
Quantum Monte Carlo Simulation Studies of the Structures of the Liquid-Vapor Interfaces
of Sn and Pb

Stuart A. Rice* and Meishan Zhao
The James Franck Institute and Department of Chemistry, The UniVersity of Chicago, Chicago, Illinois, 60637

ReceiVed: May 20, 1999; In Final Form: August 3, 1999

We report the results of self-consistent quantum Monte Carlo simulations of the structure of the liquid-
vapor interfaces of the tetravalent metals Sn and Pb.

I. Introduction

The liquid-vapor interface is a self-supporting region
separating coexisting gaseous and liquid phases which have very
different densities, hence it is a natural vehicle for the study of
the properties of inhomogeneous fluids. It is now firmly
established that the structure of the liquid-vapor interface of a
simple fluid depends on features of the intermolecular potential
which are different in dielectrics and metals.1 In a dielectric
liquid, whose potential energy is adequately represented by a
sum of density-independent pair interactions, the longitudinal
density profile in the liquid-vapor interface (i.e., along the
normal to the interface) monotonically decreases as one passes
from the bulk liquid side to the vapor side of the interface; near
the triple point of the liquid the width of that profile is about
2-3 molecular diameters. In contrast, in a liquid metal the
interaction between a pair of ion cores has a strong dependence
on the electron density, so the pair interactions in the liquid-
vapor interface depend on position along the normal to the
interface. In this case the longitudinal density distribution in
the liquid-vapor interface has pronounced oscillations; near the
freezing point of the metal these oscillations penetrate three to
four atomic diameters into the bulk liquid.2-29 The stratification
of the liquid-vapor interface of a metal can be interpreted as
a signature of the strong confining force exerted on the ion cores
in the interface, and the confining force can be traced to the
density dependence of the volume term in the potential energy
functional of the electron-ion core system.

The most useful current theoretical description of the structure
of a liquid metal-vapor interface is derived from self-consistent
quantum Monte Carlo simulations. The analytical basis for the
simulations, as first developed by D’Evelyn and Rice2-4 and
later refined by Harris, Gryko, and Rice,5,6 is the density
functional pseudopotential representation of the properties of
an inhomogeneous metal. The calculation of the nonlocal
pseudopotential requires, as input, the electron density distribu-
tion in the inhomogeneous metal; this distribution is obtained
from the solution to the relevant Kohn-Sham equation. The
nonlocal pseudopotential of the system is then used in a Monte
Carlo simulation of the system properties. Since the local
electron density changes when the ion cores are moved, the
pseudopotential must be recalculated after each Monte Carlo
move. This procedure, when carried to convergence, generates
self-consistent electron and ion core distributions for the
inhomogeneous metal.

Despite the use of a sophisticated nonlocal representation of
the atomic interactions in the inhomogeneous liquid, it must be
recognized that the analysis outlined above contains numerous

approximations, e.g., in the treatment of the exchange and kinetic
energies, and in the neglect of a possible metal-to-nonmetal
transition in the interface. Moreover, even the best pseudopo-
tentials rarely yield an accurate binding energy for the liquid
metal. Indeed, it is common practice to modify a calculated
pseudopotential by addition of terms representing the core-
core repulsion and the core-core dispersion interaction, pa-
rameterized to yield the correct liquid binding energy and vapor
pressure. It is, therefore, necessary to test the adequacy of
theoretical predictions of the liquid-vapor interface structure
that are based on use of a pseudopotential representation for a
variety of metals with different valences and with different ion
core states. Wherever possible those tests should be based on a
comparison of the predicted and observed longitudinal density
distribution in the liquid-vapor interface. It is also necessary
that there be good agreement between the predicted and
observed pair correlation functions of the bulk liquid metal.

