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The forward-backward semiclassical representation introduced by Makri and Thom@éem( Phys. Lett.

1998 291, 101-109.) is employed to evaluate dipole correlation functions for electronic transitions of molecules
in clusters or the condensed phase. The method is applied to theBXransition of an iodine molecule in

a host of argon atoms. In this case, where the spectrum is dominated by the short-time dynamics of the
system, a factorization of the stability matrix entering the semiclassical expression of the propagator provides
an excellent approximation, substantially reducing the computational cost.

1. Introduction quantum-classicil1° and surface hopping schentés? Gauss-

The microscopic description of condensed phase dynamicsian wa_v_epack_et i_o!ee?év,”and semiclassical approxi_matio%?sf‘g .
{n addition, significant progress has been made in the direction

has provided a challenge over the past two decades. Anexact ;|\ oo oo b e e dibrim path integral calculations via
guantum mechanical description of such processes as photoin- 9 4 P 9

i i i 53 i 5
duced reactive (photodissociation) and nonreactive (solvation) 2?22’;50?3gt';:;ﬁ“??:é@aa??org:g:z:rg ﬁgﬁggl ml?c:rrgﬁon
dynamics remains out of reach, as the numerical effort for Y y ’

solving the multidimensional Schidinger equation grows Folr re::ent revulaws th? r:earl]der |sr:gferred lto .refs fgz and 63.
exponentially with the number of coupled degrees of freedom. c nl C_otse art1_a Og); mt the r;at _|nt|egra S|tutat m/f[fontef
The alternative very appealing path integral description is ario integration of the semiclassical propagator suflers from
plagued by the so-called sign problem which amounts to the a phase cancellation problem due to its oscillatory character. A

inability of stochastic sampling methods to handle the integration nymber of elegant methods fpr dealing with the §em|g:la53|cal
of oscillatory functions. sign problem based on filtering proced#¥ or linearized

s . .
In view of these difficulties inherent in quantum mechanical approximation$™#> have met with considerable success. An

. . o -
treatments of complicated many-body Hamiltonians, simplified gg(rarlrgatgéet'rer:t%gnt”gfotrhoeufson?/gféoadne:jwba::skwg?zetidmggvtt)rllftion
models of the environment provide an attractive alternative. A

e : erators entering the influence functional or a correlation
opular description of many condensed phase processes is bas - . . .
gnpsystenﬂrba{oh models %ere the morl)ecularp system, i.e., a unction. The forwaretbackward semiclassical dynamics (FBSD)

molecule in solution or in a solid state matrix, is mapped onto method has the.advantqge that most of the rapid oscillations
a low (one- or two-) dimensional system interacting with a bath calr:] C?A:n(rje(s)gﬁtlf:cnli?ri\t,)v:t?oﬁ \?Vn;oeontqh l'gte%r:?:déSD scheme in
which consists of uncoupled harmonic oscillators (see, for P ploy the " -

example, ref 1). The microscopic information about the bath the context of the spectroscopy of elt_actromc_transmons in the
and its interaction with the system is replaced by the spectral conder!sed phase. In section Il we give a br lef account of the
density function, a quantity which is often approximated by theoretical apparatus. As phase cancellation is minimal in FBSD

means of classical molecular dynamics simulations. Given the Cma;fﬁclfg'?(??értges'T;?:rtn:Z\Ier:a?sbf‘;agéetggvgﬁ i?aetli)c/;:goft?r?e
simplified system-bath Hamiltonian, the ensuing dynamics can ge sy pp P

be obtained either perturbativély or exactly using numerical prefactpr, which scales as the thlrd.power of the r?umber. of
path integral method.12 Recent work has analyzed the atoms involved. We thus explore a simple factorization which

conditions for validity of the systerbath descriptiod3 Clearly, substantially reduces the required computational effort associated

the drawback in these formulations is the loss of microscopic with integrating the stab?lity matri>§. The s_pecifics of thelline-
information as a consequence of the mapping procedure. Thisshape.calculatlon are discussed n section il anng W'Fh the
has motivated efforts toward methods for dealing with large rs]ﬂmr?lrg:r?zleéeisr]uggcttigitl\\;ve obtained. The paper is finally
systems in full dimensionality, the most popular of which )

involve time-dependent mean field approximatidfis® mixed II. Theory

* Address correspondence to this author at the School of Chemical ~We focus on spectroscopic experiments (_jescribed in terms
Sciences, University of lllinois, 601 S. Goodwin Avenue, Urbana, IL 61801. of two electronic states, labeled g and e, which are coupled by

