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Electronic Coherence in Mixed-Valence Systems: Spectral Analysis
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The electron transfer kinetics of mixed-valence systems is studied via solving the eigenstructure of the two-
state nonadiabatic diffusion operator for a wide range of electronic coupling constants and energy bias constants.
The calculated spectral structure consists of three branches in the eigendiagram: a real branch corresponding
to exponential or multiexponential decay, and two symmetric branches corresponding to population oscillations
between donor and acceptor states. The observed electronic coherence is shown as a result of underdamped
Rabi oscillations in an overdamped solvent environment. The time evolution of electron population is calculated
by applying the propagator constructed from the eigensolution to the nonequilibrium initial preparation, and

it agrees perfectly with the result of a direct numerical propagation of the density matrix. The resulting
population dynamics confirms that increasing the energy bias destroys electronic coherence.

I. Introduction coupling constant), there is a thermodynamic transition from

Quantum coherence in the dynamics of condensed phasethe localized electronic state in a double-well potential to the
elocalized electronic state in a single-well poterifat? (i)

systems has become a subject of recent experimental ano‘d . . o
theoretical studies. A central issue is the observability of n the localized regimei(> V), the large reorganization energy

electronic coherence in electron transfer systems given the 1‘astdes”0yS electronic coherence; hence, electron transfer is an

with the advance in ultrafast laser technology, oscillations in diabaticglimi? aﬁg by transition gtate theorv in the adiabatic
electronic dynamics have been observed in photosynthetic y Y

le17 ; : :
reaction centers and other electron transfer systems and ar vlvrzce funélliznlnn é?(?eizgﬁihégfhr?ﬁémdeg% r\g’ntgzg(l:?ttrgplsctates
believed to arise from vibrational and/or electronic coherénge. P

Accurate measurements on photoinduced electron transfer inand electronic coherence persists over several oscillafifa.

mixed-valence compounds have demonstrated oscillations inMixed-valence compounds, the3 elec'ironiq coupling constant is
electronic populations on the femtosecond time staleeoreti- gfgga;g(igg tr):olrn ;:?ZZ?ogne;r]:e ﬁg&/Tr;g\rlgllgquelstlhnetg?)sSg\?: d
cally, detailed path-integral simulations suggest that such 9 . ’

oscillations take place in electron transfer systems with large oscillations and relax.atlon n mlxqq-vglence systems are the
electronic coupling constants and are sensitive to the initial consequence of a highly nonequilibrium coherence transfer
preparation of the bath modes associated with the transferPOcess: o )

processes. Lucke et &lextended the noninteracting blip Due to the delocalization nature of electronic states, an
approximation to incorporate the nonequilibrium initial prepara- adiabatic p]ctur@ is more u§eful than thg dla}batlc representation
tion and carried out extensive path-integral quantum dynamics for analyzing the short-time dynamics in strongly-coupled
simulations for electron transfer reactions. According to their SYStéms. In this picture, electronic coherence arises from Rabi
findings, large-amplitude oscillations are most likely to be osmllanon; between two adlabath gqrfaces and plecays because
observed in symmetric mixed-valence systems that are nearIyOf electronic d.ephasmg. Further, |n|.t|al preparaﬂon and wave-
adiabatic and with initial configurations that are centered in the Packet dynamics can modulate Rabi oscillations and the overall
Landau-Zener crossing region. Using the transfer matrix eleptromc (_jynam|cs. Thus, the adiabatic representation prc_)wdes
techniqué Evans, Nitzan, and Ratdecalculated short-time & S|mple picture for mixed-valence systems as vyellla.s.a simple
evolution for the photoinduced electron transfer reaction in @nalytical method to model fast electron dynamics initiated by
(NHg)sFe!' (CN)RU'(CN)s. Their results show fast oscillations ~ aser pulses.

in the electronic population on the short time scale (20 fs) As ageneral approach to describe condensed phase dynamics,
followed by a slower population relaxation on the long time We recently proposed a spectral analysis metfaalhich is

scale (100 fs). They pointed out that these fast oscillations arisebased on eigenstructures of dissipative systems instead of
as the wave function oscillates coherently between the donordynamic trajectories. An important application of the approach

and acceptor states. The calculated long-time decay rate isiS to analyze a set of two-state diffusion equations, which was
considerably smaller than the prediction by the golden-rule first used by Zusman to treat solvent effects on electron transfer

formulas8® confirming the inadequacy of nonadiabatic rate inthe nonadiabatic limit. The analysis allows us to characterize
theory in studying mixed-valence systems. multiple time scales in electron transfer processes including

