
Electronic Coherence in Mixed-Valence Systems: Spectral Analysis

Younjoon Jung, Robert J. Silbey, and Jianshu Cao*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239

ReceiVed: June 1, 1999; In Final Form: August 24, 1999

The electron transfer kinetics of mixed-valence systems is studied via solving the eigenstructure of the two-
state nonadiabatic diffusion operator for a wide range of electronic coupling constants and energy bias constants.
The calculated spectral structure consists of three branches in the eigendiagram: a real branch corresponding
to exponential or multiexponential decay, and two symmetric branches corresponding to population oscillations
between donor and acceptor states. The observed electronic coherence is shown as a result of underdamped
Rabi oscillations in an overdamped solvent environment. The time evolution of electron population is calculated
by applying the propagator constructed from the eigensolution to the nonequilibrium initial preparation, and
it agrees perfectly with the result of a direct numerical propagation of the density matrix. The resulting
population dynamics confirms that increasing the energy bias destroys electronic coherence.

I. Introduction

Quantum coherence in the dynamics of condensed phase
systems has become a subject of recent experimental and
theoretical studies. A central issue is the observability of
electronic coherence in electron transfer systems given the fast
dephasing time in many-body quantum systems. Experimentally,
with the advance in ultrafast laser technology, oscillations in
electronic dynamics have been observed in photosynthetic
reaction centers and other electron transfer systems and are
believed to arise from vibrational and/or electronic coherence.1-3

Accurate measurements on photoinduced electron transfer in
mixed-valence compounds have demonstrated oscillations in
electronic populations on the femtosecond time scale.4 Theoreti-
cally, detailed path-integral simulations suggest that such
oscillations take place in electron transfer systems with large
electronic coupling constants and are sensitive to the initial
preparation of the bath modes associated with the transfer
processes. Lucke et al.5 extended the noninteracting blip
approximation to incorporate the nonequilibrium initial prepara-
tion and carried out extensive path-integral quantum dynamics
simulations for electron transfer reactions. According to their
findings, large-amplitude oscillations are most likely to be
observed in symmetric mixed-valence systems that are nearly
adiabatic and with initial configurations that are centered in the
Landau-Zener crossing region. Using the transfer matrix
technique,6 Evans, Nitzan, and Ratner7 calculated short-time
evolution for the photoinduced electron transfer reaction in
(NH3)5FeII(CN)RuIII (CN)5. Their results show fast oscillations
in the electronic population on the short time scale (20 fs)
followed by a slower population relaxation on the long time
scale (100 fs). They pointed out that these fast oscillations arise
as the wave function oscillates coherently between the donor
and acceptor states. The calculated long-time decay rate is
considerably smaller than the prediction by the golden-rule
formulas,8,9 confirming the inadequacy of nonadiabatic rate
theory in studying mixed-valence systems.

In fact, a simple classical argument helps understand the
nature of the observed oscillations. As a function of the ratio
betweenλ (the bath reorganization energy) andV (the electronic

coupling constant), there is a thermodynamic transition from
the localized electronic state in a double-well potential to the
delocalized electronic state in a single-well potential.10-14 (i)
In the localized regime (λ . V), the large reorganization energy
destroys electronic coherence; hence, electron transfer is an
incoherent rate process, which can be described by the nonin-
teracting blip approximation or golden-rule rate in the nona-
diabatic limit and by transition state theory in the adiabatic
limit.15-17 (ii) In the delocalized regime (λ e V), the electronic
wave function extends to both the donor and acceptor states
and electronic coherence persists over several oscillations.10 For
mixed-valence compounds, the electronic coupling constant is
estimated to be in the range of 103 cm-1, which is in the same
order as the reorganization energy.1,7 Therefore, the observed
oscillations and relaxation in mixed-valence systems are the
consequence of a highly nonequilibrium coherence transfer
process.