10.1021/jp991836v CCC: $18.00 © 1999 American Chemical Society
Published on Web 09/24/1999



9488 J. Phys. Chem. A, Vol. 103, No. 47, 1999 Kidhn and Makri

the electromagnetic radiation field. Adopting the conventional final coordinates by one involving initial mome#Afar invoke
classical treatment of the radiation field and the dipole ap- cellular discretizatior’$ or coherent state representatiéhn
proximation, the total Hamiltonian is written as these formulations, the classical trajectories are specified by their
initial conditions in phase space. A number of successful
H(p,a) = Hy(p,a)19MG| + He(p,q) el applications to small mod&I*¢and chemical syster#fs**%8have
E(t):(uea) 09| + py(a)lgle]) (2.1) demonstrated the high accuracy of the semiclassical approxima-
tion as well as some of its limitations. In addition, semiclassical
Hereq andp are Cartesian coordinates and momenta for the jdeas have been successfully combined with quantum-classical
multidimensional System of intereﬁ(t) is the external electric approaches to treat po]yatomic SySténg.l Multidimensional
field, andud(q) is the dipole operator. Optical spectroscopy in - cajculations require integration by Monte Carlo methods which
weak external fields is conveniently described by employing a (pecause of the oscillatory phase present in the semiclassical
perturbation expansion of the time evolution operator with integrand) are plagued by a sign problem very similar to that
respect to the field (see, for example, ref 65). This results in gn0qntered in real-time path integration. Even though a few

;exprte_ssm_nstfor th? dl_lne}z;rd_anld nonl||netfar (f)ptm?I reslgonsesuccessful calculations employing filtering procedété$or
unctions in terms of diporedipole correfation funclions. For — ji,0445ai0n approximatiod$*2 have been reported, rigorous

instance, the linear absorption line shape normalized to unitarea_ - : . .
S . semiclassical calculations in large systems have in the past been
is given by the Fourier transform

considered unfeasible.

_1 ® L jot In previous attempts to develop a semiclassical representation
() nRe!/; dre™ C( (2:2) of (2.5) and its obvious generalization to nonlinear spec-
troscopies the forward and backward propagation has been
treated separately while the integrals associated with switching
_ between electronic states that appear in higher order terms were
— l .
C(t) = TriUe(Dpe@)pgVy (1) #gda)] (2.3) performed within the stationary phase approximatior®

HereUg andU, are the time evolution operators of the ground N ref 72 this procedure was combined with a harmonic
and excited potential surfaces, respectively,is the initial expansion around the center of the classical orbits of the forward
density operator prior to excitation, and the trace is taken with and backward trajectories in the spirit of Gaussian wave packet
respect to the nuclear degrees of freedom. Assuming a thermagnd cellular dynamié$ with application to an electronic two-
distribution of the molecular system of interest, the initial density level system coupled to a single nuclear coordinate. Spencer

where the dipole-dipole correlation function is

is given by the Boltzmann operator, and Loring* treated a solute in a Lennard-Jones solvent
semiclassically, simplifying matters by neglecting the amplitude
Py = z? exp(—=AH,) (2.4) of the semiclassical propagator. They also discussed the
shortcomings of semiclassical approaches which reduce the
where Z is the canonical partition function ané = 1/kgT. correlation function to the ground or excited state dynamics of
Invoking the Condon approximation and settjpag: = 1, the the instantaneous energy gap.
correlation function takes the form

