor models in linear
conjugated systems, which motivated our choice of energetic
parameters from earlier work on such linear systems.21,23

In our simulations, we have examined the nature of the
evolution of electron density through a series of structurally
distinct dendrimers, and the spatial character of the evolving
electron density in these structures. Using DEVO to compute
the wavefunction at each time step enables the evaluation of
electron probability density on each node in the dendrimer, as
well as the total density on each generation. In order to
investigate possible wavefunction localization, we have calcu-
lated the inverse participation ratio.24,25

In a system withN sites, this ratio is unity for a perfectly
localized state, and equal to 1/N for a completely delocalized
state. Therefore,P (the participation number) gives a rough
estimate of the extent of wavefunction delocalization over the
dendrimer sites. We also compute the ratios of the site densities
to the value 1/N, to study how the asymptotic probability
distribution varies from the perfectly delocalized state.

III. Results and Discussion

In order to focus on the general properties of dendrimers with
a certain geometrical structure, our study is confined to a class
of synthetically well known phenyl-based dendrimers with an
organometallic central node. As shown in Appendix A, there is
no loss of generality in modeling these dendrimers as benzene
nodes with no bridging groups. Recent experimental work has
shown that interesting spectroscopic behavior occurs in den-
drimers with extended structures,9 which is different to the
behavior observed for condensed, or self-similar structures. To
determine whether dendrimers with these different geometries
can display radically different behavior in electron transfer
experiments, we studied electron transfer dynamics in both
condensed and extended dendrimers. Our simulations include
condensed dendrimers with three, four, and five generations,
denoted hereafter as 3N, 4N, and 5N and a set of three
qualitatively different three-generation extended dendrimers:
(14), (33), and (52). Schematics of the six structures are shown
in Figure 1. The first number in the ordered pair is the size (in
terms of nodes) of the three interstitial groups between the center
and first branching nodes, while the second number in the
ordered pair is the size of the six interstitial groups between
these first branching nodes and the outer nodes in the three-
generation dendrimer. These particular extended geometries have
been selected because each one involves the addition of exactly
27 interstitial nodes to a three-generation dendrimer. This
excludes the possibility that variations in dynamics are due to
a change in the total number of nodes in the dendrimer. The
electron density following photoexcitation is monitored for 100
fs in these simulations, and the solvent-induced fluctuations are
updated (on average) every 15 fs. The final data sets are
averaged over an ensemble of solvent fluctuations.

Ĥ ) ∑
ij

âij(ai
†aj + aj

†ai) + ∑
i

εiai
†ai + Φ(t) (1)

Φ(t) ) ∑
i

φiai
†ai + ∑

ij

µij(ai
†aj + aj

†ai) (2)

P-1 ) ∑
i

(ΨiΨi
/)2

9424 J. Phys. Chem. A, Vol. 103, No. 47, 1999 Elicker and Evans



Dendrimers in which the outer generation of benzene rings
is replaced with a generation of nodes chemically identical to
the center node are also studied; such structures are analogous
to linear conjugated donor/acceptor systems that have been well-
studied elsewhere. Linear systems at high solvent coupling
exhibit the phenomenon of bridge trapping, where the measur-
able electron density is found on the intermediate bridge sites.
Figure 2 shows the values ofFB/FB0 for the various dendrimer
geometries;FB is the asymptotic total density on all the
intermediate (bridge) nodes of the dendrimer, and the zero
subscript denotes data from simulations without an outer
acceptor layer. Bridge-trapping behavior is observed in those
simulations where the electron starts on the center node(SN)
1), but not in those simulations where the electron starts on the
outer layer (SN) N). In the SN) 1 case, the Cayley tree
topology ensures that all paths from the donor (center) to an
acceptor are equivalent in length, and the electron transfer
system is analogous to linear donor-bridge-acceptor systems.
In all solvent regimes, evidence for bridge trapping is found,
unlike previous studies on linear systems. This is due to the
fact that this model incorporates both on-site and site-site
fluctuations which dephase the electron wavefunction on the
bridge even at relatively small solvent fluctuations. The SN)
N case lacks the symmetry of the SN) 1 case, and electron
transfer is different from linear systems if the dephasing time
scale is longer than it takes for the electron on one of the
periphery sites to move to the center and then be transferred to
alternative branches. In fact, the natural bias in the dendrimer
geometry for outward movement of quasiparticles in the
incoherent (strong solvent coupling) regime has previously been
illustrated using simple rate equations.10 That our results differ
for SN ) 1 or N tends to support that this is also the situation
for typical electron transfer in dendrimeric bridge molecules
for a range of solvent regimes where the fluctuations are on
the order of 10-15 femtoseconds. Thus, the SN) N system is
not analogous to a linear donor-acceptor system, and the
dynamics of these systems is asymmetric in terms of where the
excitations are initiated. As shown in Figure 2,FB/FB0 is less
than one for the SN) N simulations, which is evidence that
less electron density is found on the bridge sites in those
simulations with an outer layer of acceptor nodes. This suggests
that for the case with no acceptor nodes on the periphery,
electron transfer to the center takes place, and then the less
efficient back transfer to the outer nodes occurs, creating a

