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How Does Vibrational Energy Flow Fill the Molecular State Space?
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The experimental and theoretical evidence suggests that vibrational wave functions at high energy or in large
molecules are not mixed to the maximum extent possible. One consequence is that average vibrational survival
probabilities slow to a power law decay’? with a small value ofd. An approximate formula is presented

for estimatingd from the vibrational Hamiltonian and tested by comparing with wave packet propagations
on an experimentally fitted potential surface of SE@I six degrees of freedom. Characterization of the
wave packet by a dispersion paramdiefurthermore shows that the state space accessed during vibrational
energy flow remains nearly as compact as allowed by the decay law, opening the possibility for coherent
control on a low-dimensional manifold embedded in the full vibrational state space.

1. Introduction model. It arises as a result of a hierarchical structure of the
Hamiltonian® and could also be expressed as a correlated sum
of exponential processé$Unlike single exponential dynamics,

eq 1 at least approximately builds these correlations right into

Vibrational spectra show features (groups of vibrational
eigenstates with correlated intensities) even at high ené&py (
or high density of statespfy).l™* Although the vibrational
eigenfunctions may rapidly increase in complexityEzend pot thizer_o-grde_r moz_el. ti lationship betwesrand th
increase, the wave functions associated with these features can. mISSIing Ingredient IS a relationship betweenan e
remain quite simple. In small molecules, the origin of these vibrational Hamiltonian. In particular, one would like to know
features in the resonance structure of the Hamiltonian has beer'®" 5 behave§ for backbo.ne V|brat|9ns (as-opposed. to XH
studied in terms of conserved polyad quantum numbers. vibrations), which are most |mport§1nt in _chemlcal reactivity. It

Spectral features result from the interplay of the transition @PP€ars from experiments and simulations hatarely ap-

— 16,17 ici i i
dipole operator, which weights the full density of eigenstates proachesN or N — 127717 VR is indeed a quantum diffusion

according to oscillator strength with the hierarchical structure Ff:oce}:ﬂs}s In state space, !L:S Cﬁnf'nEd to muci: 'OWer (Iim;ensmln
of the vibrational Hamiltonian, which distributes the oscillator -2 (€ Maximum Possible. Here we présent a simple formuia

strength in a nontrivial fashiohThe hierarchical structure has for_the dimensionalityD of the state space ’_“a”'fo'd within
several origins: the size of the potential constants and matrix Wh'Ch. the VR wave pac_ket moveg), is optalned "0”7 the
elements decreases exponentially with the order of the couplingv'br"ﬂ.Ional Hamlltqnlan W'thOUt. any dynamlcal calculation, by
when dimensionless normal or local mode coordinates are applying perturbation theory d_|rectIy in the state space frame-
used!~19 a “triangle rule” for vibrational matrix elements due work, as Oppose_?' to the usual time dependent perturbation theory
to this exponential scaling restricts energy flow among triplets Ie.adlng. to Fermi’s Golden Rulg. We cpmpeﬁetp numerlcgl
of statest! the local nature of most chemical bonding in large, simulations ol based on the high-quality experimentally fitted
low symmetry molecules reduces coupling among pairs and V|brat|on_al Hamiltonian of SCC?\M’.'Ih six degrees of frc_aedqf_h.
highern-tuplets of vibrational states furth&t13 We obtain good agreement within th‘? range of applicability qf
In larger molecules, a consequence of this hierarchy which the formgla. .The d'?pers'o'? of the vibrational wave packet is
has recently come to light is the slowness of vibrational also studied _|n_deta|l numerlcal!y an_d found to proceed _through
dephasing (IVR) at intermediate tim&si4 After a feature is nearly the minimal number of V|brat|on:_:1I features perm_nted qu
prepared, a power law connects the short time quasi-exponentiag;e observed power law decays. We introduce t.he dispersion
region of its survival probability to the long time region where asa m|n]mal parameter to.descrlbe the. properties Of. the IVR
a maximally diluted survival probability is obtained: wave function bo_th at short_t|mes and at infinite time (|._e., the
fully “relaxed” high-resolution spectrum of the vibrational
—o2 eigenstates). These findings have important implications for the
P(t) ~t 1) possibility of guiding molecular dephasing with coherent optical
i 6
This was first suggested on the basis of a scaling analysis ofﬁelds'