In fact, a simple classical argument helps understand the vibrational relaxation, electronic coherence, activated curve
nature of the observed oscillations. As a function of the ratio crossing, or barrier crossing. With this unified approach, the

betweenl (the bath reorganization energy) avi¢the electronic observed rate behavior, biexponential and multiexponential
decay, and population oscillations are different components of

* Corresponding author. E-mail: jianshu@mit.edu. the same kinetic spectrum. Thus, several existing theoretical
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models, developed for limited cases of electron transfer, can Hamiltonian has been shown in the literafid@by the identity
be analyzed, tested, and extended. In particular, rate constants

extracted from the analysis bridge smoothly between the
adiabatic and nonadiabatic limits, and the kinetic spectrum in
the large coupling regime reveals the nature of the localization
delocalization transition as the consequence of two competing
mechanisms.

In this paper, the spectral analysis approach developed in ref

19 is employed to study the electron transfer dynamics in mixed-
valence systems. We invoke the nonadiabatic diffusion equation
proposed by Zusman to describe the electron transfer proces

in the over-damped solvent regime. As discussed earlier, electron

transfer in mixed-valence systems takes place in a different
kinetic regime from the thermal activated regime described by
Marcus theory. Thus, the time-scale separation is not satisfied,
and multiexponential decay and oscillations are intrinsic nature
of electron transfer kinetics. As a result, the kinetic spectra
exhibit bifurcation, coalescence, and other complicated patterns.
Careful examination of these patterns reveals the underlying
mechanisms in mixed-valence systems.

The rest of the paper is organized as follows: The spectral
structure of the nonadiabatic diffusion equation is formulated
in section Il. Numerical examples of the spectral structure of

strongly mixed electron transfer systems are presented and

discussed in section I, and concluding remarks are given in
section V.

Il. Theory

There have been extensive studies of the solvent effect on
electron transfer dynamics in literature with various
approache3’ 24 One of the most extensively studied models
for quantum dissipation is the spithoson Hamiltoniad#23
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wheree is the energy bias between the two electronic states,

is the electronic coupling constant,andoy are the usual Pauli
matrices, andx.,p.} represents the bath degree of freedom with
massmy, frequencyw,, and the coupling constacy. In this
model effects of the bath modes on the dynamics of the system
can be described via the spectral density defined by

C2

o

W) = gz 8w — wy) @)

o mawa
Equivalently, the spirboson Hamiltonian in eq 1 can be
separated into the electronic two-level gdft s and the nuclear
bath partHg,
Hsg = Hps + Hg ()
The two-level part of the Hamiltonian can be explicitly written
as

Hrs(E) = Uy (B)| 1M + U,(E)|202] + V(|12 + |2001])
“4)

where the diabatic energy surfadégE) andU,(E) are functions
of the stochastic variablE, which represents the polarization
energy for a given solvent configurati8hThe transformation
from the spir-boson Hamiltonian to the two-level system

Eqx)) = Y e, (5)

It is worthwhile to mention that the polarization enefgyvas
recognized as the reaction coordinate by Marcus in formulating
nonadiabatic electron transfer thedPySince the electron
transfer process involves the collective motion of a large number
of solvent degrees of freedom and the two-level system is

{{nearly coupled to the harmonic bath modes in the sjpioson

amiltonian in eq 1, the functional form for the free energy

surface is harmoniS thus giving
_(E+AY
UyB) =5 (6)
_(E-2

where4 is the reorganization energy, which is related to the
parameters in eq 1
C’ J()
do—
w

A= = (8)

1
a 2 2 ;
Mm@

Considering the fact that electron transfer processes are
usually probed at room temperature in polar solvents, we can
treat the bath degrees of freedomHig classically. Then, the
spin—boson Hamiltonian in eq 3 can be used to derive a two-
level classical equation of motion

