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Fluorescence line shapes and cooperative spontaneous emission in disordered one-dimensional molecular
aggregates are calculated using closed expressions derived by applying the method of optimal fluctuation. A
simple scaling relatiohs ~ ws 2 is established between the low temperature disorder-induced Stokes shift

ws and the superradiance enhancement fatioScaling of the Stokes shift with aggregate size, and the
time-dependent Stokes shift are discussed as well. Excellent agreement is obtained with numerical simulations.

I. Introduction shift with aggregate size is analyzed in Section V. We find

that for large aggregates the Stokes shift is determined by energy
' transfer between localized exciton states and may not be
obtained from a static model of eigenstates. Our results are
summarized in Section V where the time-dependent Stokes shift
in disordered aggregates is discussed as well.

The dynamics of electronic excitations in molecular crystals
nanostructures (e.g., monolayers and superlattid¢eg)gregates
of cyanine dyes, and biological harvesting antennae compiéxes
can be interpreted in terms of disorder-induced exciton scattering
and localization, as well as exciton self-trapping (dynamic
localization), which originates from strong vibronic | optimal Fluctuation Theory for the Stokes Shift and
coupling?*18-30 Various spectroscopic measurements, such as Superradiance
absorptiorf,®> fluorescencél'2 pump-probel? and photon
ech016,7 have been emp|oyed for probing exciton motions in We consider an ensemble of one-dimensional molecular
molecular aggregates. aggregates each made outlofcoupled two-level molecules

In this article we calculate the fluorescence line shape and With periodic geometry. The Frenkel exciton wave functions
cooperative spontaneous emission (superradiance) in molecula#y, and energies, are determined by the Schrodinger equa-
aggregates using the Frenkel exciton model with strong diagonaltion
disorder. Current theories treat strong static disorder using N N N
numerical simulationd?19.2122.29.30A similar problem which Z Jntbn T (Q + E)pm = 0o (2.1)
appears in calculating the density of states in the band tails in n

disordered semiconductStshas been successfully treated by \heren andm label individual molecules and the intermolecular
an elegant.method OT op.tlmzaslsfluctuatlon propose independently couplingJmndescribes exciton hopping. The electronic transition
by Halperin and LifshitZ%3® We apply this method for frequency of themth molecules is given b + &n where&m

caICL_JIating fluorescence spectra and obtain a_universal Sca"ngrepresents static diagonal disorder. We assume uncorrelated
relation between the fluorescence Stokes shift and the super-s5,,ssian disorder. where the distributionzfis

radiance factor.

In Section Il we derive an analytical asymptotically exact 1 1 5
expression for the distributiam (w) of the lowest exciton energy W(E) = ———exp — — z &m (2.2)
o in a disordered aggregate whesdies below the band edge (Y 2;10)" 20° ‘m

of an ordered reference system. Since at low temperatures the ) )
fluorescence originates from the lowest exciton state, we can In the absence of disordefn = 0 and eq 2.1 gives an
relate the Stokes shifbs, defined as the shift between the ~€xcitonic band whose width is determined Byn Disorder
maxima of the fluorescence and absorption line shapes, to thechanges the exciton energies and leads to the formation of states
disorder strengtly and the aggregate size(we assume that ~ Pelow the band edge. Assuming that thermal equilibration of
the aggregate has a finite size which is large enough to neglect€Xcitons is much faster than their radiative lifetime, the main
boundary effects). In Section Il we apply the optimal fluctuation contribution to the fluorescence at low temperatures comes from
theory and establish a relation between the Stokes @hiind the lowest exciton. The position of the lowest exciton thus
geometry (i.e., dimensionality and the magnitude of the Whereas the superradiant factor is related to the shape of the
intermolecular coupling), and is independent of the magnitude corresponding exciton wave function. Both the lowest energy