pliffusion or “hopping” of 'Fhe vibrational wave packet density 5 vjiprational Dephasing Manifold

in state spacé&*15¢ could lie between 1 anN — 1 or N, where

the dimensiorN of the state space is the number of vibrational ~ a. State SpaceFigure 1 illustrates a vibrational state space
modes, and = N — 1 applies in the quasi-microcanonical limit  in three dimension¥1418.1Classically, the state space quantum
usually realized in laser spectroscopy experiments. It should numbers are directly related to action coordinatesd the state

be noted that eq 1, like exponential dephasing, is a zero-orderspace therefore has the same dimensionality as the vibrational
coordinate space. Laser excitation is usually quasi-microca-
*To whom correspondence should be addressed. nonical. In a long time average, most states participating in the
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Figure 1. (A) Molecular state space in three dimensions. Each circle corresponds to a feature state with quantummempers,, ...). An

energy shell and feature states near it are highlighted. (B) Energy shell and states from (A). The possibility of a superexchange chain is indicated
by red arrows to a state off of the energy shell. A 2:1 resonance leading to IVR is also shown. The brig@iistateown in red, and successively

accessible states are shaded across the spectrum to blue. The resonance structure of state space does not allow random flow among all feature state:
(C) IVR flow manifold due to the resonances in (B). Because of energy conservation, its dimension muaimée example shown. The actual
dimensionD, lies somewhere between 1 and 2.

dynamics are therefore confined to an energy sB&ll+ SE, this would correspond to a coordinate system with adaptive local
whereEQ is the energy of the feature state which carries the action coordinates. Because we consider only the bound part
oscillator strength (in red). of the potential here, state space provides a conveniently simple

The states in Figure 1 are not vibrational eigenstates. Rather picture; in the presence of reactive modes, an equivalent
they belong to a feature basi&’for example a normal or local momentum-coordinate picture may prove useful in the future,
mode basis, or one of the more exotic examples which have and we expect a power law analogous to eq 1 to emerge in
been studied in small systerfigd-eature bases are characterized such a formulation. In section 4 we will discuss a well-defined
by a simple nodal structure and a complete set of well-defined “optimal” choice for the feature basis.
quantum numbers. b. A Simple Formula for the Dimension of the IVR

Feature bases include the “bright” states which carry the Manifold in State Space.Consider a featurgdlexcited by a
oscillator strength in spectroscopy experiments because of theshort laser pulse, shown in red in Figure 1. It is characterized
Franck-Condon principle. For example, the initial state prepared by a set of quantum numbens. At short times it will evolve
att = 0 of an ultrafast experiment usually has a simple, into a superposition
assignable structure. Likewise, in a high-resolution scan, there A
are spectral features which can be assigned, even though they |AtO= e WAAL o~ |0D—i§|3||OD 2)
may be fragmented into a set of perhaps unassignable eigenstates h
as in the insert to Figure #nitiating IVR dynamics in a feature
state therefore leads to a different class of dynamics than
initiating dynamics in a highly dephased state which already
resembles an eigenstate.

In the state space of Figure 1, the “dark” states are also
represented as feature basis states with well-defined quantum
numbersn. All states are treated on an equal footing. This is The probability density distribution in state space is ap-
very important and differs from the Golden Rule picture, whose Proximately given by
bath states resemble eigenstates of the vibrational Hamiltonian
(see section 3b). Unlike features, vibrational eigenstates have Po,= |ci0|2 = |%Vi()|2 4)
complex and perhaps unassignable nodal structures at suf-

ficiently high E and pror. I _ Pio defines a manifold embedded in state spaca manifold

If the full vibrational Hamiltonian is used for calculations,  f those states among which the IVR initiated |0iJoccurs.
the exact choice of feature basis is irrelevant. Although the gome states are efficiently coupled, such as by the Fermi
choice of initial feature state can affect the precise values of \o5onance indicated in Figure 1b; others are not, and the flow
parameters such asin eq 1, it will be seen not to affect the ot hropability is therefore anisotropé.
universal nature of the dynamics. If a simplified vibrational  This manifold is the hypervolume in state space on which

Hamiltonian (effective or resonance Hamiltonian) is used, the {he wave packet initially moves, if we consider the quantum
choice of basis becomes more important if accurate dynamicseyg|ytion as a diffusion-like process. The local dimension of

are desired. For simplicity, we will discuss the dynamics in terms ina manifold abouny is given by?
of a normal mode basis, which turns out to be a reasonable
feature basis for SCgl dIn 2Py, AIn 2P}y