To date, self-consistent quantum Monte Carlo simulations of
the liquid-vapor interfaces of some simple monovalent
metals2-6,14(Na and Cs), some divalent metals7,15(Hg and Mg),
and some trivalent metals8,10 (Ga, Al, In, and Tl) have been
reported. In all of these cases there is very good agreement
between the predicted and observed pair correlation functions
of the bulk liquid metal. And, for the systems for which
experimental data exist, Ga, Hg, and In, there is very good
agreement between the predicted and experimentally inferred
longitudinal density distributions in the liquid-vapor inter-
faces.22,24,25,28

In this paper we report the results of self-consistent quantum
Monte Carlo simulations of the liquid-vapor interfaces of the
tetravalent metals Sn and Pb. These calculations were undertaken
to test the adequacy of the pseudopotential based theory for
tetravalent metals, and to provide the information necessary to
begin studies of component segregation, longitudinal structure
and transverse structure in the liquid-vapor interfaces of alloys
in which Sn and/or Pb are component species.

II. Theoretical Background

As indicated in the Introduction, our analysis of the structure
of an inhomogeneous liquid metal is based on a pseudopotential
representation of the Hamiltonian.8 The derivation of this
representation is described elsewhere5; the result is
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where pi is the momentum of theith atom with massm,
φeff(|Ri - Rj|;ne (r )) is the effective pair potential between ions
i andj, R ) |Ri - Rj| is the separation of ionsi andj, andF0(r )
andne(r ) are reference jellium and electron densities, respec-
tively. The functionalU0[F0(r ), ne(r )] is a structure-independent
contribution to the energy which is, however, dependent on the
electron and jellium densities. Note that we use atomic units
for all physical quantities in the following discussion unless
specified otherwise.

We have used the simplest local density approximation to
the ion-ion effective pair potential, namely,

In a homogeneous fluid with electronic densityne(r ) this
effective pair potential is given by

The first term in eq 3 is due to the direct Coulomb repulsion
between ions with effective valence chargez*, where (z*)2 )
Z2 - Zh2 with Z the true valence charge andZh the depletion
hole charge that originates from the required orthogonality of
the valence and core electron wave functions. The second term
in eq 3 is an indirect interaction mediated by the conduction
electrons (called the band structure energy). This contribution
to the effective pair potential tends to offset the effect of the
strong Coulomb repulsion between ion cores and thus lowers
the energy of the system. Finally,φBM(R) is the Born-Mayer
core-core repulsion potential30

whereABM andBBM are parameters andφvdw(R) is the van der
Waals dispersion interaction between the ion cores. In general,
both φBM(R) and φvdw(R) are much smaller than the other
contributions to the energy.

The band structure energy term in eq 3 contains the
normalized energy wavenumber characteristic functionFN(q).
Shaw31,32 has shown that

whereΩ ) (Fbulk)-1 is the volume per atom,Fbulk is the bulk
liquid density, andε(q) is the wavenumber-dependent Hartree
dielectric function

wherekF is the Fermi wavenumber andη ) q/2kF. The terms
denotedg(q) andh(q) are a nonlocal screening function defined
by

and a nonlocal bare pseudopotential contribution which, to

second order, has the form

with

In eq 9, Vps
ion is the nonlocal bare pseudopotential. The local

potential contributionsV1 andV2, arising from the valence charge
Z and the depletion hole chargeZh, respectively, are given by

The structure-independent energyU0[F0(r ),ne(r )] is a func-
tional of the reference jellium density and of the electronic
density. Using the local density approximation, it has the form

The first three terms of eq 12 are, respectively the Fermi-
Thomas uniform density contribution to the kinetic energy of
the electrons in a liquid metal with surface areaσ, the von
Weizacker first density correction to the kinetic energy of the
inhomogeneous electron gas,33 and the Kirzhnits second-order
gradient correction to the kinetic energy of the inhomogeneous
electron gas.34 The fourth term is the electrostatic energy of
the system arising from the difference between the electron and
ion density distributions in the liquid-vapor interface, and the
fifth term is the exchange-correlation contribution to the energy
calculated using the homogeneous electron gas as proposed by
Vosko, Wilk, and Nusair,35 with the density gradient correction
proposed by Langreth and Mehl.36 The last term in eq 12 is the
electron-ion pseudopotential contribution to the electronic
energy, withεps[ne(z)] the ionic pseudopotential (which is a
function of the electron density distribution).