Due to the delocalization nature of electronic states, an
adiabatic picture18 is more useful than the diabatic representation
for analyzing the short-time dynamics in strongly-coupled
systems. In this picture, electronic coherence arises from Rabi
oscillations between two adiabatic surfaces and decays because
of electronic dephasing. Further, initial preparation and wave-
packet dynamics can modulate Rabi oscillations and the overall
electronic dynamics. Thus, the adiabatic representation provides
a simple picture for mixed-valence systems as well as a simple
analytical method to model fast electron dynamics initiated by
laser pulses.

As a general approach to describe condensed phase dynamics,
we recently proposed a spectral analysis method,19 which is
based on eigenstructures of dissipative systems instead of
dynamic trajectories. An important application of the approach
is to analyze a set of two-state diffusion equations, which was
first used by Zusman to treat solvent effects on electron transfer
in the nonadiabatic limit. The analysis allows us to characterize
multiple time scales in electron transfer processes including
vibrational relaxation, electronic coherence, activated curve
crossing, or barrier crossing. With this unified approach, the
observed rate behavior, biexponential and multiexponential
decay, and population oscillations are different components of
the same kinetic spectrum. Thus, several existing theoretical* Corresponding author. E-mail: jianshu@mit.edu.
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models, developed for limited cases of electron transfer, can
be analyzed, tested, and extended. In particular, rate constants
extracted from the analysis bridge smoothly between the
adiabatic and nonadiabatic limits, and the kinetic spectrum in
the large coupling regime reveals the nature of the localization-
delocalization transition as the consequence of two competing
mechanisms.

In this paper, the spectral analysis approach developed in ref
19 is employed to study the electron transfer dynamics in mixed-
valence systems. We invoke the nonadiabatic diffusion equation
proposed by Zusman to describe the electron transfer process
in the over-damped solvent regime. As discussed earlier, electron
transfer in mixed-valence systems takes place in a different
kinetic regime from the thermal activated regime described by
Marcus theory. Thus, the time-scale separation is not satisfied,
and multiexponential decay and oscillations are intrinsic nature
of electron transfer kinetics. As a result, the kinetic spectra
exhibit bifurcation, coalescence, and other complicated patterns.
Careful examination of these patterns reveals the underlying
mechanisms in mixed-valence systems.

The rest of the paper is organized as follows: The spectral
structure of the nonadiabatic diffusion equation is formulated
in section II. Numerical examples of the spectral structure of
strongly mixed electron transfer systems are presented and
discussed in section III, and concluding remarks are given in
section IV.

II. Theory

There have been extensive studies of the solvent effect on
electron transfer dynamics in literature with various
approaches.20-24 One of the most extensively studied models
for quantum dissipation is the spin-boson Hamiltonian,14,23

whereε is the energy bias between the two electronic states,V
is the electronic coupling constant,σz andσx are the usual Pauli
matrices, and{xR,pR} represents the bath degree of freedom with
massmR, frequencyωR, and the coupling constantcR. In this
model effects of the bath modes on the dynamics of the system
can be described via the spectral density defined by

Equivalently, the spin-boson Hamiltonian in eq 1 can be
separated into the electronic two-level partHTLS and the nuclear
bath partHB,

The two-level part of the Hamiltonian can be explicitly written
as

where the diabatic energy surfacesU1(E) andU2(E) are functions
of the stochastic variableE, which represents the polarization
energy for a given solvent configuration.20 The transformation
from the spin-boson Hamiltonian to the two-level system