buildup of electron density on the bridge sites as the dynamics
is dephased by the solvent-induced fluctuations.

There is evidence of substantial localization in all of our
simulations. Figure 3 shows the participation numberP in
dendrimers of various geometries, as compared to the total
number of nodes in the dendrimer. In all cases, the number of
nodes participating in the wavefunction is much less than the
total number of nodes.P increases as the stochastic fluctuations
increase, indicating that the destruction of interferences in these
finite systems have more impact on localization than the
structural distortion induced by the solvent. The degree of
localization was much smaller for simulations in which the
excitation begins on the outer layer of the dendrimer; this
provides further evidence that the spatial anisotropy of such
simulations has a real effect on the observed asymmetric
dynamics.

Photoinduced electron transfer experiments have recently
demonstrated intermolecular electron transfer between pheny-
lacetylene dendrimers and donor molecules in the surrounding
solution.20 The following section is therefore focused on in
dendrimers without an outer acceptor layer, and the exploration
of the possibility that certain structures may be capable of
directed electron transport of the electron density from the outer
layers to the center node. To compare the relative abilities of
the various structures to do this,Ftot )∫0

tfFc(t)dt, where the
integral is over the entire time interval [0,tf ] of the simulation,
is calculated. For SN) N simulations, this integral provides a
measure of how effectively the electron density is transferred
from the outer layer to the central node, and could be observed
as the integrated emission intensity from a fluorescent central
core over this time period. Figure 4 showsFtot for the six
structures in this set of experiments. The efficiency of direct
electron density to the central nodes of the condensed structures
decreases exponentially with the generation number, but this
may be a consequence of the number of nodes between the
center and outer layer of the dendrimer. Casting the dependence
in terms of this radiusrN allows for a direct comparison of the
condensed and extended structures. The lack of relative differ-
ence in efficiency between the three extended structures is
expected, because their largerN values (6, 7, and 8) lead to
small efficiency differences. This result is supported by examin-
ing the effective coupling elements between an outer-layer node
and the central node for the three extended structures. As shown

Figure 1. Schematic diagrams of the six dendrimer geometries studied (circles represent chemical units).
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in Appendix B, there is a negligible difference between the three
effective couplings for|â| values less than one-half of the
magnitude of the on-site energies. Nevertheless, the efficiency
of the (52) structure is higher than expected , given its increased
rN, in comparison with the condensed geometry. The increased
efficiencies of the extended structures must therefore arise from
other considerations.

The electron densities on each dendrimer node vary in an
oscillatory manner in the absence of solvent; although explicit
oscillations are not apparent in the stronger solvent regimes,
the timescales of the unsolvated recurrences will affect the
observed electron dynamics in the solvated system. Figure 5
shows the total generation densities for four three-generation
structures in an unsolvated dendrimer. The behavior for the three

extended structures is qualitatively similar, but the timescales
for various components of the dynamics vary. For example,
Figure 6 graphs the timescales for two components: (i) the first
minimum of the density of the initial node, and (ii) the first
maximum in the density of the branching node nearest to the
initial node for four similar dendrimers. The relationship
between structure and time scales is easily seen: decay out of
the initial node is independent of the dendrimer size, while the
growth on the first branching node depends on the number of
monomer spacers in a regular fashion.

The results shown in Figure 4 are obtained by updating the
solvent fluctuations every 15 fs (realistic for a generic polar
solvent). Different solvents will have different relaxation times,
and the variation of dendrimer timescales shown above indicates

Figure 2. Trapping ratio (F/FB0) for various dendrimer geometries with SN) 1 (left-hand bar ) and SN) N (right-hand bar).