.0

la_tp(t) = Lp(t) + (Lg + Ly 9)p(t) )
whereilLg = {, Hg} is the Poisson operator for the classical
bath and_t.s = [Ht.s,])/t is the Liouville operator for the two-
level system. Explicitly, we express eq 9 in terms of the density
matrix elements

p1= Lo T iV(p1, — p20) (10a)
P2 = Lop, = IV(p1, = p22) (10b)
P12 = Ligp1p — iw1p015 + V(0; — py) (10c)
P21 = Lospoy + iw1p051 — IV(0; = py) (10d)

where the Planck constahtis set to unity for simplicity o; is

the diagonal matrix element for electronic population, apd

is the off-diagonal matrix element for electronic coherence. Here,
L describes the relaxation process of classical bath, With
defined on the free energy surface for ilte electronic state,
and withLj, andLy; defined on the averaged free energy surface.
This set of semiclassical two-state equations has been previously
derived in different context by several authé?g3271t should

be mentioned that the mapping from the sposon Hamil-
tonian into the Zusman model requires the Lorentzian form of
the spectral density

ww,
J(a)) = Zlﬁ
o+ w,;

(11)

Furthermore, we note that many chemically and biologically
important electron transfer processes take place in the over-
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damped solvent environment. Therefore, to describe the densitynian in imaginary time

matrix evolution in the electron transfer kinetics in the mixed-

valence system, we invoke the nonadiabatic diffusion equation U6 U2 1 &

proposed by Zusmai?. Then, the bath relaxation operators in Hs= —eM® Lepe POz = — 5872 + V¥ (20)
eq 9 are one-dimensional FokkePlanck operators;;

o ) ( ) . an(E)) ) whereu! = 2D, and the quadratic potential is
i = Deaglae A
i 9E\OE 9E ) V.0 =D E(’BU' ()2 — %ﬁU"(x)] — %uyzxz _% (21)
Ly _Lutle i(i+ ME)) (13)
127 a1 2 BIE\OE oE

with y = Dmw?ksT. Since the transformed potential in eq 21
whereB = 1/ksT, U andw1, are the average and the difference 1S just the same form as for a simple harmonic oscillator with

of the two free energy surfaces, respectively zero-point energy compensation, the eigenvalues and the eigen-
functions for the original FokkefPlanck operator can be
_ U,(E) + U,E) constructed immediately from the eigensolutions of the harmonic
( )Zf (14) oscillator Hamiltonian. Unlike the diffusion problem on the
single potential energy surface, there have been limited studies
w,{E) = U,(E) — UL(E) (15) on the nonadiabatic diffusion problem involving more than one
potential energy surface. In this aspect, Cukier and co-workers
The energy diffusion constaille is defined as have calculated the electron transfer rate by calculating the
lowest eigenvalue of the nonadiabatic diffusion equation;
De = QAEZ (16) however, their calculation was limited to the weak-coupling

regime where the Zusman rate is applicalle.
where Ag?2 is the mean square fluctuation of the solvent An important issue in solving the nonadiabatic diffusion
polarization energy equation for electron transfer is the choice of the basis functions
since three different free energy surfaces are involved in eq 9:
A= [EC= 2k T two diabatic surfaces for the population density matrix elements
and one averaged surface for the coherence density matrix
andtp = 1/Q is the the characteristic timescale of the Debye €lement. In this paper, the eigenfunctionslef are used as
solvent. The correlation function of the solvent polarization our basis set to represent the nonadiabatic diffusion equation.

energy is given by In principle, one could have chosen the eigenfunctiorls, afr
L, as basis functions; however, in that case one has to evaluate
C(t) = [E(t) E(0)= AE2 exp(—Qt) (17) appropriate FranckCondon factors when calculating the cou-

pling matrix elements even with the Condon approximation.
Note that since the nuclear dynamics is modeled by the Fekker The Fokker-Planck operatot s, is defined on the averaged
Planck operator, the possibility of the vibrational coherence is harmonic potential centered & = 0, and its eigensolutions
excluded in this model of electron transfer dynamics. It is are
worthwhile to mention that one can obtain the nonadiabatic

diffusion equation starting from the spiboson Hamiltonian Ly |¢RC= —nQ|gR0 (22)

by first deriving the evolution equation for the quantum

dissipative dynamics, and then taking the semiclassical limit IIjSL|L12= —nQB| (23)
n n

using the Wigner distribution functions, and finally assuming
the overdamped diffusion lim#