Hamiltonian has been shown in the literature23,25by the identity

It is worthwhile to mention that the polarization energyE was
recognized as the reaction coordinate by Marcus in formulating
nonadiabatic electron transfer theory.15 Since the electron
transfer process involves the collective motion of a large number
of solvent degrees of freedom and the two-level system is
linearly coupled to the harmonic bath modes in the spin-boson
Hamiltonian in eq 1, the functional form for the free energy
surface is harmonic,26 thus giving

whereλ is the reorganization energy, which is related to the
parameters in eq 1

Considering the fact that electron transfer processes are
usually probed at room temperature in polar solvents, we can
treat the bath degrees of freedom inHB classically. Then, the
spin-boson Hamiltonian in eq 3 can be used to derive a two-
level classical equation of motion

where iLB ) { , HB} is the Poisson operator for the classical
bath andLTLS ) [HTLS,]/p is the Liouville operator for the two-
level system. Explicitly, we express eq 9 in terms of the density
matrix elements

where the Planck constantp is set to unity for simplicity,Fi is
the diagonal matrix element for electronic population, andFij

is the off-diagonal matrix element for electronic coherence. Here,
L describes the relaxation process of classical bath, withLi

defined on the free energy surface for theith electronic state,
and withL12 andL21 defined on the averaged free energy surface.
This set of semiclassical two-state equations has been previously
derived in different context by several authors.20,23,27It should
be mentioned that the mapping from the spin-boson Hamil-
tonian into the Zusman model requires the Lorentzian form of
the spectral density

Furthermore, we note that many chemically and biologically
important electron transfer processes take place in the over-
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damped solvent environment. Therefore, to describe the density
matrix evolution in the electron transfer kinetics in the mixed-
valence system, we invoke the nonadiabatic diffusion equation
proposed by Zusman.20 Then, the bath relaxation operators in
eq 9 are one-dimensional Fokker-Planck operatorsLij

whereâ ) 1/kBT, Uh andω12 are the average and the difference
of the two free energy surfaces, respectively

The energy diffusion constantDE is defined as

where ∆E
2 is the mean square fluctuation of the solvent

polarization energy

andτD ) 1/Ω is the the characteristic timescale of the Debye
solvent. The correlation function of the solvent polarization
energy is given by

Note that since the nuclear dynamics is modeled by the Fokker-
Planck operator, the possibility of the vibrational coherence is
excluded in this model of electron transfer dynamics. It is
worthwhile to mention that one can obtain the nonadiabatic
diffusion equation starting from the spin-boson Hamiltonian
by first deriving the evolution equation for the quantum
dissipative dynamics, and then taking the semiclassical limit
using the Wigner distribution functions, and finally assuming
the overdamped diffusion limit.23

We investigate the spectral structure of the nonadiabatic
diffusion operator by calculating the eigenvalues{-Zν} and
the corresponding eigenfunctions{|ψν〉}. Hereafter we use Greek
indices to denote the eigenstates and Latin indices to denote
the basis states of the nonadiabatic diffusion operator. Because
the nonadiabatic Liouville operator is non-Hermitian, the
eigenvalues are generally given by complex values, and the right
and left eigenfunctions corresponding to the same eigenvalue
are not simply the Hermitian conjugate to each other.28 For a
given eigenvalueZν, the right and left eigenfunctions of the
nonadiabatic diffusion operator are obtained from

The method of eigenfunction solution is well-known for the
diffusion process on the harmonic potential energy surface.29

For a single quadratic potentialU(x) ) 1/2mω2x2, the one-
dimensional Fokker-Planck operatorLFP ) D((∂2/∂x2) + â∂U′/
∂x) can be transformed into the quantum mechanical Hamilto-

nian in imaginary time

whereµ-1 ) 2D, and the quadratic potential is

with γ ) Dmω2/kBT. Since the transformed potential in eq 21
is just the same form as for a simple harmonic oscillator with
zero-point energy compensation, the eigenvalues and the eigen-
functions for the original Fokker-Planck operator can be
constructed immediately from the eigensolutions of the harmonic
oscillator Hamiltonian. Unlike the diffusion problem on the
single potential energy surface, there have been limited studies
on the nonadiabatic diffusion problem involving more than one
potential energy surface. In this aspect, Cukier and co-workers
have calculated the electron transfer rate by calculating the
lowest eigenvalue of the nonadiabatic diffusion equation;
however, their calculation was limited to the weak-coupling
regime where the Zusman rate is applicable.27