The pseudopotential contribution to the structure-independent
energy is contained inεps[ne(z)], which has the form

where f(q, q′) is the diagonal matrix element of the Fourier
transform of the nonlocal bare electron-ion pseudopotential,
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Mi(q) is the Fourier transform of the depletion hole distribution,
and rs is defined by

wherene,bulk is the electron density of the bulk liquid. The terms
(R/rs) and (â/rs

2) are semiempirical corrections. The parameters
R andâ were determined by imposing the requirement that the
calculated and observed pressure and heat of vaporization of
the liquid metal agree with experimental values at the liquid
density.

In our calculations we employed the nonlocal energy-
independent model pseudopotential proposed by Woo, Wang,
and Matsuura37

In eq 15,|R1l〉 is the radial part of the wave function for state
|1l〉, and |l〉 is a simple projection onto the state with angular
momentuml, while Vh l(r) is a pseudopotential average over all
states other than the first valence state with a given angular
momentuml. It has the same form asV1l(r) except that the
parameterB1l is replaced byBh1l. The potential parametersB1l,
Zl, Rl are are usually determined by a pseudo-eigenfunction
expansion and perturbation theory. The state|1l〉 is separated
into radial and angular parts, such that

whereN is a normalization constant,Ylm (θ, φ) is a spherical
harmonic function, andy1l(r) is the radial wave function given
by

where Mν,l+1/2(2λr) and Wν0,l+1/2(2λ0r) are respectively the
regular and irregular Whittacker functions.38 The parameters of
the Whittacker functions are

with E1l the spectroscopic term energy of state|1l〉. The values
of the potential parameters we have used for Sn and Pb are
displayed in Table 1. We show in Figure 1 the effective ion-
ion pair interaction potential for liquid Sn with density 0.0350
atoms/Å3, and in Figure 2 the effective ion-ion pair interaction
potential for liquid Pb with density 0.0310 atoms/Å3.

The reference atomic density profile in the pseudoatom
Hamiltonian is taken to be the jellium profile. Our simulations
were carried out for a slab of ions with two surfaces perpen-

dicular to thez axis and the jellium density distribution

wherez0 is the position of the Gibbs dividing surface andâ′
measures the width of the inhomogeneous region of the profile.
This distribution is normalized by settingFbulk ) N/2σz0, where
N is the total number of atoms in the slab andσ is the area of
the slab. The parametersz0 andâ′ are varied to obtain the best
fit to the instantaneous ionic configuration.

Given the reference profile, the electron density distribution
is obtained by a self-consistent solution to the Kohn-Sham
equation39,40

whereVeff(r ) is an effective potential that includes the electron-

1
ne,bulk

) 4π
3

rs
3 (14)

Vps
ion(r) ) ∑

l

{Vh l(r) + [V1l(r) - Vh l(r)]|R1l〉 〈R1l|} |l〉 〈l| (15)
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〈x|1l〉 ) N
1
r
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Wν0,l+1/2 (2λ0r), r > Rl
(18)

λ0 ) x-2E1l (19)

λ ) x-2(E1l + B1l) (20)

ν0 )
Zl

x-2E1l

, (21)

ν ) -
Zl

x-2(E1l + B1l)
(22)

TABLE 1: Ionic Pseudopotential Parameters (in atomic
units)a

metal l E1l Rl B1l rmax

Sn 0 1.120 927 0.911 00 4.430 40 35.0
1 0.526 250 1.474 50 2.712 00 45.0
2 0.269 887 5.332 00 4.819 60 55.0

Pb 0 1.554 863 2.007 23 1.997 71 35.0
1 1.206 899 1.888 94 2.124 80 45.0
2 0.714 190 2.662 49 1.511 53 55.0

a rmax is the maximum value ofr in the radial wave function.

Figure 1. Effective ion-ion pair potential in liquid Sn with density
0.0350 atoms/Å3.

Figure 2. Effective ion-ion pair potential in liquid Pb with density
0.0310 atoms/Å3.