We investigate the spectral structure of the nonadiabatic where the right and left eigenfunctions are

diffusion operator by calculating the eigenvaldesz,} and 5
the corresponding eigenfunctiofig, . Hereafter we use Greek RE) = 1 exn — E _E (24)
indices to denote the eigenstates and Latin indices to denote™" @4 2zAHM 2] "\WV2A

the basis states of the nonadiabatic diffusion operator. Because

the nonadiabatic Liouville operator is non-Hermitian, the Loy 1 [ E

eigenvalues are generally given by complex values, and the right ¢n(E) = (2nn|)l/2(2ﬂA 2)1/4' 'n J2A (25)
and left eigenfunctions corresponding to the same eigenvalue ' E E

are not simply the Hermitian conjugate to each offiéfor a ) ) )

given eigenvaluez,, the right and left eigenfunctions of the whereHp is thenth-order Hermite polynomial. As shown below,

nonadiabatic diffusion operator are obtained from this choice of the basis set is convenient for our purpose.
To be consistent with thi;, basis set, we separate the real
L IU)RD: —7 W)RD (18) and imaginary parts of the coherence density matrix, narely,
v vy = Repsz andv = Imps,, and rewrite eq 9 as
L L
L=-— 19
| Z0| (19) p1= (L, +0L)p, — 2Vu (26a)
The method of eigenfunction solution is well-known for the b= (Lo — SL Vo + 2V 26b
diffusion process on the harmonic potential energy surféce. P2 = (Lez P2 v (260)
For a single guadratic potentidd(x) = Y,mw?x?, the one- U=Lu+ ww (26¢)

dimensional FokkerPlanck operatokgp = D((0%0x?) + SoU'/ .
0X) can be transformed into the quantum mechanical Hamilto- 0= Lyv — w1 U+ V(py = pp) (26d)
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where we have definedL as

L11 - L22

oL= >

(27)

Then, all the relevant operators in eqs 2@&d can be evaluated
in terms of the right and left eigenfunctions lof,, giving

(b5 ILyo = —NQ0,,, (28)
A
BRIOLIgnT= —Q, [ /Mt 10ymey  (29)

%hlwlﬂ(pm}: A/ 2j'kBT(\/EkSn,m—l +vm-+ 16n,m+1) - Eénm
(30)

(b5 VIgn= VO, (31)

where we assume the Condon approximation; i.e., the electronic
coupling matrix element is independent of the solvent degrees
of freedom. With the basis set, we can expand the density matrix

elements as

00

Pi(ED =3 2, (H)$h(E) (322)
pAEN) = by(DPH(E) (32b)
U(EY = nicn(twﬁ(E) (32¢)
WED =S 40650 (32d)

n=

Substituting eqs 32a32d into the eigenvalue equation eq 18,

we have the following coupled linear equations

A

ZkBTﬁnan_l —2vd, (33a)

~Za,= —nQa, - Q
_ A
~Zb,=-nQb, + Q 2kBT\/F1bn_l+ 2vd, (33b)

~Z,6,= —nQc, + 2k T(vVn+ 1d, ., + vnd, ;) — ed,
(33c)

~7,d. = —nQd, — \/22k; T(vn+ 1c. ., + vnc,_,) +
ec,+ V(a, — b)) (33d)
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the eigenvalues-Z, and the corresponding eigenvectors of the
nonadiabatic diffusion operator

[¥y0= Y Ry l¢nd (34)

Gyl = Lyl (35)

whereR,, andL,, are elements of the transformation matrices.

In general, due to the non-Hermitian nature of the nonadia-
batic diffusion operator, the right and left eigenfunctions do not
form an orthogonal set by themselves. However, when the
eigenvalues are all nondegenerate, the left and right eigenfunc-
tions form an orthogonal and complete set in dual Hilbert
space®® Explicitly, we have

LvanV’ = (sw’

n=

(36)

for the orthogonality and

Z Rﬂvan = 6nm (37)

for the completeness. Using these properties, we can construct
the real time propagator for the operatoas

G =Y [y Tp,le ™ (38)

and express the time evolution of the density matrix by
projecting a given initial distribution onto the eigenstates, giving

p()B= GOIpO)= Y [y, Ty |p(0)& = (39)

Hence, the eigensolution to the two-state nonadiabatic diffusion
equation leads to a complete description of electron transfer
dynamics.