An important issue in solving the nonadiabatic diffusion
equation for electron transfer is the choice of the basis functions
since three different free energy surfaces are involved in eq 9:
two diabatic surfaces for the population density matrix elements
and one averaged surface for the coherence density matrix
element. In this paper, the eigenfunctions ofL12 are used as
our basis set to represent the nonadiabatic diffusion equation.
In principle, one could have chosen the eigenfunctions ofL1 or
L2 as basis functions; however, in that case one has to evaluate
appropriate Franck-Condon factors when calculating the cou-
pling matrix elements even with the Condon approximation.
The Fokker-Planck operatorL12 is defined on the averaged
harmonic potential centered atE ) 0, and its eigensolutions
are

where the right and left eigenfunctions are

whereHn is thenth-order Hermite polynomial. As shown below,
this choice of the basis set is convenient for our purpose.

To be consistent with theL12 basis set, we separate the real
and imaginary parts of the coherence density matrix, namely,u
) ReF12 andV ) ImF12, and rewrite eq 9 as
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where we have definedδL as

Then, all the relevant operators in eqs 26a-26d can be evaluated
in terms of the right and left eigenfunctions ofL12, giving

where we assume the Condon approximation; i.e., the electronic
coupling matrix element is independent of the solvent degrees
of freedom. With the basis set, we can expand the density matrix
elements as

Substituting eqs 32a-32d into the eigenvalue equation eq 18,
we have the following coupled linear equations

which is an explicit basis set representation for the two-state
diffusion operator in eq 9. The linear equations for the left
eigensolution as defined by eq 19 can be written by the transpose
of eqs 33a-33d. Diagonalizing the 4N × 4N matrix (N )
number of basis functions) defined in eqs 33a-33d, we obtain

the eigenvalues-Zν and the corresponding eigenvectors of the
nonadiabatic diffusion operator

whereRnν andLνn are elements of the transformation matrices.
In general, due to the non-Hermitian nature of the nonadia-

batic diffusion operator, the right and left eigenfunctions do not
form an orthogonal set by themselves. However, when the
eigenvalues are all nondegenerate, the left and right eigenfunc-
tions form an orthogonal and complete set in dual Hilbert
space.30 Explicitly, we have

for the orthogonality and

for the completeness. Using these properties, we can construct
the real time propagator for the operatorL as

and express the time evolution of the density matrix by
projecting a given initial distribution onto the eigenstates, giving

Hence, the eigensolution to the two-state nonadiabatic diffusion
equation leads to a complete description of electron transfer
dynamics.

III. Results and Discussion

In the section, we present the spectral structure of the
nonadiabatic diffusion operator by diagonalizing its matrix
representation in eqs 33a-33d. In principle, we need infinite
number of basis functions to diagonalize the nonadiabatic
diffusion operator; however, in practice, we have to truncate
our basis set at some finite number. In all the calculations below,
we have usedN ) 50-200 to diagonalize the 4N × 4N matrix
and the effect of finite number basis on the spectral structure
has been carefully examined.

A. Spectral Structure. 1. Mixed-Valence Systems. In the
mixed-valence compounds, the electronic coupling constant has
the same order of magnitude as the reorganization energy and
the electron transfer dynamics is usually probed experimentally
at room temperature in polar solvents. To study this process,
Evans, Nitzan, and Ratner7 carried out real time path-integral
simulations for the photoinduced electron transfer reaction in
(NH3)5FeII(CN)RuIII (CN)5. On the basis of their model, we chose
the parameters for the calculation shown in Figure 1 asâΩ )
0.6716, âλ ) 18.225, âV ) 11.99, andâε ) 18.705. As
mentioned in the Introduction, the mapping between the spin-
boson Hamiltonian and the semiclassical Zusman equation is
not rigorously defined. For example, for the nonadiabatic
diffusion equation, the solvation energy correlation function
takes an exponential form with the rateΩ, whereas for the spin-
boson model Hamiltonian, it depends on the functional form
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of the spectral density. It can be shown that the Ohmic spectral
density with an exponential cutoffωc

used in the calculation of Evans et al. leads to an energy
correlation function with a Lorentzian form at high temperature23

Then, the relaxation rateΩ used in our calculation is taken as
the inverse of the mean survival time ofCSB(t), which isΩ )
2ωc/π.