To circumvent the difficulty associated with the oscillatory
nature of the semiclassical propagator, Makri and Thompson
formulated a FBSD scheme for ensemble-averaged quanti-

iac44,46,47 in i i i i _
In the condensed phase the calculation of correlation functionst'es'_ ) The main |d(_aa Is to apply the semlc_lassmal ap
of the type shown in eq 2.3 poses severe numerical difficulties proximation to the combined forward and reverse time evolution

unless one can resort to simple systemath descriptions like opf_erators. After reaching the desired propagation time, trajec-
the Brownian oscillator model which allows for an exact tories are subsequently propagated back to time zero, such that
evaluation of (2.3) by using a cumulant expansidAlthough the net accumulated action is generally small. This fact implies
such mappings are justified in condensed phase situations undethat the semiclassical integrand is now only mildly oscillatory,
conditions that favor the validity of the linear response ap- allowing Monte Carlo sampling. Batista et‘dlhave used this
proximation, they are clearly inadequate for describing processesscheme to simulate the photoelectron spectrum,ofint the
involving a few strongly interacting degrees of freedom such gas phase.

as those encountered in medium size clusters. The present article References 44 and 46 present in detail the FBSD scheme for
aims at describing a rigorous semiclassical methodology for {he jnfluence functional arising from coupling of a multidimen-
dealing with the spectroscopy of such systems, treating the gjona| medium to a time-dependent system. Equation 2.5 for

potential interactions in full dimensionality. the correlation function pertinent to the photoabsorption spec-

The semi_classical prop_agator in th_e coordinate represe_ntat_iontrum has exactly the same structure, the forward and backward
can be obtained by applying the stationary phase approxlmatlonevolution operators now involving the forces on the ground and

to the path integraf>®"The reslt, first obtained by Van Vietk excited potential surfaces. For this purpose, we simply rewrite
b ifferent method, invol h [ to the acti I - ’ ;
y a different method, involves a phase equal to the action aongthe result of refs 44 and 46 in the present notation:

classical trajectories connecting the initial and final points and
a prefactor which amounts to contributions from quadratic
fluctuations about a classical path. The endpoint representationc(t) = (27h) ™" f dp, f dg, D(go,po) x

is not useful for the purpose of performing numerical calcula- h

tions as the determination of the relevant trajectories requires eXF(I‘S(Qmpo))[G(qupoNP |G(q.p;) 0 (2.6)
the solution of a double ended boundary value problem. This h ¢

numerical difficulty is overcome in initial value representations

of time correlation functions which replace the integration over Here

C(t) = Tr(Uy(tpUg (1)) (2.5)
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G(apPo) = (2] (detr) x

exi{ (@~ a97+(a ~ a9 + ppor@ — 0] 2.7 Floo @@ o0

where y is a diagonal matrix, defines a multidimensional '
coherent state. According to eq 2.6, trajectories are chosen with -Ruox 0 Rpox

initial conditionsdo,po based on weights given by the coherent gigyre 1. Linear chain configuration of;l(large spheres) in an Ar
state transform of the initial density operator. These trajectories (small spheres) environment. The system is placed in a box introduced
are first propagated to time according to the ground state via the external potentidVex(q). The latter is taken as the repulsive
Hamiltonian and subsequently return to zero time following the Part of the Ar-Ar Lennard-Jones potential thus modeling the presence
forces in the excited electronic state. Finays the net action ~ ©f further Ar atoms.

during this forward-backward evolution, i.e.

at timet by the amount
S(AoPo) = [, (P(t)-G(t) — HY ot + op = hg—':-z (2.13)
[Cp)-at) — Hy dt (2.8)

The action generated by the Hamiltonian of eq 2.11 also

The main advantage of the FBSD formulation in the context of increments discontinuously at the timéy the amount

propagation in a single electronic st&t&is that the combined 0S=hpu(t)-z (2.14)
forward—backward action tends to be small on the scale of

Planck’'s constant and thus the integrand is only mildly Application of the semiclassical approximation to the effective
oscillatory. In the present context, the extent of forward Hamiltonian in the coherent state representation brings the
backward cancellation depends on how different the ground andcorrelation function to the form

excited state Hamiltonians are. In the lirhi§ = He, the forward 5

and backward propagation steps cancel exactly and the corre = _j 19,

sponding action is identically equal to zero. The prefactor in <0 \(27h) 0z f dqof APoD (o Po)