of the disorder. An analytical expression is derived which relates |€vel and its wave function have a statistical nature and the
Ls to ws in 1D aggregates. The scaling of the Stokes fluorescence spectrum is obtained by averaging over all possible
realizations of disorder
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Here n(w) is the lowest state energy distribution, and the
superradiant enhancement facte(w) is the radiative decay
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The superradiance factdrs, defined as the ratio of the
radiative decay rate of an aggregate to that of a single

rate relative to a single molecule. In general eq 2.3 should chromophore, is given BY

contain the average of product rather than the products of
averages of both quantities. The factorization employed here is

justified, as will be verified by our numerical simulations.
To find n.(w) we introduce the probabilitiF(w) that there is
a level beloww. Since low-energy excitons are localized and

(@) =S M) (2.11)

whereMmp = dy-d, is the window function expressed in terms

do not communicate, this probability thus satisfies Poisson of the unit vectorsl,, in the direction of the single chromophore

statistics

F(w) =1—exp-L [ den(e)) (2.4)
where L is the number of molecules in the aggregate, and
ne) is the normalized exciton density of states
(i.e., y2.d, n(w) = 1). Since the statements “the lowest
exciton level lies beloww” and “there is an exciton level below
” are equivalentfF(w) also describes the probability for the
lowest level to lie beloww. This impliesn () = dF (w)/dw
which by making use of eq 2.4 yields the following expression
for n(w) in terms of the density of states
n () = L n(w) exp[-L [* den(e)] (2.5)
A more careful derivation shows that egs 2.5 and 2.3 hold
provided the high-order level correlation functions (multidi-

mensional density of states) can be factorized for energies below

w, which is asymptotically true whem is sufficiently low. This
can be done using the exact relation

n(@) = Li(@) exp-L [ def()D  (2.6)

where the average in the rhs of eq 2.6 should be understood as

M(ey) ... Alg) 0= nV(ey, ... ) (2.7)
andn@ are the multi-level correlation functions.

A closed expression for the lowest state energy distribution
n(w) can be obtained by substituting into eq 2.5 the exact
expression fon(w) = dN(w)/dw where the cumulative density
of states is given by

N(@) = [ den(e) (2.8)

transition dipole moments angy,, is the thermally relaxed
single-exciton density matrix at zero temperature, given by

— 0 0
Pmn— z (pEn—)}—J ¢( )
J

n+j

(2.12)

where the summation ovgrreflects the fact thap© can be
centered at any chromophore.

The method of optimal fluctuatiéi 32 is based on the
observation that the conditional probabify(&; w) of a disorder
configuration£ subject to the constraint that the lowest exciton
has energyv, is sharply peaked &= £©), known as the optimal
fluctuation, provided the exciton energy is far below the
exciton band edge. For large aggregates the lowest energy state
lies far below the band edge for most of the aggregates in the
ensemble. This implies that the wave functigf of the emitting
state in a large aggregate is given by the solution of eq 2.1 for
&En = £,9). To determinep©@, we find the extremum o¥W(&)
for a fixed exciton energy (which is equivalent to finding the
extremum ofW(&) — ge(&), wheree(&) is the lowest exciton
energy andg is the Lagrange multiplier). Making use of
0eld&; = — |¢j|? (which is a direct consequence of perturbation
theory3” we obtain § = — g|¢j|% which yields upon the
substitution into eq 2.1

> Pttn” — wdn = 9ol ) =0
n

> leni=1
m

(2.13)
(2.14)

with hpn = (Q — Q0)0mn + Imn, WhereQq is the exciton band
edge (we reiterate that the zero energy corresponds to the exciton
band edge in an ordered reference system). The wave function
¢n@ is obtained by solving eq 2.13 whereas the Lagrange
multiplier g is determined by the normalization condition eq
2.14. We note that the same system of equations 2.13 and 2.14
determines the superradiance facdtrfor polaron control of

Hereafter we choose the zero energy to correspond to theexcitonic coherence in the case of diagonal vibronic coupling
bottom of the exciton band in an ordered reference system. Forin the adiabatic limi€® Static disorder and vibronic coupling