In Figure 1 the spectral structure of the nonadiabatic operator
is shown in complex space. We have usedN ) 200 (4N )
800) basis functions to calculate the eigenvalues. To remove
the effect of finite basis set from the resulting spectral structure,
we only show the first 400 eigenvalues in the complex plane.
Since the nonadiabatic diffusion operator is non-Hermitian, the
resulting spectrum shows complex conjugate paired eigenvalues
as well as real eigenvalues, giving rise to the tree structure with
three major branches (which we will call theeigentree). In
Figure 1, we separate the real and imaginary parts of eigenvalue
by

Obviously, the real part,-kν, is always negative as all
nonequilibrium physical quantities decay to zero at time infinity,
and it scales linearly with the indexν since the relaxation rate
corresponding to thenth basis stateφn is proportional ton. In
general, the relative magnitudes of real and imaginary parts of
eigenvalues determine the time evolution of the density ma-
trix: the real eigenvalues correspond to the simple exponential
decay components and the complex conjugate paired eigenvalues
correspond to the damped oscillation components.

To classify the eigenvalues quantitatively according to their
dynamic behavior, we introduce the dimensionless quantityθν

wherekν is the decay rate and 2π/ων is the oscillation period.
The time evolution of the density matrix component associated
with the eigenvalueZν is an exponential decay ifθν ) ∞, an
underdamped oscillation ifθν e 1, and a damped oscillation if
θν > 1. The relative amplitude of each component depends on
the overlap matrix element between the initial density matrix
and the eigenstate. As an approximate criterion for the clas-
sification of the eigenvalues, the slope corresponding toθν ) 1
is shown in the eigentree diagram in Figure 1. There are a few
eigenstates around and below theθν ) 1 line, with a typical
rate ofâkν ≈ 5. For the parameters used in the calculation,â
corresponds to∼170 fs in real time, and, therefore, these
eigenstates exhibit underdamped oscillations with a period and
a decay time in the femtosecond regime. In their real-time path
integral simulations, Evans et al. showed that the population in
the acceptor state oscillates with a few femtosecond period and
these oscillations decay within 20 fs. Thus, qualitative features
of the electron transfer dynamics can be predicted and under-
stood from a careful examination of the spectral structure. Since
the spectral analysis presented here is based on the semiclassical
diffusion equation while the path-integral study is based on the
quantum mechanical spin-boson Hamiltonian, the comparison
between the two approaches is expected to be qualitative. In
the following subsection, further analysis reveals the nature of
these oscillations.

2. Dependence on the Coupling Constant V.To examine the
underlying spectral structure in more detail, eigenvalues of the
nonadiabatic diffusion operator are plotted as functions of the
electronic coupling constant in Figure 2. All the parameters
except for the electronic coupling constant are the same as used
in Figure 1.

In Figure 2a, the real parts of the first 20 eigenvalues are
shown as functions of the electronic coupling constant. Note
that eigenvalues corresponding to complex conjugate pairs have
the same real part, and thus they coalesce in the real eigenvalue
diagram. When the coupling constant is very small (âV , 1),
the real part of the first nonzero eigenvalue is very well separated
from the eigenvalues of excited states, so the dynamics of
electron transfer can be considered as a incoherent rate process
with a well-defined rate constant,k1. When the coupling constant
is larger (âV ≈ 1), the first excited state becomes close to the
second excited state, and they start to merge into a complex
conjugate pair. If the coupling constant increases further,
eigenvalues show a bifurcation behavior atâV ≈ 10. Therefore,
in this regime, the electron transfer kinetics show multiple time
scale relaxation as well as coherent oscillation. The complicated
behavior of coalescence and bifurcation in the real eigenvalue
appears more frequently at higher states.