Ill. Results and Discussion

In the section, we present the spectral structure of the
nonadiabatic diffusion operator by diagonalizing its matrix
representation in eqs 3383d. In principle, we need infinite
number of basis functions to diagonalize the nonadiabatic
diffusion operator; however, in practice, we have to truncate
our basis set at some finite number. In all the calculations below,
we have usetl = 50—200 to diagonalize theNl x 4N matrix
and the effect of finite number basis on the spectral structure
has been carefully examined.

A. Spectral Structure. 1. Mixed-Valence Systemm the
mixed-valence compounds, the electronic coupling constant has
the same order of magnitude as the reorganization energy and
the electron transfer dynamics is usually probed experimentally
at room temperature in polar solvents. To study this process,
Evans, Nitzan, and Ratrecarried out real time path-integral
simulations for the photoinduced electron transfer reaction in
(NH3)sF€e'(CN)RU'"(CN)s. On the basis of their model, we chose
the parameters for the calculation shown in Figure BQs—=
0.6716,51 = 18.225,5V = 11.99, andfe = 18.705. As
mentioned in the Introduction, the mapping between the-spin

which is an explicit basis set representation for the two-state boson Hamiltonian and the semiclassical Zusman equation is
diffusion operator in eq 9. The linear equations for the left not rigorously defined. For example, for the nonadiabatic
eigensolution as defined by eq 19 can be written by the transposediffusion equation, the solvation energy correlation function
of eqs 33a-33d. Diagonalizing the M x 4N matrix (N = takes an exponential form with the r& whereas for the spin
number of basis functions) defined in eqs 333d, we obtain boson model Hamiltonian, it depends on the functional form
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70 T

wherek, is the decay rate andr2w, is the oscillation period.
The time evolution of the density matrix component associated
. with the eigenvalu&, is an exponential decay &, = 0, an
underdamped oscillation &, < 1, and a damped oscillation if

] 0, > 1. The relative amplitude of each component depends on
the overlap matrix element between the initial density matrix
i and the eigenstate. As an approximate criterion for the clas-
sification of the eigenvalues, the slope corresponding te 1

is shown in the eigentree diagram in Figure 1. There are a few
eigenstates around and below the= 1 line, with a typical

- rate of Sk, ~ 5. For the parameters used in the calculatjon,
[ corresponds to~170 fs in real time, and, therefore, these
eigenstates exhibit underdamped oscillations with a period and
a decay time in the femtosecond regime. In their real-time path
integral simulations, Evans et al. showed that the population in
; the acceptor state oscillates with a few femtosecond period and
-150 100 -50 o 50 100 150 these oscillations decay within 20 fs. Thus, qualitative features
of the electron transfer dynamics can be predicted and under-
Figure 1. A plot of the lowest 400 eigenvalues for the nonadiabatic ~ stood from a careful examination of the spectral structure. Since
operator in a mixed-valence system. The parameter8@re 0.6716,  the spectral analysis presented here is based on the semiclassical
fﬁ’l = 18.2254V = 11.99, andfe = 18.705. The dot-dashed line is i sjon equation while the path-integral study is based on the
or the casek = w/27. . . ) . .
guantum mechanical spitboson Hamiltonian, the comparison

of the spectral density. It can be shown that the Ohmic spectral Petween the two approaches is expected to be qualitative. In

60

50

40

Bk

301

20 e

ok

density with an exponential cutofs, the following subsection, further analysis reveals the nature of
these oscillations.
J(w) = nw expowlw,) (40) 2. Dependence on the Coupling Constanv.examine the

underlying spectral structure in more detail, eigenvalues of the
used in the calculation of Evans et al. leads to an energy Nonadiabatic diffusion operator are plotted as functions of the
correlation function with a Lorentzian form at high temperattire ~ €lectronic coupling constant in Figure 2. All the parameters
except for the electronic coupling constant are the same as used
2no kT 1 in Figure 1.
T 1+ (0 t)z (41) In Figure 2a,_the real parts of th_e first 2_0 eigenvalues are
c shown as functions of the electronic coupling constant. Note
that eigenvalues corresponding to complex conjugate pairs have
the same real part, and thus they coalesce in the real eigenvalue
diagram. When the coupling constant is very small 1),
the real part of the first nonzero eigenvalue is very well separated
from the eigenvalues of excited states, so the dynamics of
electron transfer can be considered as a incoherent rate process
with a well-defined rate constari. When the coupling constant

v show the first 400 ei | in th | | "is larger BV ~ 1), the first excited state becomes close to the
we only show the firs eigenvalues in the complex plane. qq.qnq excited state, and they start to merge into a complex