1D systems with nearest-neighbor hopping, Uga+1 = Jn+1n
= —J, in the continuum limit we hawé-3>

o \1/2
°) [A(—wlog) + Bi(-wlog] " (2.9)

_2
N(w) = p ( 3
Here Ay and B; are the Airy function® and oo = o(0/4J)*3.
The asymptotiav — —o expression folN(w) which follows
from eq 2.9 and has the form

N(@) = 5(%)1/2 exr{_ 3 (%)M]

(2.10)

thus lead to the same relation between the superradiance factor
and the Stokes shift. However, there is one important differ-
ence: in the polaron case in eq 2.43represents vibronic
coupling and the Stokes shift is obtained by solving the system
of equations. In the present case of static disogd@presents

a Lagrange multiplier whereas is the lowest exciton energy
and should be given as an input.

Since, as will be demonstrated below, for large aggregates
pmr(w) changes slowly in the region wheng(w) has a sharp
peak, the Stokes shift is determined by the position of the
maximum of the lowest state energy distributiof{w). The
maximum of the optical absorption corresponds to the bottom
of the exciton band in the reference ordered systers 0

Equation 2.10, together with eqs 2.5 and 2.3, describe the (according to our convention). This implies that at low tem-

low-temperature relaxed fluorescence signal. Equation 2.10 canperatures the Stokes shift is given by the lowest exciton energy
be alternatively obtained using the optimal fluctuation method ws = w. Egs 2.13 and 2.14, together with egs 2.11 and 2.12,
as discussed below. establish the relation between the Stokes shift and the super-
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radiance factor: solving eq 2.13 far= ws, yields¢©, which
determined.s upon substitution into eq 2,12. In the next section
we use these results to derive a closed analytical relation

100

between the Stokes shift and the superradiant factor of 1D 3 'r
aggregates. < Ol
0.01
Ill. Comparison with Numerical Simulations 1E-3 7
We consider 1D aggregates with fixed parallel orientation 184
of the molecular transition dipoles (e.gl;aggregates). The 100
generalization to circular aggregates such as light-harvesting 10§
systems and 2D monolayers is straightforward. We present 5 Tk
analytical expressions in the continuum limit and compare with = 01§
simulations. We start by deriving closed expressionssfpand 0.01 f

L. If for the relevant energies the exciton localization length is 1E3 |
much smaller than the system size and much larger than the 1E-4 &
lattice constant, eqs 2.13 and 2.14 can be solved in the 18
continuum limit, which yields the Ginzburg_andau soliton for

the wave functio?

$(n) = (2a) 2 sechVay) (3.1)
with ag = 4J/g and w = —J/&j, where —J is the nearest- 0 L . ! . : .
neighbor intermolecular coupling. The parameigis defined -0.02 -0.01 0.00 0.01
by the energy of the localized state which gives the Stokes shift. energy (eV)

The solution given by eq 3.1 corresponds to the continuum limit Figure 1. Upper panetthe distribution of lowest-energy excitaon-

of an infinite system. Equations 2.13 and 2.14 can be solved (w); middle panet-the low-temperature fluorescence spectrim);
analytically in the continuum limit in a periodic system. The lower panet-the superradiant factok(w) for a cyclic disordered
solution in this case is expressed in terms of elliptic functféns. 299regate wit. = 18 chromophores with nearest-neighbor coupling

o - . . of J=34.7 meV considering Gaussian, uncorrelated, diagonal disorder
When the localization length is comparable with the lattice (see eq 2.2) witly = 23.5 meV. The zero of the energy scale coincides

constant, egs 2.13 and 2.14 should be solved numerically.  with the energetic position of the lowest exciton in the absence of
For parallel dipole orientatioMm, = 1, and the substitution  disorder. The solid lines are the results of direct numerical simulations.
of ¢(n) into eqgs 2.12 and 2.11 and replacing the sum in eq 2.12 The dashed and dotted lines in the upper and middle panels display
by an integral yields n.(w) using eq 2.5 and(w) using eq 2.3, where(w) is taken from
egs 2.10 and 2.9, respectively, and the dashed dotted lines display the
5 same quantities using(w) taken directly from the simulations. The
1 ( J )1/2 (3.2) dashed line in the lower panel displalys(w) according to eq 3.2.