An ideal feature basis would adapt to the structure of state D, = Who D,(n) = mho )
space. For example, when two vibrational progressions tune
through resonance due to anharmonicity, they may best bewheren = |n — ng| is the distance from stat®to state|il]
approximated by a normal mode basis below resonance, but byand the sum over is over all stategiClwhich satisfiesin —
a local mode (or more exotic) basis above resonance. Classicallyno|< n. For example, if all couplingsio from |000to the

The amplitude that has leaked into another giaie state space
is therefore

-t t



Energy Flow in State Space

surrounding statesCwere identical, and if the flow in the three-
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Dy(n) depends on the initial stat®Jand order of coupling

dimensional state space of Figure 1 were not restricted by energyn. However, eq 9 does not take into account averaginB,of

conservation, ther®Pjy ~ n® and D, = 3, in accord with
intuition. As another example, the manifold shown in Figure
1C is restricted to the energy shell and has a dimensierDy,

once multiple feature states are populated. At the very least,
one should average over states couple@iby different orders
n. Our computational results (section 3b) indicate that regions

< 2. If Dy were less than 1, only isolated patches of resonantly of state space with very different values Df, tend to be
coupled states would exist in state space, and there would bepartitioned from one another. Simply evaluatingigis therefore

no IVR.

a good approximation for the dimension of the IVR flow

In practice, the sum in eq 5 must be evaluated as a finite manifold originating from a given stat®] as long as one

difference because the state space is discrete. EachQifide
surrounded by shells of hyperpolyhedra with= 1, 2, 3, 4...

averages over all orders of coupling from that state.
If a pure normal mode basis is used, the nonresonant

(octahedra foN = 3), which may be truncated if the state lies anharmonicity as well as changes in the optimal feature basis
near the edge of the state space or energy conservation isare neglected. Neglect of anharmonicity in evaluatihgo

invoked?®® The resultingD,(n) depends on the initial state and means that vibrational progressions cannot go into and out of
also on which pair of hyperpolyhedra is used to evaluate eq 5, resonance. In systems with large anharmonicities, one can
as indicated on the right-hand side of the equation by the partially correct for this by using an anharmonic feature basis

dependence dby, onn.

which provides correct eigenvalues for edge states of the

Eq 4 does not impose the necessary restriction of the type |0,-*n;,-++,0>. Alternatively, one can replack, by a

probability flow to the energy shell at long times. This restriction
is a natural consequence of the full quantum dynamics following
finite bandwidth laser excitation, but not accounted for by
perturbation theory. In the full dynamics, a state far off the

contact-transformed effective Hamiltonian which explicitly
separates resonant interactions from nonresonant interactions
responsible for anharmonic constants suchyasEither ap-
proach allows the differenceSEp to shift for different states

energy shell can only participate in the dynamics on a time scale |00and |iOwith the sameAn = n — ne. How one should

satisfying
AE At~ R (6)
Introducing this constraint into eq 4, one obtains
Pip ~ (V_I)Z (7)
AE,

Finally, when|AEio| <|Vio|, |0CaNnd|iCare strongly mixed. Such
statesildmake the maximum possible contribution to the IVR

transform the full vibrational Hamiltonian into the most ap-
propriate effective Hamiltonian is an unresolved question in
general. In section 3 we do present a simplified effective
resonance Hamiltonian for SGCand later compare it with
the full Hamiltonian matrix evaluated in a normal mode basis.
In section 4, we develop a criterion for the “optimal” feature
basis.

Equation 9 also neglects certain off-resonant couplings
(superexchangéy.As illustrated in Figure 1b, states far away
from the energy shell can make significant contributions to the
dynamics if they have sufficiently large coupling matrix

flow manifold, and eq 7 should not increase further. It has been €lements. Equation 6 allows such states to participate only if

shown that the function

Lo =1+ (AEJVi)T (8)

they couple back directly tfC] This constraint therefore does

not take off-resonant coupling chains into account properly.
However, it has been shown that in most molecules direct and
off-resonant chain contributions are of comparable importance

provides a good description of the state mixing among pairs of & sufficiently high E and p;;** their contributions tolj,

states both in the perturbative and resonant lithétsd we will

therefore use it instead of eq 7 to evaluate the dimensionality

of the flow manifold, which is then given by

AN LE

D\(n) ~ Alnn I

9)

Equation 9 is an approximate formula for the dimensionality
of the manifold on which the IVR wave packet originating in
state|OCkexplores the state space. The dimension of this manifold
generally lies between 1 arld — 1 or N, depending on the
excitation conditions (the example in Figure 1c has D, <

2). ForD, < 1, there are only disconnected patches of resonantly
interacting states, and IVR in the usual sense no longer occurs.