Another interesting feature of the real eigenvalue diagram is
that a set of real eigenvalues decreases consistently as the
coupling constant increases from zero. It turns out that these
eigenstates take on large imaginary parts, which are responsible
for the onset of the imaginary branches of the eigentree. In
Figure 2b, the imaginary parts of the lowest 30 eigenvalues are
plotted as functions of the coupling constant. Interestingly, the
imaginary part of the eigenvalue increases approximately
linearly with the coupling constant at large coupling regime. In
fact, the dependence on the coupling constant is similar to that
of the Rabi frequency for the two-level system

which is shown in Figure 2b. As pointed out in a recent paper,18

electronic coherence in mixed-valence systems arises from Rabi

Figure 1. A plot of the lowest 400 eigenvalues for the nonadiabatic
operator in a mixed-valence system. The parameters areâΩ ) 0.6716,
âλ ) 18.225,âV ) 11.99, andâε ) 18.705. The dot-dashed line is
for the casek ) ω/2π.

J(ω) ) ηω exp(-ω/ωc) (40)

CSB(t) ≈ 2ηωckBT

π
1

1 + (ωct)
2

(41)

-Zν ) -kν - iων (42)

θν ≡ 2πkν

|ων|
(43)

ΩR ) xε
2 + 4V2 (44)
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oscillations between two adiabatic surfaces and decays because
of dephasing.

To demonstrate the correlation of the real and imaginary parts
of the eigenvalues as functions of the coupling constant, we
present a three-dimensional plot of the spectral structure in

Figure 2c. For clarity, only the positive branches of the
imaginary eigenvalues are shown. If we compare Figure 2c with
Figure 2a, the very rapidly decaying states shown in Figure 2a
take on large imaginary parts corresponding to the Rabi
oscillations as the coupling constant increases, and these states
are responsible for the onset of the imaginary branches in the
eigentree for the mixed-valence system shown in Figure 1.

B. Density Matrix Propagation. To check the validity of
the spectral analysis as a density matrix propagation scheme,
we calculated the time evolution of the density matrix by
applying the propagator defined by eq 38 to the initial density
matrix for various energy biases. Although it may seem
straightforward to use the spectral method as a propagation
scheme, the case for a non-Hermitian operator is not trivial and
has not been explored. The main reason is that though the left
and right eigenfunctions of a non-Hermitian operator can be
shown to form a biorthogonal set for the nondegenerate
eigenvalue case, numerically these eigenfunctions may not be
stable enough to be used as a complete orthonormal basis for
the density matrix propagation, especially in the nearly degener-
ate eigenvalue case. We can understand the situation as
follows: When the two nearly degenerate eigenvaluesZ1 and
Z2 are obtained from a non-Hermitian operator, the orthogonality
implies that〈L2| and |R1〉 are orthogonal to each other as well
as 〈L1| and |R2〉. When two eigenvalues become very close to
each other, unlike the Hermitian operator case,〈L1| and 〈L2|
almost coincide and so do|R1〉 and |R2〉, so that〈L1| and |R1〉
become almost orthogonal to each other. To still satisfy the
normalization condition〈Ln|Rn〉 in this case, the eigenfunction
should be scaled up, thus making the spectral structure very
sensitive to the numerical error involved in the calculation of
eigenfunctions. For an interesting discussion on this point, one
may refer to the work by Nelson and co-workers.30 Due to this
numerical instability, the use of the spectral method as a density
matrix propagation scheme is not without limitation.