_|w

s 2

g

o ) ) _ for different values of the disorder parameter= 70.5 ando
Note that this simple scaling relation between the superradiant= 117.5 meV, respectively. The agreement with simulations is
factorLs and the Stokes shifbsis independent of the magnitude  similar to Figure 1.

of disorder. ) _ Our analytical expression does not apply to the blue part of
_Using these expressions we have calculated the lowest excitonyhe flyorescence spectra since this spectral region lies in the
distribution n (w), the fluorescences spectruffw), and the yicinity of the band edge of the ordered reference system, where
superradiant factots(w) of the lowest exciton in a cyclic e factorization of the higher-order level correlation functions
aggregate with the parallel dipole orientation which consists of (eq 2.7) is not justified and the optimal fluctuation theory is
L = 18 chromophores, resembling the LH2 harvesting complex jnapplicable. We note that already for= 18 the analytical
of purple bacteria? ) theory reproduces the red half of the fluorescence spectra. When
Figure 1 shows (w) (upper panel)i(w) (middie panel), and | js increased further the spectra are red-shifted, which increases
Ls(w) (lower panel) for a nearest-neighbor coupling of the range of applicability of the theory. It is important to note
J=34.7meV andy = 23.5 meV. The dashed and dotted lines that a good agreement is obtained only if we use eq 2.5 for
in the upper and middle panels displayw) obtained usingeq () with n(w) obtained from a simulation rather then from
2.5 andf(w) (eq 2.3), wheren(w) is taken from eq 2.10 and  gq 2.9 or eq 2.10. This can be rationalized as follows. Eq 2.5
2.9, respectively. The dashed line in the lower panel displays contains the density of state) in the exponent with a large
L{(w) computed using eq 3.2. To test the validity of the pre-factor ofL. n () is therefore extremely sensitive to small
approximate analytical expressions we have computed the samgeviations ofn(e) from its exact value. In the case of egs 2.9
quantities by direct numerical simulations. Simulations are gnq 2.10 these deviations originate from the continuum ap-
averaged over 1 million disorder realizations. The direct proximation. For low energies, however, the analytical expres-

numerical results given by the solid lines in all panels show an sions predict the energy dependencengfw) and f(w) as
excellent agreement with the red part of the fluorescence spectrggptained from the simulations.

up to its maximum. The zero of the energy scale coincides with

the energetic position of the lowest exciton in the absence of |, Scaling of the Stokes Shift with Agaregate Size

disorder. The dashed dotted lines in the upper and middle panels d ggreg

display n_(w) (eq 2.5) andf(w) (eq 2.3) takingn(w) directly To investigate the variation of the Stokes shift with aggregate
from the simulations. Figures 2 and 3 display the same quantitiessize we note that at low temperatures the fluorescence originates



Stokes Shift in Disordered Molecular Aggregates

f(w)

1E-3 §

1E-4
18

L, @

o]

0.01 |

F (@)

-0.10

-0.05

energy (eV)

0.00

Figure 2. Same as Figure 1 but far = 70.5 meV.
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Figure 3. Same as Figure 1 but far = 117.5 meV.

from the lowest exciton. The Stokes shift can therefore be
obtained by finding the maximum of the distribution of the
lowest energy state (), given by eq 2.5. Alternatively, the
Stokes shift can be estimated using the following argument:
the average number of states with energies betoiw LN(w),
whereN(w) (eq 2.9) is the cumulative density of states. The
Stokes shiftws can then be estimated by requiribjl(ws) = 1,

i.e., the number of one-exciton states with energies bebgw
should be on the order of one. Thedependentvs can thus be

obtained by solving the equation

J. Phys. Chem. A, Vol. 103, No. 49, 19980297

N(w)=L" (4.1)