If energy redistribution in state space is indeed a quantum
diffusion process as given by eq 1, th&y, which can be

generally lie within an order of magnitude of one another. Since
eq 9 depends logarithmically on the couplin@s, could be
underestimated by as much &, = 2 if superexchange
dominates the dynamics.

A completely rigorous proof of the correct value of the
temporal exponend, to which eq 9 is an approximation, will
require a nonperturbative approach to the probability flow, such
as renormalization of the state space. Renormalization techniques
have their own convergence problefsnd it is not clear at
present whether such an approach would produce a formulation
more accurate than eq 9.

3. Numerical Results

a. Potential Surface and Computational MethodsTo test
eq 9 in detail, we have chosen a recently developed potential
surface for the tetratomic molecule SGEIAN N = 3 system

obtained without computing actual dynamics, should equal the is too small because only the range<ID, < 2 can be covered

power law coefficient obtained fronP(t) or from spectra (via
eq 12 below).

c. Limitations of the Formula. A number of approximations
were made in deriving eq 9, which will limit its applicability
and are worth discussing in detail. However, eq 9 will be seen

using quasi-microcanonical preparation. Rt= 6, SCC} is
large enough to allow nontrivial deviations &f, from the
minimal or maximal postulated dimensions (1 and 5). On the
other hand, it is sufficiently small that one can perform full
guantum dynamics simulations for comparison of the resulting

in sections 3 and 4 to yield very reasonable results comparedP(t) with eqs 1 and 9. A final reason for the choice is that SCCI

to exact calculations of the exponeht

has only low-frequency vibrations. It is therefore a model for
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were taken from the normal mode surface by generating all
A frequency combinations
6 6
(9640 ot 9760 Ao{n} =Zniwi In| <4 (10)
= 1=
0 2000 4000 6000 8000 10000 12000 and selecting only potential constant§n;} such thatR =
W avenumber, cm~! IV{n}/Aw{n}| > 0.05. The resulting approximate resonance

Hamiltonian has the form

100" —— Exponential, t= 2.5 fs Heff: Zwi(Vi + 1/2)+ ZXij (Vi + 1/2)(Vj + 1/2) +
1 — Power law, § = 3.0 ! b
104 —@— SEP and fluorescence ;V{n} |_| (aiT +a)" (11)
10-2_ n; I i
E’ 1074 with constants summarized in Table 1. Only six resonance terms
exceed the criteriolR > 0.05. It should be noted that the
1074 resonance criteriofR is smaller than 0.05 for all couplings
5 involving modes 4 (out of plane bend) and 3 (symmetric bend).
107 T 1 T ] The largest symmetry-allowed couplings involving these two
0.001  0.01 0.1 1 10 100 modes are also shown in Table 1. Because of the nature of the
Time (ps) potential constants in Table 1, none of the interactions in the

second line of eq 11 make contributions to the diagonal energy;

Figure 2. (A) Experimental fluorescence and SEP spectra of SCCI  gtherwise, such contributions would have to be projected out
the test system used in the calculations. The spectrum has a h|erarch|caéf the summation.

structure in the 10 000 cmi to 0.1 cnT?! range. (B)P(t) computed . . . .
from the experimental spectrum, with aKdynamic range correspond- Both time-dependent and time-independent calculations were

ing to the spectral coverage and resolution. The short time dynamics Carried out to study the vibrational dynamics of the system. For
can be fitted by an exponential function, the overall dynamics by a time-dependent calculations, the SUR symplectic propagator was
power law withd = 3. used?82° The initial statest=00were chosen from a normal
mode basis, including both interior and edge states (see b.