Figure 3a shows the spectral structure and the time evolution
of the density matrix propagation for the case ofâΩ ) 1, âλ
) 15, âV ) 12, andâε ) 5. Generally, when the energy bias
is small (âε e 5), the left and right eigenfunctions can form a
complete orthonormal basis set, so the spectral method is stable
and can be used as a numerical propagation method for the
density matrix. With a large energy bias, however, the calculated
eigenfunctions may not form a complete orthonormal basis. To

Figure 2. Plots of (a, top) real and (b, middle) imaginary parts of the
lowest 30 eigenvalues as a function of the coupling constant,V. Except
for the coupling constant, all the other parameters are set equal to those
used in Figure 1. In (b), open circles correspond to the Rabi frequency
ΩR ) (ε2 + 4V2)1/2. (c, bottom) Three-dimensional plot of eigenvalues
as a function of the coupling constant.

Figure 3. Comparison between the result of direct numerical propaga-
tion and spectral propagation. The parameters are chosen asâΩ ) 1,
âλ ) 15, âV ) 12, andâε ) 3.
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model for the photoinduced back electron transfer experiment
in the mixed-valence compounds the initial density matrix is
chosen as a thermal equilibrium distribution of the donor state
(i.e., 1-state) pumped to the acceptor state (i.e., 2-state),4,5,7

It would be straightforward to calculate the spatial distribution
of the density matrix in timeF(E,t) by applying the propagator
in eq 38 to the above initial density matrix; however, to
demonstrate the overall temporal behavior only the time
evolution of the total population in the acceptor state is
calculated

In order to check the validity of the spectral method as a
propagation scheme in this case, we also calculated the time
evolution of the density matrix by directly solving the 4N
differential equations for the expansion coefficients of the
density matrix using the Bulirsh-Stoer algorithm,31 and the
comparison in Figure 3a shows a perfect agreement. If only
the transient behavior is concerned with, the direct propagation
method would be preferred over the spectral method; however,
the spectral propagation has the advantage when calculating the
long-time behavior once the complete spectrum is known.
Overall, the computational costs for the two methods are
comparable to each other. As expected from the spectral
structure shown in the previous section, the population in the
acceptor state shows an underdamped coherent oscillation
behavior at initial times followed by a damped oscillation
behavior at later times.

Further, we have also studied the density matrix propagation
for different energy biases to examine the electronic dephasing
effect. As seen from Figure 4a, the increase in energy bias
destroys the electronic coherence dramatically. Another interest-
ing observation is the phase shift in the population dynamics
as the energy bias is varied, and it is because the Rabi oscillation
frequency increases with energy bias. We can confirm the
temporal behavior of the density matrix propagation by examin-
ing the spectral structure shown in Figure 4b. The period of
the initial coherence is estimated to beτosc≈ 0.25â from Figure
4a. In comparison, the Rabi frequency for the corresponding
adiabatic two-level system is given byΩR ) (ε2 + 4V2)1/2 ≈
25â-1, which can also be obtained from the onset of imaginary
branches in the eigentree shown in Figure 4b, and the estimation
is consistent with the oscillation period observed in the dynamics
sinceτosc≈ 2π/ΩR. The real eigenvalues of the lowest excited
states in the the imaginary branches are estimated to beâk ≈
1-2, and they agree with the decay time of the oscillation
amplitude in Figure 4a, confirming the validity of the spectral
method as a density matrix propagation scheme. Even though
it has been well-known in the literature that the damping of
population is enhanced with increased energy asymmetry,14 we
have also confirmed this through the spectral analysis method.

As an example of the eigenfunction responsible for the
coherent oscillation behavior observed in Figure 4b, we show
the left and right eigenfunctions corresponding to a complex
eigenvalueâZ ) 2.6228( i26.394 for a symmetric case (âε )
0) andâZ ) 2.8057( i26.466 for an asymmetric case (âε )
5) in Figures 5 and 6. The eigenfunctions corresponding to a

complex conjugate pair of eigenvalues are also complex
conjugate to each other; therefore, the frequency spectrum of
the density matrix evolution is proportional to the norm of wave
function. We note that the left eigenfunction is more extended
than the right eigenfunction. Although the population distribution
in the donor and acceptor states corresponding to coherent
oscillation is inverted with respect to the Boltzmann distribution,
it does not contribute to the steady-state population distribution
due to the transient nature.