SinceN(w) is a monotonically increasing function, eq 4.1
predicts a monotonic decreasemfwith aggregate size. This
is unphysical since in a sufficiently large aggregate an exciton
does not have enough time to reach this state during its lifetime
7. The Stokes shift is then controlled by the dynamics of energy
transfer between low-energy localized exciton states. This leads
naturally to a new coherence sikgdefined as the size of the
segment on which an exciton has enough time to reach the
lowest-energy state. In Appendix A we derive an expression
for Lo

Lo = (Jr9*? (4.2)
wherery is the radiative lifetime of a single chromophore. For
L < Lo the Stokes shift is determined by eq 4.1. Eor Lo it
becomes independent of size and is obtained by the solution of
N(ws) = Lgl. For typical J-aggregate with] ~ 300 cn1?,
7o ~ 10 ns, we havéy ~ 100.

Note that our theory is based on the factorization of the
multidimensional densities of states for energies lower than
This is justified provided the distance between optimal fluctua-
tions Lo(w) is much larger than the exciton localization length
[n. Our previous numerical simulations have shown
la ~ LJ32° The maximum superradiant factor observed
experimentally reachelss ~ 5011 which givesla ~ 15. Our
theory thus applies to disorderdehggregates. Another impor-
tant consequence of these estimates is that numerical simulations
of equilibrated low-temperature fluorescence spectra in disor-
dered aggregates with size> 100 will in general be unrealistic
since the lowest-energy exciton states in such aggregates are
not accessible. The same applies to pupmbe spectra with
a long time delay between pump and probe.

The present analysis did not take energy-transfer between
aggregates into account. This can be accounted for by replacing
L in eq 4.1 byL; defined as the number of chromophores in
the volume of sizé.o. This may increase substantially the Stokes
shift for closely packed aggregates.

V. Discussion

Equations 2.112.14 and 4.1 constitute a closed system of
equations which express both the superradiant factor and the
Stokes shift in terms of the density of state&w). The
asymptotic form of the density of state$w) which enters
eq 2.5 can be obtained by applying the method of optimal
fluctuation. In contrast t@mn Which is expressed in terms of
the solution of egs 2.13 and 2.14 alomgw) also involves
calculation of the determinant of the linear operator which
originates from the integration overédin the vicinity of
& = £0), when the integrand is approximated by a Gaussian. In
1D systems the determinant can be evaluated analytically;
otherwise it should be computed numerically. The red wing of
the fluorescence spectrum all the way to its maximum is well
described by eqs 2.3 and 2.5 even lfor=18.

To obtain a universal estimate for the coherence size (eq 4.2)
we have used a simple model by settiign) = V(w) (see
Appendix A for the definitions of” andV). The transfer rate
I'(w) in a realistic situation depends on the vibronic coupling.
When the coupling/(w) is sufficiently small (which is always
true for sufficiently low energyw) the transfer ratd’(w) can
be calculated using Forster's theory, which yieldgv) =
[V(w)3/A] where A is determined by the spectral density of
the exciton-bath coupling. The latter can be readily calculated
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for a given model of the chromophore-bath coupling, since the for which the transfer time to a lower energy becomes
shape of the exciton wave function is known. This together with comparable to the exciton lifetime T'(w)r = 1 wherel'(w)

eq A3 could give a closed expression ofw) for a general is the energy relaxation rate of an exciton with enedgy
model of the chromophore-bath coupling. Such analysis goes, To find I'(w) we first determine the coupling(w) between
however, beyond the scope of this article. the states participating in the energy transfer. For making a