(2.6) is given byD(dopo) = vdeM with the matrix M exp(i_ )[G G (215
defined in terms of the elements of the stability matrix 7 X0 Po) {00 Po)l Pt G(G1P Do (2.15)

[ll. Application to | , in an Ar cluster

i~ 2 Mo ¥ Po ! Viﬁ0 Zh_V,W.o (2.9) The photodissociation of In a cluster environment has been
an active testing ground for new theoretical propagation

methods. Gerber and co-workers applied their classical separable
d potential based approach to this system calculating absorption
and resonance Raman specfd. A so-called mixed-order
semiclassical approach combining zeroth- and second-order
approximations to the propagator has been used by Ovchinnikov
f et al. to obtain the absorption, emisson, and resonance Raman

_1 %+7i op; ¢ . BQj,f+ i P

To calculate the determinant, one needs to solve tmg? (2
differential equations for these elements. Having in min
applications to large systems, the quadratic scaling of this
procedure becomes the bottleneck. For this reason we will also
explore the validity of the simplest approximation in which the
correlations between initial and final phase space points 0

i i i 70,78
different degrees of freedom are neglected,Mg~ d;jM;. In profiles for b in solid Kr. . . . .
this approximation, the prefactdd is replaced byDict = Much effort has also been invested in the theoretical simula-
’ act —

[MMi]Y2 tion of pump-probe spectra v_vhich show a pronounc_:ed pressure
dependencé’80 Purely classical molecular dynamics simula-
tions/?8land quantum/classical hybrid methdés€3as well as
the combination of quantum propagation for the early time
dynamics with classical simulations for later tirfffésave added
much to the understanding of the relaxation/recombination
9 e dynamics in this system.

C(t) = —Ia—Z°Tr(/teg(q)ngg (t)e "9‘*(0')Ue(t))|zz0 (2.10) In this section we apply the FBSD expression for the linear
absorption correlation function to the spectroscopy of the-X
B electronic transition of an iodine molecule embedded in a
cluster of argon atoms at finite temperature. In the absence of
detailed information for the dipole moment function we restrict
ourselves to the Condon approximation. Nonadiabatic transitions
SN — B o . within the L, excited electronic state manifold do not play a
R(t) =H —hzpo(t =1 (2.11) significant role for the linear absorption profifeand therefore
will be neglected. Further, to keep the matter simple we restrict
ourselves to a linear chain configuration (see Figure 1) as has
been done for the present syster#?{ff and for the 4 anion in
) Ar and Xe in refs 82 and 83.
+ h5E'25(t—t') The Cartesian coordinates and momenta of the two iodine

(2.12) atoms are denoted andp; (i = 1, 2), respectively, while those

of the n Ar atoms are written a&;, P; (j = 1, ..., n). In the

According to these, the momentum of each trajectory must jump actual calculation we will describe the solute by its relative (bond

Finally, we mention how the FBSD treatment described in
this section can be used to evaluate the dipole correlation
function without invoking the Condon approximation. For this
purpose, eq 2.5 is written in the form

The product of the three last operators in this expression can
be interpreted as propagation with the following time-dependent
Hamiltonian4>48

The classical dynamics generated by this effective Hamiltonian
are described by Hamilton’s equations,

o OH _0H ey OH_ o
a(t) =50 =55 b)

aq g
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TABLE 1: Parameters of the Morse Potential Describing coherent state representation have been given in refs 12 and
the Ground and Excited States of } (from Ref 79) 13. With these assumptions the correlation function becomes
Dem?y) A(AYH b))  dem?
n

ground state 12547.2 1.875 2.656 0 342

excited state 4382.8 1.75 3.03 7605 cH =2 e )ﬂ f de,Ofde,Ofkofdrl,Of x
distance) and center of mass coordindtasdR,, respectively. d dr do. - DI(r r R, P
The respective conjugate momenta firand Po. Employing a pl'of Z*OI P2,0D(r10P10T2.0P2.0Rk0Pio)
pairwise additive potential, the Hamiltonian takes the form fnorm(rlvovpl,oarzvovpz,oaRk,oypk,oan) X