F(z,z0,â) ) Fbulk[1 + exp(|z| - z0

â′ )]-1

(23)

[- p
2m

∇2 + Veff(r )] ψn(z) ) Enψn(r ) (24)
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jellium background pseudopotential interactionVps(r ), the
exchange-correlation potentialVxc(r ), and the electrostatic
potential

The exchange-correlation potentialVxc(r ) is defined as the
derivative

whereExc[ne(r )] is the exchange and correlation energy func-
tional, and the electron number density is calculated from

with fV the electron ocupation number in state|ψV(r )〉.
The jellium ion density distributions in thex andy directions

are uniform, hence so must be the corresponding electron density
distributions. The electronic wave functionψn(r ) can then be
written as

wherekx andky are the wavenumbers in thex andy directions,
respectively. Then the electron densityne(r ) ≡ ne(z) is a function
of zonly, which can be obtained by solving the one-dimensional
Kohn-Sham equation

We find

and the electron density profile

from which we construct, in turn, the electron density dependent
potential Veff(z;ne(z)), and again solve the one-dimensional
Kohn-Sham equation. This procedure is repeated until a
converged self-consistent solution is obtained.

III. Simulation Method and Results

A. Simulation Procedure.We have carried out simulations
of liquid Sn at temperaturesT ) 573, 973, and 1173 K. Since
the density of Sn only changes from 0.0350 to 0.0340 atoms/
Å3 over this temperature range, we have carried out all of our
simulations at the fixed density 0.0350 atoms/Å3. We have also
carried out simulations of liquid Pb at temperatures T) 613,
823, 1023, and 1173 K for the corresponding equilibrium
densities 0.0310, 0.302, 0.0295, and 0.0237 atoms/Å3, respec-
tively. As described earlier,2-15 an assumed initial jellium
distribution is used to generate an electronic density distribution
from which the ion-electron pseudopotential and effective ion-
ion interaction potentials are calculated. These initial jellium
distributions are then used in a Monte Carlo simulation of the

inhomogeneous liquid-vapor system. Since each Monte Carlo
step changes the ion distribution, it also changes the electronic
density distribution, and hence the ion-electron pseudopotential
and the effective ion-ion interaction; this effect is particularly
important in the inhomonegenous liquid-vapor transition zone.
Accordingly, when the ion distribution is changed, the electron
distribution is recalculated, to be consistent with the new ion
distribution; this procedure is continued until the Monte Carlo
simulation converges.

The most primitive way of carrying out the program is to
repeat the calculations of the effective ion-ion interaction for
every move of the ions in the Monte Carlo simulation procedure.
In our simulations we have adopted a more efficient computa-
tional strategy and data management scheme. Prior to starting
the simulation we compute and tabulate the effective ion-ion
interaction potential energies for a series of electron densities
ranging from somewhat below to somewhat above the bulk
density of liquid metal. During the simulation the interaction
between a particular pair of ions is obtained from a rational
functional interpolation for the given electron density using the
precalculated data bank.

The model system for the simulations consisted of a slab of
1000 ions. The dimensions of the simulation slab wereL0 × L0

× 2L0 in the (x, y, z) directions, so that the area of each liquid-
vapor interface isσ ) L0

2. The slab contains two free surfaces
in the positivez and negativez directions (normal to the two
liquid-vapor interfaces) and periodic boundary conditions in
the x and y directions. In fact, periodic boundary conditions
were also applied in thezdirection, but at distances so far from

Veff(r ) ) Vps(r ) + Vxc(r ) + ∫ dr
ne(r )

|r - r ′| (25)

Vxc(r ) )
δExc[ne(r) ]

δne
(26)

ne(r ) ) ∑
n)1

∞

fn|ψV(r )|2 (27)

ψn(r ) ) ei(kxx+kyy)
φn(z) (28)

[- p
2m

d2

dz2
+ Veff(z;ne(z))] φn(z) ) εnφV(z) (29)

En ) p2

2me
(kx

2 + ky
2) + εn, n ) 1, 2, ... (30)

ne(z) ) ∑
V)1

∞

fV|φV(z)|2 (31)

Figure 3. Comparison of the bulk liquid pair correlation function and
the transverse pair correlation function in the liquid-vapor interface
of Sn with density 0.0350 atoms/Å3 at T ) 573 K.