Since the nonadiabatic diffusion operator is non-Hermitian, the conjugate pair. If the coupling constant increases further,

resulting spectrum shows Co”?p.'ex conjugate paired e'genvalL.'eseigenvalues show a bifurcation behaviofst~ 10. Therefore,
as well as real eigenvalues, giving rise to the tree structure with

! ’ ! . in this regime, the electron transfer kinetics show multiple time
three major branches (which we will call thegentreg. In 9 P

Fi 1 te th land i - s of i | scale relaxation as well as coherent oscillation. The complicated
b;lgure » We separale the real and Imaginary parts of €1genvalu€, o 4yior of coalescence and bifurcation in the real eigenvalue

appears more frequently at higher states.
I 42 Another interesting feature of the real eigenvalue diagram is
Z,=-k —io, (42) : -
that a set of real eigenvalues decreases consistently as the
coupling constant increases from zero. It turns out that these
nonequilibrium physical quantities decay to zero at time infinity, fmg(iEstates t?k(;‘ (t)r? "’?fge 'T“ag'“gry pahrts, Wp'fhh are restpon5|lble
and it scales linearly with the indexsince the relaxation rate or the onset of thé imaginary branches of Ine eigentree. in
Figure 2b, the imaginary parts of the lowest 30 eigenvalues are

corresponding to theth basis state, is proportional ton. In . . .
general, the relative magnitudes of real and imaginary parts of plotted as functions of the coupling constant. Interestingly, the

eigenvalues determine the time evolution of the density ma- |_maginary_ part of th.e eigenvalue increases _approx_imately
trix: the real eigenvalues correspond to the simple exponential linearly with the coupling constant at large coup_hng_ regime. In
decay components and the complex conjugate paired eigenvaluef2Ct thé dependence on the coupling constant is similar to that
correspond to the damped oscillation components. of the Rabi frequency for the two-level system

To classify the eigenvalues quantitatively according to their

Csg(t) ~

Then, the relaxation rat2 used in our calculation is taken as
the inverse of the mean survival time G§g(t), which isQ =
2w,

In Figure 1 the spectral structure of the nonadiabatic operator
is shown in complex space. We have uséd= 200 (N =
800) basis functions to calculate the eigenvalues. To remove
the effect of finite basis set from the resulting spectral structure

Obviously, the real part,—k,, is always negative as all

dynamic behavior, we introduce the dimensionless quaftity Q= N2+ 4\? (44)
27k, o N . )
= (43) which is shown in Figure 2b. As pointed out in a recent paper,

lw,| electronic coherence in mixed-valence systems arises from Rabi
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spectral propagation
o direct propagation

0.9

0.8

0.7

0 5 10 ov 15 20 25 00 ” > 3 y 5

t/ B

60 T T T i Figure 3. Comparison between the result of direct numerical propaga-
ofi? tion and spectral propagation. The parameters are chose as 1,
it Bi = 15, BV = 12, andBe = 3.

Figure 2c. For clarity, only the positive branches of the
imaginary eigenvalues are shown. If we compare Figure 2c with
Figure 2a, the very rapidly decaying states shown in Figure 2a
take on large imaginary parts corresponding to the Rabi
oscillations as the coupling constant increases, and these states
are responsible for the onset of the imaginary branches in the
eigentree for the mixed-valence system shown in Figure 1.