Figure 3. Comparison of participation number for simulations in the three solvent regimes described in Section II. Open symbols denote simulations
with STARTNODE) 1, filled symbols denote simulations with STARTNODE) N, and asterisks denote the total number of nodes in the dendrimer.
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that the dynamics is closely linked to the statistics of the solvent.
Figures 7 and 8 showFtot for the dendrimer families (5m) (1 e
m e4) and (m2) (1 ε m e5). For each structure,Ftot was
calculated in four different solvents, with equivalent fluctuation
magnitudes but different timescales. The update times for the
fluctuations of the four solvents areτsolv ) 7, 15, 30, and 60 fs
respectively. For a fixed value ofτsolv, the efficiency tends to
decrease asrN increases. The increasing radius increases the
recurrence timescales for densities of the inner nodes, so that
solvent relaxation results in less electron density trapped near
the center of the dendrimer in structures with largerrN. In such
structures, density moves to the center via repeated trapping,
and the overall efficiency is lower. This effect vanishes asτsolv

increases, for two reasons: the longer solvent timescale allows
for significant trapping in the inner regions even for those
structures with longer recurrences timescales; also, there are far
fewer relaxation steps in the simulation for largeτsolv, so
structural differences are less important.

The rN dependence is important; in the 15 fs solvent, the
efficiency of the three-generation condensed structure is many
times greater than any of the (5m) structures, and more than
twice as great as the most efficient structures in the (m2) family.
This may not translate into a preference for condensed structures
in devices, however; we expect that molecular volume will also
be an important characteristic for directed transfer applications,
and (for example) (52) has 4 times as many benzene nodes as
(3N).

Along with the strong dependence of efficiency onrN, the
relative sizes of the two interstitial groups are also important.
For example, the data for (n2) shows that, in all four solvents,
the drop off in efficiency between (22) and (32) is less than the
drop off between (32) and (42). In three-generation structures
whererN does not change by more than one, those dendrimers
with more interstitial nodes in the innermost group were more
efficient at funneling electron density to the center. Table 1
shows comparison of (22) with various structures having the

Figure 4. Comparison ofFtot values for six dendrimers, in the three solvent regimes described in Section II.

Figure 5. Unsolvated dynamics of (3N), (14), (33), and (52), showing the total density on the initial node (circles), the inner branching nodes
(solid), and the inner group of interstitial nodes (gray).
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samerN value. The efficiencies of (13) and (22) are comparable,
while (31) is nearly 150% more efficient. The trend does not
continue, however; (40) is only about 60% as efficient as (22);
the complete absence of one interstitial group changes the
underlying topology in addition to altering the recurrence time
scales.

This importance of the relative sizes of the interstitial groups
can also be seen in four-generation dendrimers. In Table 2, three
structures that (as above) have the samerN value are compared
in a 15 fs solvent.

The (321) structure is more than twice as efficient as either
the (420) or the (402) structures, which is consistent with our
hypothesis that structures like (n1, n2, ..., nK) with ni > ni + 1
are the most efficient among those with the samerN value. Note
that, to a lesser extent, (420) is more efficient than (402),
although the presence of the null interstitial groups complicates
a direct comparison. Indeed, the efficiency of (302) is less than
that of (321), despite the fact that the latter structure has a larger
radius.

IV. Conclusions

This study examines the electron transfer dynamics in various
dendrimer structures and the effects solvent fluctuations have
on those dynamics. To perform these calculations on large
dendrimers at the atomistic scale and include time-dependent
solvent fluctuations, we have developed a split-operator algo-
rithm (DEVO) to study electron dynamics in dendrimers. This
algorithm exploits the Cayley tree structure of dendrimers and
is consistently about 40% faster than the checkerboard algorithm.
However, DEVO is particularly well-suited to parallelization,
and simple scaling arguments increase its efficiency over the
checkerboard algorithm to several orders of magnitude for
reasonable-sized dendrimers of 7-8 generations.

Intermolecular electron transfer in analogs of phenylacetylene
dendrimers has recently been observed,20 and given a suitable
choice of donor and acceptor sites, it appears that intramolecular
electron transfer in dendrimers will soon be effected. Experi-
mental9 and theoretical15 work on the spectroscopic behavior

Figure 6. Comparison of two particular timescales for the (5n) family of extended dendrimers,n ) 1, 2, 3, 4.

Figure 7. Ftot values for the (5n) family of extended dendrimers,n ) 1, 2, 3, 4.
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of phenylacetylene dendrimers has shown that for dendrimers
of a particular extended geometry, energy funneling can occur.
It has been demonstrated that the spectroscopic behavior of these
extended dendrimers is quite different from those with con-
densed geometries. In this study we have focused on determining
whether these two types of dendrimer structure show different
electron transfer behavior as well. In particular, we have
examined a number of geometries in order to determine if the
extended structures are more efficient in transferring an electron
from the periphery to the center in a photoinduced electron
transfer process.