IVR among backbone modes, which dominate any IVR process below)1° The vibrational numbering is the same as that used
at intermediate and long times. in ref 3 (v1 CS stretchy, A1 CCl stretch,ys A; bend,v4 out of

The surface from ref 3 is a fourth order normal mode plane bendys B, CCl stretchys B, bend). Wave packets were
expansion derived by variationally fitting a curvilinear coordi- factored into vibrational symmetry blocks to speed up the
nate PE%?> pregenerated using ab initio calculations to calculation. Convergence was tested as a function of energy
about 100 IR, fluorescence and SEP transitions covering ground-window size and a perturbative state filter criterlosimilar to
state vibrational levels from about 300 to 10 000 The eq 8 (e.g., 4000 cnt! window andL ~ 0.01 converged the
root-mean-square accuracy of the predicted energy levels is|23322Z]interior state near 7922 cr¥). The output of the
about 5 cn!. The normal mode surface was obtained by di- calculation yielded the complex time-dependent expansion
rectly computing numerical derivatives of the analytical coefficientscy(t) of the wave packet in the normal mode basis.
surface. Some of the smaller calculations were checked using the

For reference, the relevant experimental spectra are shownmatrix-fluctuation-dissipation theoref-31in combination with
in Figure 23 The spectrum has a highly hierarchical structure, Lanczos matrix diagonalizati®h®3to obtain spectral intensities
proceeding from an overall envelope of 10 000 émwidth, to without calculation of the eigenfunctions. Again, convergence
polyads~800 cnT! width, to features o100 cnt! width, was tested as a function of window size dndhe convergence
which contain clusters of <1—20 cnt?!in width made up of criteria were found to be similar to the corresponding time-
individual vibrational levels (inset). From this type of structure dependent calculations. Windowing effects were also investi-
one would not expect an exponential decay. The survival gated by generating Lorentzian line shapes with widths corre-
probability P(t) for excitation of the entire spectrum, computed sponding toP(zr) = 1/e, truncated to the window size used in
directly from the fluorescence and SEP data, is also shown in the calculations. The resultiig(t) could be fitted by exponential
Figure 2. It is seen to have the characteristic power law with decays with superimposed slight oscillations; no power laws
superimposed quantum beats. The overall spectrum is well fittedwere required.
by an exponend = 3.0, and hence not well characterized by b. IVR Dynamics. The survival probability P(t) is a
an exponential decay) (= «, see eq 13). particularly simple measure of the IVR process and can be

Many of the potential constants of the normal mode surface computed from time domain data or frequency domain data as
describing the spectrum in Figure 2 are rather small. As
discussed in the previous section, such terms are expected to P(t) = |E(D|t[]]2 = Z||2 + zz|i|j Coskuijt] (12)
contribute mainly to nonresonant shifts of the vibrational energy |
levels. To create a simpler effective Hamiltonian which captures
the most important interactions in the system, we combined a At long times, the survival probability oscillates about the small
standard expansion invi(+ 1/2) with the most important  “dilution factor” ¢ = XI;2, which is the inverse of the number
resonance terms. The harmonic frequencies and anharmonid\, of states participating in the IVR proce¥s® Here,o was
constants were estimated by direct fit to vibrational levels in determined from the asymptotic valueRi(t). Decays computed
several IR and fluorescence spectt&?’ The resonant terms  on the full surface for several states in the~x 7000-9000

1=
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TABLE 1: Parameters for the Simplified Resonance Hamiltonian of SCCj2

w1 = 1149 X11= —4.3 X12= —2.5 X14= —-3.8
w2 = 508 X23 = 2.0 X2a= —-4.0
(,{)3:291 X33— 1.0 X34:0.1
Wy = 476 Xaa = —-0.2
ws = 806
ws = 303
V{ni} Ntot mode numben; resonance condition R
1 2 3 4 5 6 1 2 3 4 5 6
—-115 3 0 1 0 0 1 1 0 -1 0 0 1 -1 1
5.4 4 1 1 0 0 2 0 -1 -1 0 0 2 0 0.22
34.5 3 1 0 0 0 2 0 1 0 0 0 -2 0 0.07
4.9 3 0 1 0 0 0 2 0 1 0 0 0 -2 0.06
7.9 3 1 2 0 0 0 0 1 -2 0 0 0 0 0.06
—31 3 0 1 0 0 2 0 0 -1 0 0 0 0 0.06
-7.7 3 0 0 1 0 1 1 0 0 -1 0 1 -1 0.04
9.8 3 0 1 0 2 0 0 0 1 0 -2 0 0 0.02

a20nly coupling constant¥ satisfyingR = [V/Aw| > 0.05 are shown, except for those involving modes 4 and 6, where the largest coupling
constants have been included. The vibrational numbering follows the Mulliken symmetry convention.