B. Density Matrix Propagation. To check the validity of
the spectral analysis as a density matrix propagation scheme,
we calculated the time evolution of the density matrix by
applying the propagator defined by eq 38 to the initial density
matrix for various energy biases. Although it may seem
straightforward to use the spectral method as a propagation
scheme, the case for a non-Hermitian operator is not trivial and
has not been explored. The main reason is that though the left
and right eigenfunctions of a non-Hermitian operator can be
shown to form a biorthogonal set for the nondegenerate
eigenvalue case, numerically these eigenfunctions may not be
stable enough to be used as a complete orthonormal basis for
the density matrix propagation, especially in the nearly degener-
ate eigenvalue case. We can understand the situation as
follows: When the two nearly degenerate eigenvalieand
Z, are obtained from a non-Hermitian operator, the orthogonality
implies that(lL,| and |R;(Jare orthogonal to each other as well
as(Li| and|R,LJ When two eigenvalues become very close to
each other, unlike the Hermitian operator cadg| and [1L,|
almost coincide and so d&;0and |R;[) so that(l,| and |R;[
become almost orthogonal to each other. To still satisfy the
normalization conditionlL,|R,0in this case, the eigenfunction
should be scaled up, thus making the spectral structure very
sensitive to the numerical error involved in the calculation of
fo eigenfunctions. For an interesting discussion on this point, one
Figure 2. Plots of (a, top) real and (b, middle) imaginary parts of the may refer to the work by Nelson and co-workét®ue to this
lowest 30 eigenvalues as a function of the coupling constarixcept numerical instability, the use of the spectral method as a density
for the coupling constant, all the other parameters are set equal to thosematrix propagation scheme is not without limitation.
used in zFigure %/-2'” (b), open circles correspond to the Rabi frequency  rigyre 3a shows the spectral structure and the time evolution
Qr= (e + N2, (c, bottom) Three-dimensional plot of eigenvalues of the density matrix propagation for the casefe? = 1, 41
as a function of the coupling constant. .

= 15,8V = 12, andfe = 5. Generally, when the energy bias

oscillations between two adiabatic surfaces and decays becauses small (¢ < 5), the left and right eigenfunctions can form a
of dephasing. complete orthonormal basis set, so the spectral method is stable

To demonstrate the correlation of the real and imaginary partsand can be used as a numerical propagation method for the
of the eigenvalues as functions of the coupling constant, we density matrix. With a large energy bias, however, the calculated
present a three-dimensional plot of the spectral structure in eigenfunctions may not form a complete orthonormal basis. To
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model for the photoinduced back electron transfer experiment
in the mixed-valence compounds the initial density matrix is

chosen as a thermal equilibrium distribution of the donor state
(i.e., 1-state) pumped to the acceptor state (i.e., 2-state),

1 (E+ 1)
(E,0)= ——— exg — —=%|0. 45
pi(E,0) VoA, exr( anz |0 (45a)
p1AE,0) = py(E,0) =0 (45Db)

It would be straightforward to calculate the spatial distribution
of the density matrix in time(E,t) by applying the propagator

in eq 38 to the above initial density matrix; however, to
demonstrate the overall temporal behavior only the time
evolution of the total population in the acceptor state is 0.1F
calculated ,

P,(t) = JdE p,(E/}) (46)

In order to check the validity of the spectral method as a
propagation scheme in this case, we also calculated the time
evolution of the density matrix by directly solving theN4 80
differential equations for the expansion coefficients of the
density matrix using the BulirshStoer algorithn?! and the
comparison in Figure 3a shows a perfect agreement. If only e
the transient behavior is concerned with, the direct propagation
method would be preferred over the spectral method; however, &
the spectral propagation has the advantage when calculating the 4
long-time behavior once the complete spectrum is known.
Overall, the computational costs for the two methods are
comparable to each other. As expected from the spectral =
structure shown in the previous section, the population in the
acceptor state shows an underdamped coherent oscillation
behavior at initial times followed by a damped oscillation
behavior at later times. -80 60 —40 20 [) 20 40 60 80
Further, we have also studied the density matrix propagation
for different energy biases to examine the electronic dephasingFigure 4. Comparison of (a, top) the dynamics and (b, bottom) the
effect. As seen from Figure 4a, the increase in energy bias spectra in the mixed-valence system for three different energy biases.

destroys the electronic coherence dramatically. Another interest-=XCePt for the energy bias, all the other parameters are set equal to
Y y- those used in Figure 3. Agreements between the results of numerical

ing observation is the phase shift in the population dynamics ang spectral propagation have been checked in these cases.

as the energy bias is varied, and it is because the Rabi oscillation

frequency increases with energy bias. We can confirm the complex conjugate pair of eigenvalues are also complex
temporal behavior of the density matrix propagation by examin- ¢onjugate to each other; therefore, the frequency spectrum of
ing the spectral structure shown in Figure 4b. The period of the density matrix evolution is proportional to the norm of wave
the initial coherence is estimated todg.~ 0.253 from Figure  fynction. We note that the left eigenfunction is more extended
4a. In comparison, the Rabi frequency for the corresponding than the right eigenfunction. Although the population distribution
adiabatic two-level system is given lf§g = (e + 412 ~ in the donor and acceptor states corresponding to coherent
25371, which can also be obtained from the onset of imaginary qscillation is inverted with respect to the Boltzmann distribution,

branches in the eigentree shown in Figure 4b, and the estimation; qoes not contribute to the steady-state population distribution
is consistent with the oscillation period observed in the dynamics q,e to the transient nature.