H=H +H (3.1) i
" s X %S(r1,01p1,o,r2,01p2,o’Rk,o'Pk,o) X
where
" m
_ |52 = ex _Z—(ﬂ sz"‘?’kQ Rk,f2+
H, = - +V,,(M (3.2) m, + h2By, \4m,
. . Lo L i i
describes the internal vibration of the iodine molecule and —Qu(Peo — Piy) — —(PeoRio — pk'f.Rk’f))
n P2 n ~ 2

Heo =Y —*+ ) VarallRi =R + Yo P i«

sol £ ZmAr ; Ar—Ar exd — I'f —F 2 _ %

P2 aty, datyy) haty,
Viealrs — R|)+ VIA(|r2 R|)+_+ S e o oy o
Z ' ' 4m1 (pO.(rO - I’eq) - pf'(rf - req)) (36)

Vo i(Ro--Rp) (3.3)
In the above equatiorQy are auxiliary integration variables

is the Hamiltonian of the argon atoms and their interactions arising from the coherent state transform of the Boltzmann
with the iodine molecule as well as the overall translation of operator in the high-temperature approximation, and the normal-
the latter. The ground and excited-state potentials foAl— ized sampling function is given by the expression
Ar, and the +Ar interaction are taken from ref 79. Specifically,
the vibrational motion of 4 is described by a Morse potential foom(T10P1 0" 2 0P2 0 Rk 0Pk 0 QW) =
of the form Y

n rn( ﬁ
Vi(F) = Dlexp(—24(F — b)) — 2 exp(-A(F — b))] +d =) ( Zor-Pico+ 7{Qc~ Rig ) -
m, +ABy, \ Tk
and the Ar~Ar and I-Ar interaction potentials are of the o B 2
Lennard-Jones type: Vo w2l 0 3.7)
0 eq .
o oty, 4(a+yg)
wiom =~ ] . s
0 0 Details of the Monte Carlo procedure are discussed in ref 46.

We start our discussion by assessing the importance of
correlations in the calculation of the determinant prefa@or
in eq 3.6. In Figure 2 we plot a set of trajectories for the case
of four Ar atoms. The initial conditions have been taken from
a Monte Carlo sampling step @t= 300 K. The solute is in the
excited state; i.e., the trajectories correspond to the forward
propagation. The elements of the stability matrix entering eq
2.9 have been calculated by running for each selected set of
initial conditions concurrent trajectories with slightly modified

~ - initial values such as to allow for a finite difference approxima-

p(0)~ expCHtea) v, by | (34) tion to the derivatives in (2.9). The integration of the classical
equations of motion was performed using the velocity Verlet
algorithm8°

Apparently, on the time scale covered in Figure 2 the
factorized approximation is very accurate for these trajectories.
As can be seen from the upper panel the deviation is only about
4% within the first 700 fs. Note that initially the is compressed

with no distinction made for the ground and excited state.of |
The parameters of these potentials are given in Tables 1 and 2.
To mimic the effect of additional solvent atoms the system is
placed in a box of lengthR,.x (see Figure 1). For the external
box potential entering eq 3.3, we chose the repulsive part of
the Lennard-Jones potential with the parameters for the Ar
Ar interaction.