cm~1range are shown in Figure 3. They can be fitted to a power tion states have been observed experimentally in $E@jure

law of the form 2 inset)? as well as in other organic molecufés®
ot\-/2 Figure 4 shows the average harmonic vibrational occupancies
Pity=(1- 0)(1 + 6_) +o (13) for the [70000QJand nearby23322Z]initial states. They were
T

evaluated by expanding the IVR wave packéi= Zcjo|ilJin
or similar equations which describe the early-time roliéff. ~ terms of harmonic feature statEeT@: In:-+-nsand calculating
Equation 13 has the advantage that it approaches an exponentidl® expectation valuesi[J= [fja/a|tl] The edge state under-
as 0—oo, allowing unbiased comparison with an exponential 90€s very little decay in the, quantum number. It is only
decay at long times. The exponentslerived from the fits are weakly goupled to the sqrroundlng bath states. In .c.ontrast, the
tabulated for various initial states in Table 2. It should be noted Nearby interior state rapidly reaches a set of equilibratgd
that at present we have no theory which connects the initial Which are close to those predicted by the BoBénstein
cos—rolloff/exponential regions with the intermediate time distribution for the energig ~ 7920 cn1* of the|233222state
regime in a rigorous manner. While fitting models alternative and the frequencies listed in Table 1. In effect, {A83222]
to eq 13 have little effect in those cases wheris small and  State rapidly mimics a thermalized system, inasmuch as a 6-D
S is large, they do introduce additional uncertainties into the Systeém can do that. In this context, it is interesting to note that
exponents for the edge states in Figure 3 and Table 2. the molecule appears thermalized in tlii 6-D vibrational

The edge states (those with most quanta equal to zero, angManifold. This is so even thoughis less than 3, implying an
hence at the edge of the state space in Figure 1) are seen t6VR manifold which cannot completely cover the state space
have smaller powers than energetically nearby interior statesSince itis of smaller dimension. Classically, the dimensionality
of state space. In factj lies near the localization threshold ~@rgument holds rigorously; quantum mechanically, the finite size
of 1, where the IVR manifold breaks up into disconnected Of the state volume= h" makes this argument less convincing.
patches in state space. Correspondingly, the dilution factors in WWhen the fractal dimensioBy < N — 1, the IVR manifold
Figure 3 and Table 2 are relatively large. This is expected for ¢an nonetheless be embedded in state space in a highly folded
a compact molecule in which vibrational modes cannot be- Manner which gives the impression of thermalization for a
come highly localized: edge states have fewer neighbors to Nighly averaged variable such ag(t)L] It would be interesting
couple to, hence undergo IVR more slowly. It should be noted 0 study how deeply the_ coherence of even such a small system
that the opposite was first observed experimentally and inter- MUSt be probed before its fundamentally nonthermal pure state
preted correctly in “extreme motion states” of 1-propyfén nature reemerges.
a larger molecule, particularly in a chain molecule, vibra-  For comparison, Figure 5 shows tHe(t) obtained by
tional modes tend to be more localized. The energy of an in- propagating th¢2332221initial state with the effective Hamil-
terior state is then broken into smaller, approximately isolated tonian of Table 1. Although the survival probability is generally
packets, which behave more harmonically and undergo slowerslightly larger than observed with the full Hamiltoniad,is
IVR.13 very similar, and the qualitative nature of the dynamics is well