sincetysc & 21/Qg. The real eigenvalues of the lowest excited
states in the the imaginary branches are estimated ke
1-2, and they agree with the decay time of the oscillation
amplitude in Figure 4a, confirming the validity of the spectral In this paper we have applied the spectral analysis method
method as a density matrix propagation scheme. Even thoughto the nonadiabatic two-state diffusion equation that describes
it has been well-known in the literature that the damping of electron transfer dynamics in Debye solvents. In particular, we
population is enhanced with increased energy asymmitirg, have examined electronic coherence in mixed-valence com-
have also confirmed this through the spectral analysis method.pounds and demonstrated that underdamped Rabi oscillations
As an example of the eigenfunction responsible for the are observed in an overdamped solvent environment. Detailed
coherent oscillation behavior observed in Figure 4b, we show study of the spectral structure of the nonadiabatic operator for
the left and right eigenfunctions corresponding to a complex various energy biases and coupling constants allows us to
eigenvalugsZ = 2.6228+ i26.394 for a symmetric casfd = determine the underlying mechanisms of electron transfer
0) andfZ = 2.8057+ i26.466 for an asymmetric casge(= kinetics. Eigenvalues form three branches in the eigendiagram:
5) in Figures 5 and 6. The eigenfunctions corresponding to a a single branch of real eigenvalues and two symmetric branches

100 5y

=3

IV. Concluding Remarks
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Figure 5. (a, top) Right and (b, bottom) left eigenfunctions with an ~ Figure 6. (a, top) Right and (b, bottom) left eigenfunctions with an
eigenvalugdz = 2.6228+ i26.394 for a symmetric bias casge(= eigenvalugdZ = 2.8057+ i26.466 for an asymmetric bias cagl &
0). All the other parameters are set equal to those used in Figure 35)- All the other parameters are set equal to those used in Figure 3
except for the energy bias. Each line correspondsgtésolid), p» except for the energy bias. Each line correspondgatgsolid), p,
(dashed)u (dot-dashed), and (dotted), respectively. (dashed)y (dot-dashed), and (dotted), respectively.

of complex conjugate eigenvalues. In strongly coupled systems,operator completely characterizes the dynamics of a dissipative
all three branches have a similar order of magnitude, indicating system and thus provides a powerful tool to analyze dissipative
that both multiple-exponential decay and coherent oscillations dynamics. It is well-known that quantum dynamics comes from
can be observed experimentally. the underlying spectra, especially in gas-phase chemical sys-

We have investigated the dependence of the spectral structurgems?2 however, the spectral aspect of condensed phase
on the coupling constant. In the very weak coupling regime, gissipative systems has not been well recognized yet and
the lowest excited state is well separated from higher states,jeserves further investigation. Though the analysis presented
which makes the electron transfer dynamics a well-defined rate gy s restricted to semiclassical dissipative systems, it may
process. In the strong coupling regime, however, the eigenvaluey g, pe applied to quantum dissipative dynamics. In principle,
diagram shows coalescence/bifurcation behavior in the complexwe can derive the evolution equation for quantum dissipative
pIane._We have use(_j the spectral r_nethod fo calculate the tIrmsys,tcams either from first principles or through numerical
evolution of the density matrix, and indeed, observed electronic

. ) o reduction, and then pose the quantum dissipative equation of
coherence in the temporal behavior of population in the acceptormotion as an eigenvalue problem. Alona this line. the dissipative
state for nonequilibrium initial distributions. We also found a 9 P ’ 9 ' P

good agreement between results of the spectral propagationdynam'CS of the spirboson Hamiltonian, which has been

method and the numerical propagation method for small energy Studied mostly as a dynamic problér, can also be explored

bias cases. Due to non-Hermitianity of the nonadiabatic operator, @S & Spectral problem in the future.

the spectral propagation method was not numerically stable for
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