We emphasize that the fact that an excitation does not havesimple estimate we sdi(w) = V(w). To determineV(w) we
enough time to reach the lowest state of a large aggregatenote that the number of exciton states with energy smaller than
strongly affects the Stokes shift, and leads to its saturation for w is LN(w), which implies that a typical distance between the
aggregates larger than the coherence sigeThe relation states participating in the transfer procesto@) = [N(w)] ..
betweenLs and ws, however, is not affected provided there is This yields for the coherence sikg = Lo(w). Since both states
enough time for an excitation to reach an exciton whose energyare formed by optimal fluctuations, their wave functions are
is sufficiently low, so that optimal fluctuation theory is known (egs 2.13 and 2.14) and the coupling can be found in a
applicable. standard way? We should, however, be careful when imple-

We have addressed the low-temperature fluorescence inmenting the nearest-neighbor approximation for intermolecular
disordered molecular aggregates when the effects of disordercoupling. ForJ-aggregates it has a dipetéipole form with
are most pronounced. When the temperafuigincreased but  the dipoles oriented along the chain which yieldg= J/|m —
the main contribution to the signal comes from several lowest n|3. This implies that nearest-neighbor hopping constitutes a
states, one can still use the optimal fluctuations theory to find good approximation for determining the exciton wave function
the profile of &, Finding the exciton states for this optimal in the region of the trap, but it fails to describe the long-distance
realization of disorder and weighing the exciton contributions asymptote of the wave function which determines the coupling
with the Boltzmann distribution one obtaihgfor finite T. This V(w). In particular, in the nearest-neighbor case the asymptotic
approach breaks down when temperature effects in the formationbehavior shows exponential decay of the wave function whereas
of Ls become stronger than their disorder-induced counterparts.in the dipole-dipole case it is long range. The coupling
In that case the effects of disorder may be neglected_andn between two states localized in different traps (1) and (2) in
be found by performing calculations in an ordered reference the long-range hopping case is given by a simple expression
system.

Finally we note that the optimal fluctuation approach can also v=y oMM, 0 2(n) (A1)
be applied to calculate the time-dependent Stokes shift. Since mn
we know the distribution of optimal fluctuations and the ) ) )
couplingV between them, exciton transport can be simulated Where the wave functions(m) can be determined by solving
in a straightforward way by a Monte Carlo sampling of the the Schrdinger equation with nearest-neighbor hopping. Eq Al
distribution of the optimal fluctuations. Making some rough gives the coupling to first-order in the long-range hopping.
approximations such as neglecting the memory allows us to  Equation Al can be also derived formally by evaluating the
derive simple equations for the time-evolution of the Stokes long-distance asymptote of the wave function and making use
shift. For example, assuming that the energy transfer occurs©f the well-known expression fdv in terms of the overlap of

with rate'(w) into all accessible energies lower than the wave functions® When the exciton size is smaller than the
time derivative of the Stokes shift can be estimated as distance between the traps, which, as outlined above, is given
[[(w)] le(w), where by Lo, We can substituté/L3 for Junin eq Al to obtain
- — 713 (1) 2)
e(@) = [N@)]™* [ dw,N(w,) (5.1) V=LY PmIly =) (A2)
m n

is the average value of the energy with for the states lying below  Substituting forp® and$@ the solution of eqs 2.13 and 2.14
w. This yields for the time-dependent Stokes shift (eq 3.1) and recalling the definition of the superradiant factor
(2.11 and 2.12) we obtain from eq A2
doddr = —e(w)[T(wJ] *
V(@) = ()L )] (A3)
wherel'(w) can be calculated usingw) (eq A3) for an arbitrary
model of chromophore-bath coupling. SinceLo(w) = [N(w)] ™1, eq A3 constitutes a closed expression
for the coupling between the states at the enesgy
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In this appendix we consider the coherence digeand terms of the intermolecular coupling and the radiative lifetime
evaluate it for 1DJ-aggregates. Since all exciton states in a of a single chromophore. The Stokes shift in large aggregates
disordered 1D aggregate are localized, only hopping transport(L > Lg) can be found by combining eq 4.2 with the relation
induced by vibronic coupling takes place. If an exciton occupies N(ws) = Lo
a localized state with energy, at low temperature it can
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