Figure 4. Comparison of the bulk liquid pair correlation function and
the transverse pair correlation function in the liquid-vapor interface
of Pb with density 0.0295 atoms/Å3 at T ) 1023 K.
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the liquid-vapor interfaces that the description of those
interfaces as free is valid. The size of the slabL0 was chosen
such that the average density of ions in the slab matched the
density of the binary alloy at the simulation temperature. The
center of mass of the simulation system was located at the origin
of the coordinates (x ) 0, y ) 0, z ) 0). The initial ion
configuration was generated by placing the particles within the
boundaries of the slab, subject to the constraint that no ion-
ion separation was less than the ionic diameter.

The simulations were carried out using the Metropolis scheme
and a force bias Monte Carlo algorithm to eliminate the overlaps
between ion cores. The trial configurations were generated by
randomly displacing a selected ion; the magnitude of the ionic
displacement was chosen to lead to convergence to equilibrium
with a reasonable overall acceptance ratio for the trial configu-
rations.

Figure 6. Comparison of the simulated and experimentally determined
pair correlation functions of bulk liquid Pb at (a)T ) 613 K, (b)T )
823 K, (c)T ) 1023 K, (d)T ) 1173 K. Experimental data from ref
41.

Figure 5. Comparison of the simulated and experimentally determined
pair correlation functions of bulk liquid Sn at (a, top)T ) 573 K, (b,
middle)T ) 973 K, (c, bottom)T ) 1173 K. Experimental data from
ref 41.
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B. Pair Correlation Functions in the Interface and in the
Bulk Liquid. The structure of the liquid-vapor interface is
conveniently characterized by the transverse (in-plane) pair
correlation function and the longitudinal density distribution.
The transverse pair correlation function, which was calculated
from a histogram of the separations of all pair of particles in a
thin slice of the interfacial region, is given by

whereNT is the total number of particles in the slice,N(r,∆r)
is the average number of pairs of particles between and in the
slice,VT is the total volume of all the particles in the slice, and
Vs is the average volume of the intersection of the spherical
shell betweenr and (r + ∆r) of the thin slice.

We show in Figure 3 the transverse pair correlation function
in the liquid-vapor interface of Sn whenT ) 573 K, and in
Figure 4 that of Pb whenT ) 1023 K. In each case the pair
correlation function in the interface is compared with the pair
correlation function of the bulk liquid at the same temperature
(see below). We note that for Pb these functions are very nearly
the same. There is a very small difference between the positions
of the first peaks (4%) and a small difference in the depth of
the trough between the first and second peaks. For Sn, in
addition to the shift of the first peaks, there is a very small
difference (3.4%) in the positions of the second peaks and the
first peak of the transverse pair correlation function in the
liquid-vapor interface is narrower than that of the pair
correlation function in the bulk liquid.

We have also calculated the bulk liquid pair correlation
functions forSnandPb at the temperatures and densities cited
above. The results of these calculations are displayed in Figures
5 and 6, along with the experimentally determined pair
correlation functions41 at the same temperatures. Clearly, the
simulated and experimentally determined pair correlation func-
tions for liquid Sn are in reasonable agreement, although atT
) 573 K the first valley of the simulated pair correlation function
is deeper than that observed. The simulated and experimentally
determined bulk liquid pair correlation functions for Pb are in
nearly perfect agreement at all of the temperatures considered.

C. The Longitudinal Density Distribution in the Interface.
The longitudinal density distribution of the ions was obtained
from a histogram of the distance between a particle and the
center of the mass of the slab; the density profiles in the(z
directions were averaged to obtain the reported density distribu-
tion. We show in Figure 7 the longitudinal density profile in

the liquid-vapor interface of Sn whenT ) 973 K and the bulk
liquid density is 0.0350 atoms/Å3, and in Figure 8 that of Pb
whenT ) 1023 K and the bulk liquid density is 0.0295 atoms/
Å3. As for the other liquid metal-vapor interfaces we have
studied, these longitudinal density distributions show pro-
nounced stratification with an overall penetration into the bulk
liquid of the order of four atomic diameters and a separation
between strata of an atomic diameter.
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