We have studied electron transfer in dendrimers with orga-
nometallic donor sites at the core, both with and without
electroactive groups on the periphery. All these structures have
trisubstituted benzene molecules as the regular nodes of the
dendrimer branches. Our study focuses on the behavior of four
related families of geometric arrangements: the first set of
simulations were performed on condensed dendrimers with
three, four, and five generations, as well as three different
extended geometries that have disubstituted nodes between
successive generations of branching nodes. All our simulations
included solvent effects through stochastic fluctuations of the
Hamiltonian matrix elements; the magnitudes of these effectss
along with the values of the matrix elementsswere taken from
previous studies on electron transfer in donor-acceptor linear
conjugated systems.21,23

When a layer of trapping acceptor nodes was placed at the
outer edge of these dendrimers, we found analogies between
the resulting dynamics and the dynamics of the linear donor-
acceptor systems. In particular, we found evidence of bridge
trapping, where significant electron density is found on the nodes
between the center and the outer acceptor layer in simulations
where the electron density was initially on the central node. If
the electron density was initially located on one of the outer
nodes, no bridge-trapping occurs as the electron transfer to the
center and subsequent branches is now inherently asymmetric,
and unlike the linear donor-acceptor bridge systems.

Our studies indicate that strong solvent fluctuations may
increase the efficiency of electron transfer to the central core,
and that the different types of extended dendrimers do indeed
display different behavior for electron transport to the central
node in simulations where the electron density was initially at
the periphery. We found that, in general, the efficiency of both
condensed and extended dendrimers decreases as the radius
(number of nodes between the outer node and the center)
increases, but the efficiency of extended structures is larger
than that of a condensed dendrimer with the same radius. Our
data on nonsolvated dynamics shows a strong correlation
between the size of interstitial groups and the timescales of
electron density recurrences for the various generations in the
dendrimer. In many of the structures we studied, the relationship
between these recurrence timescales and the relaxation time of
the solvent can be directly linked to the directed electron
transport to the dendrimer core. There are also specific structural
considerations: for example, the decrease in efficiency from
(22) to (32) is smaller than between other pairs of successive
structures in the (n2) family, and among dendrimers of equal
radius those with interstitial groups that decrease with distance
from the center tend to have higher efficiency of transport to
the center.

Attempts to increase the sophistication of describing the
solvation effects on the electron transfer are currently underway.
Using the DEVO algorithm with solvent fluctuation data
extracted from classical molecular dynamics simulations, spe-
cific experimental systems (e.g., Fe-S cluster dendrimers16) can
be described realistically. These results can then be compared
with phenomenological approaches23 and the dissipative

Figure 8. Ftot values for the (n2) family of extended dendrimers,n ) 1, 2, 3, 4, 5.

TABLE 1: Efficiencies for a Family of Dendrimers with rN
) 5, in a 15 fs Solvent

structure rN Ftot(τsolv ) 15 fs)

(22) 5 0.7010( 0.15916
(13) 5 0.7939( 0.09751
(31) 5 1.0353( 0.14736
(40) 5 0.4849( 0.08159

TABLE 2: Values of Gtot for a Group of Four-Generation
Extended Dendrimers

structure radius Ftot(τsolv ) 15 fs)

(420) 8 0.1243( 0.03259
(402) 8 0.1024( 0.03446
(321) 8 0.2525( 0.04472
(302) 7 0.2284( 0.04849
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Redfield models of long range electron transfer used by Friesner
et al.21
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Appendix A

The DEVO algorithm decomposes the Hamiltonian (eq 1) in
a way that facilitates construction of the propagator for the
associated time-dependent Schro¨dinger equation. DEVO is
a simple extension of the checkerboard algorithm,24,26 where
the Hamiltonian is shredded into pairs of interactions and the
full propagatorÂ ) exp[-iĤ (t)‚δt] is evaluated using split
operator techniques. As in other studies,7,28 this algorithm
specifically exploits the topology of the dendrimer. How-
ever, DEVO is a split-operator method that replaces the full
short-time propagator with an product of simpler propagators
that update the evolution of those wavevector coefficients
corresponding to a particular subset of nodes. DEVO decom-
poses the overall propagatorÂ into Â0‚ΠiB̂i. The operatorÂ0