The initial density operator is approximated by the product

where,(F) is the wave function of the iodine molecule in the
vibrational ground state of the ground electronic state. Note that
Hsolis evaluated in eq 3.4 with the iodines fixed at their ground
state equilibrium position. For simplicity, the ground state wave
function for the solute is approximated by a Gaussian form,

- 14 . w2 to an extent that the energy on the excited state is above the
y(F) = (;) exp{ —a(f — Te))} (3.5) dissociation threshold for this bond. The initial momenta are
zero for all particles.
wherefeq is the equilibrium bond length. In Figure 3 we show a situation where the factorization

Since the Ar atoms are fairly heavy, we use the high- approximation completely breaks down at longer times. From
temperature approximation to calculate the solvent part of the the forward trajectories propagated on the excited solute state
Boltzmann matrix element. The density matrix elements in the the reason for this break down does not become obvious.
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Figure 2. Classical trajectories and semiclassical prefactor for a linear t [fs]

chain of b plus four Ar atoms. The solute dynamics is on the excited

state (forward propagation). The external confining potential starts at Figureé 3. Same as in Figure 2 but for a different set of initial
Roox = 14.6 A. This corresponds to the situation where foinl the conditions. In addition to the forward trajectories on thexcited state,

ground state the equilibrium-Ar and Ar—Ar distances are equal to the backward parts of the trajec_torie_s on the ground_statgs are shown
the Lennard-Jones minimumY®. The initial conditions for the for the longest forward propagation time. The respective directions are
trajectories are taken from an arbitrary step in the Monte Carlo sampling indicated by arrows. In the upper panel the determinant for the full
of the integrals in eq 3.6. With this initial condition the forward and  factorization (thick solid line) and block diagonal approximation
backward parts of the trajectories are nearly indistinguishable. The lower (dashed: only first solvation shell; thin SOI'd}i additional inclusion of
panel shows the coordinates of the | atoms (solid lines) and those of e @rgon whose trajectory starts at abei A) is compared to the

the Ar atoms (dashed lines). The upper panel shows the ratio between€Xact determinant according to eq 2.9.

the absolute values of the factorized and the exact determinant.

1.5 ' 1.0 :

TABLE 2: Parameters of the Lennard-Jones Potentials
Describing the I-Ar and Ar —Ar Interactions (from Ref 79)

e (cm) oA

I—Ar 209.7 3.59
Ar—Ar 84.0 3.40

o {arb. units]
°
&

o0 -2000 -1000 [ 1000 2000
@0, [em']
) ) 0.5
However, if one inspects the complete forwaitshckward

trajectory as is done for the final time (700 fs) in the lower
panel of Figure 3, the reason for the failure of the factorization
approximation becomes transparent. Tracing their backward
motion on the J ground state, one observes an intramolecular 0 . A 15
I, collision and the attraction between an iodine and a neighbor- ’ tifs]

ing Ar atom. These cause the final phase space points of the ) -
involved particles to become correlated, in contrast to the case19Ur€ 4. Comparison between the exact gas phase (solid line) and
S . the FBSD condensed phase results (markers) for the correlation function
shown in Figure 2 where the backward ground state trajectory qf ye x — B state Franck Condon transition at room temperature.
traced the forward trajectory almost exactly for a final time of The triangles show the real and imaginary parts of the correlation
700 fs. Figure 3 also suggests that one can improve thefunction. The inset shows the spectrum taken with respect to the vertical
factorization approximation by including correlations between transition frequencyo.
neighboring particles, for instance, those in the first solvation excited state leaves the FrareRondon region in about 15 fs.
shell Surrounding the solute. In this case the matrix (29) would On this time scale the factorization approximation should
take a block-diagonal form; the resulting ratapprod/|Dexact perform rather well, judging from the two extreme cases shown
is shown as the dashed line in the upper panel of Figure 3.in Figures 2 and 3. In Figure 4 we plot the correlation function
Including also the next-nearest-neighbor interaction with the for the |, plus four Ar atoms system using the factorized
Argon atom whose trajectory starts at abeu A accounts for  determinant. For each integration variable in eq 3.6 35000
most of the correlations in the time interval examined (thin solid Monte Carlo points have been sampled with a rejection ratio
line in upper panel of Figure 3). for the Metropolis random walk of 50%. It turns out that the
The broad absorption spectrum of i dominated by the correlation function is nearly identical to the gas phase result
short-time dynamics of the system. As shown, for example, in which has been obtained by calculating the oveflap|exp-
ref 39, the ground state wave packet once promoted to the(—iH¢t/h)|y,0using the standard split-operator technique in

correlation function

004 + L .
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