IV. Concluding Remarks

In this paper we have applied the spectral analysis method
to the nonadiabatic two-state diffusion equation that describes
electron transfer dynamics in Debye solvents. In particular, we
have examined electronic coherence in mixed-valence com-
pounds and demonstrated that underdamped Rabi oscillations
are observed in an overdamped solvent environment. Detailed
study of the spectral structure of the nonadiabatic operator for
various energy biases and coupling constants allows us to
determine the underlying mechanisms of electron transfer
kinetics. Eigenvalues form three branches in the eigendiagram:
a single branch of real eigenvalues and two symmetric branches

Fi(E,0) ) 1

x2π∆E

exp(-
(E + λ)2

2∆E
2 )δi2 (45a)

F12(E,0) ) F21(E,0) ) 0 (45b)

P2(t) ) ∫dE F2(E,t) (46)

Figure 4. Comparison of (a, top) the dynamics and (b, bottom) the
spectra in the mixed-valence system for three different energy biases.
Except for the energy bias, all the other parameters are set equal to
those used in Figure 3. Agreements between the results of numerical
and spectral propagation have been checked in these cases.
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of complex conjugate eigenvalues. In strongly coupled systems,
all three branches have a similar order of magnitude, indicating
that both multiple-exponential decay and coherent oscillations
can be observed experimentally.

We have investigated the dependence of the spectral structure
on the coupling constant. In the very weak coupling regime,
the lowest excited state is well separated from higher states,
which makes the electron transfer dynamics a well-defined rate
process. In the strong coupling regime, however, the eigenvalue
diagram shows coalescence/bifurcation behavior in the complex
plane. We have used the spectral method to calculate the time
evolution of the density matrix, and indeed, observed electronic
coherence in the temporal behavior of population in the acceptor
state for nonequilibrium initial distributions. We also found a
good agreement between results of the spectral propagation
method and the numerical propagation method for small energy
bias cases. Due to non-Hermitianity of the nonadiabatic operator,
the spectral propagation method was not numerically stable for
large energy bias cases.

For an isolated quantum system, the eigensolution to the
Schrödinger equation completely determines its dynamics. In a
similar fashion, the eigensolution to the nonadiabatic diffusion

operator completely characterizes the dynamics of a dissipative
system and thus provides a powerful tool to analyze dissipative
dynamics. It is well-known that quantum dynamics comes from
the underlying spectra, especially in gas-phase chemical sys-
tems;32 however, the spectral aspect of condensed phase
dissipative systems has not been well recognized yet and
deserves further investigation. Though the analysis presented
here is restricted to semiclassical dissipative systems, it may
also be applied to quantum dissipative dynamics. In principle,
we can derive the evolution equation for quantum dissipative
systems either from first principles or through numerical
reduction, and then pose the quantum dissipative equation of
motion as an eigenvalue problem. Along this line, the dissipative
dynamics of the spin-boson Hamiltonian, which has been
studied mostly as a dynamic problem,6,33 can also be explored
as a spectral problem in the future.
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Figure 5. (a, top) Right and (b, bottom) left eigenfunctions with an
eigenvalueâZ ) 2.6228( i26.394 for a symmetric bias case (âε )
0). All the other parameters are set equal to those used in Figure 3
except for the energy bias. Each line corresponds toF1 (solid), F2

(dashed),u (dot-dashed), andV (dotted), respectively.

Figure 6. (a, top) Right and (b, bottom) left eigenfunctions with an
eigenvalueâZ ) 2.8057( i26.466 for an asymmetric bias case (âε )
5). All the other parameters are set equal to those used in Figure 3
except for the energy bias. Each line corresponds toF1 (solid), F2

(dashed),u (dot-dashed), andV (dotted), respectively.
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