) exp[-iĤ 0(t)‚δt] describes the evolution of the central node
and the three benzene nodes adjacent to those connector sites.
The sub-Hamiltonian matrix for constructing this evolution
operator is

whereε0 is the on-site energy of the central node,ε1 is the on-
site energy of the neighboring benzene nodes, andâ0 is the
overlap between the central node and its neighbors. Similarly,
the B̂i describe the evolution for each branching node and the
two adjacent benzene nodes in the next generation outward.
These three-node evolution operators are constructed from sub-
Hamiltonian matrices similar to the above matrix

with â the overlap between two benzene nodes. Note that
the (1,1) entry ofĤ i is set to zero, to avoid double-counting;
that matrix element is already accounted for in either the (2,2)
or the (3,3) entry of the submatrix from the next generation
inward. Operating on the full-system wavevector with this
outward cascade of evolution operators is thus an approximation
of the total propagator for the system. Figure 9 is a schematic
of how this cascade is performed in a three-generation den-
drimer. In a typical dendrimer, the problem of diagonalizing a
(3‚2N-1 - 2) × (3‚2N-1 - 2) matrix is replaced by the
diagonalization of a single 4× 4 matrix and 3‚(2N-2 - 1)3 ×
3 matrices.

Many dendrimers have connectors (e.g., oxygen centers and
acetylene groups) between adjacent nodes, but DEVO is easily
adapted to such systems. In our formalism, such a bridging
group is treated as a single interstitial node, so that the sub-
Hamiltonian matrices for the bridged dendrimer are

and

where the on-site energies of the central, benzene, and bridging
nodes are given (respectively) byε0, ε1, andε2; the central-
bridging and bridging-benzene overlaps are given byâ0 and
â1. These two matrices may now be reduced to 4× 4 and 3×
3 matrices via Lo¨wdin decomposition;27 the reduced matrices
will have the same form as the matrices in the DEVO algorithm,
with the non-zero entries now algebraic combinations of the
various elements of the original matrices. The DEVO algorithm
only requires that the two matrices have the form shown above,
so it works perfectly well with the reduced matrices of the
bridged dendrimer.

DEVO is also applicable for extended dendrimers, which have
a number of disubstituted benzene nodes between branching
benzene nodes of successive generations. We chose to include
these disubstituted nodes directly in the algorithm (rather than
calculating effective matrix elements as above) because the
electron population of these new nodes was of interest to us.
Each set of interstitial nodes introduces a tridiagonal matrix into
the decomposition of the Hamiltonian, since these new nodess

Figure 9. Decomposition scheme for a three-generation dendrimer with
connector nodes.

Ĥ0 ) | ε0 â0 â0 â0 0 0 0
â0 ε2 0 0 â1 0 0
â0 0 ε2 0 0 â1 0
â0 0 0 ε2 0 0 â1

0 â1 0 0 ε1 0 0
0 0 â1 0 0 ε1 0
0 0 0 â1 0 0 ε1

|
Ĥ i ) | 0 â1 â1 0 0

â1 ε2 0 â1 0
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along with the branching nodes at each end--form a linear chain.
These tridiagonal matrices are used to construct sub-propagators
which are inserted at the proper place in the DEVO evolution
cascade.

The development of a time-evolution algorithm like DEVO
is motivated by the fact that the Hamiltonian is explicitly time-
dependent as a result of the solvent induced fluctuations; the
use of many small matrices speeds up the diagonalization
process, allowing several updates without making the simulation
run-time prohibitively long. This formalism also works well in
simulations where, due to steric or other factors, the effect of
the solvent is spatially anisotropic.

Appendix B

For the three different three-generation extended structuress
(14), (33), and (52)sexplicit algebraic formulae for the effective
coupling elements (ECE) between the central node and a node
in the outer generation can be calculated. This is done via the
Lowdin decomposition;27 in each case the Hamiltonian matrix
representing an entire branch of the dendrimer is reduced to a
4 × 4 matrix for the central node, the single branching node,
and the two nodes on the outer layer. (For details on these
structures, see Figure 1.) In the following formulae, the on-site
energy of benzene nodes is denoted bya; the energy scale is
assumed to be shifted such that the on-site energy of the donor-
acceptor nodes is zero. The benzene-benzene overlap is given
by b, andB is the overlap between a benzene node and a donor-
acceptor node (although the outer layer of nodes in most of our
simulations were benzenes, we included the more general case
in these calculations for completeness.). For clarity,Dn denotes
the determinant of an n× n tridiagonal matrix witha on the
main diagonal andb on both subdiagonals.

The three ECE are

For the relative energies used in our simulations (the
magnitude of the overlap matrix elements never more than 25%
of the on-site energy) the difference between these three ECE
is negligible. There are quantitative changes if the outer layers
are taken to be benzene rings rather than acceptor nodes, but

the difference between the ECE for these three structures are
still essentially equal in magnitude.
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