The fact that nearly degenerate edge and interior states carflescribed by the resonance Hamiltonian.
have such different IVR decays is a clear indication that the It is evident from Figures 3 and 5 that, in addition to the
local coupled density of states, not the total density of states, average decay discussed hd?§) is subject to quantum beats
controls IVR dynamics. The local number of coupled states in with rms amplitudeB(t). For a large systen(t)/P(t) is initially
Table 2 (computed as in ref 37) correlates well witland o; negligibly small; at long timesB(t)/P(t) = B(t)lo ~ 1:35
the total density of states does not. A large rangé ahdo is fluctuations of the populations in state space, albeit small on
also observed for the resonance Hamiltonian (see below), withan absolute scale (mini-quantum beats), become pronounced
slower and less complete IVR for states nearer the edge of statecompared to the populationis|? themselves. At intermediate
space. The difference in dilution factors indicates large variations times, the mini-quantum beats give additional clues to the
in fragmentation for nearly isoenergetic bright states, with some mechanism of energy transport. Although in this paper we fit
states approaching the statistical valuerptvhile others have only the average behavior, one observation illustrated by Figure
o near unity. Similar fluctuations among overtones or combina- 5 is worth making: Invariably, the mini-quantum beats com-
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EDGE STATES In0000>, n=6-8
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INTERIOR STATES In33222>,n=1-3
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Figure 3. IVR decays of representative edge and interior states sampl

ing three energy ranges. SUR calculations were 5-point smoothed to reduce

the mini-quantum beat amplitude and show the average behavior; f¢23B8227state (right center), the circles illustrate the fluctuations of the
unsmoothed(t). For the interior states, eq 13 is plotted in black. For the edge stateswitil and 8,P(t) was fitted to the equation in ref 17,
which accounts for the correct rolloff &= 0; no reliable estimate aof was possible for the = 6 case. The second curve for t/83322Zstate
(right top) shows the best-fit exponential (weights inversely proportional to weight all time scales equally eriaglpépt) for comparison.

TABLE 2: Comparison of Power Law Coefficients from
Experiment, Quantum Dynamics Using the Full Vibrational
Hamiltonian (A), and Eq 9 Dy)

state Ebright Dvb 0 o Nioc® Ptotd
experimert
full spectrum 2.8
Hyib
160000Q] 6905 0.4 0.3 5.8
11332223 6771 2.5(2) 2.6(1) 0.0003 4.8 5.5
|70000Q] 8055 0.6(2) 0.6(3) 0.1 04 104
12332223 7922 2.7(2) 2.8(1) 0.0001 8.5 9.9
180000 9206 0.7(2) 0.9(3) 0.02 05 181
13332223 9072 2.8(2) 3.0(1) %05 126 17.2

aSEP and fluorescence foIIowingéB excitation.? Average of
Dy(3) evaluated using = 1 and 3, and,(4) evaluated using = 2
and 4, corresponding to the cubic and quartic termdHip. ¢ The
local number of coupled states was evaluated as discussed in ref
38.91n cm™%; evaluated in a 50 cmt window surrounding the bright
state.

puted for Hres are smaller than those obtained for the full
Hamiltonian H,i,, although the averagd’(t) are similar;
couplings weaker than those included in our minimal resonance

Hamiltonian, and a fuller accouting for anharmonicity, are
necessary for the mini-quantum beats.

P(t) and its parameters, 6, andr are not alone an adequate
description of the dynamics because they focus mainly on the
history of the initial feature or “bright” state. At the very least,
one would also like to know how the rest of the vibrational
wave packet is dispersing through state spdder example,
the probability could be hopping to many energetically acces-
sible dark states at once. In that case, the component of the
wave packet orthogonal tf@Ois highly dephased from the
outset. Or the probability could be hopping to only a few
additional features. In that case, the energy flow has the
hierarchical structure often described as a “tier picture”. Figure
6 illustrates for thg70000@Jand|33322Zstates how the IVR
wave packet disperses in state space. Figure 6A,B shows the
dispersion in three linearly independent combinations of vibra-
tional quantum numbers based on the effective Hamiltonian in
Table 1, while Figure 6C shows the gradual dispersion as a
function of time and energy, corresponding to a tier structure.

Figure 6C shows that the probability disperses gradually into
other feature states. Although no tiers were imposed a priori
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Figure 4. Average vibrational quantum distributions as a function of time for an edge and interior state. The edge s@ieanith ~ 0.8 lies
below the IVR threshold and shows resonant behavior without complete energy flow. On the other hand, the intefipt]gtdtes rapidly
equilibrate to those expected from Bedeinstein statistics, with populations sorted by the vibrational frequency. Such a state can be said to have

reached a “thermal equilibrium” within the bath of vibrational modes. In
or reaching equilibrium.
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Figure 5. SUR calculation for thg233222]bright state using the
effective resonance Hamiltonian of eq 11. For comparison,Pte
from the full Hamiltonian is shown; both are fitted by very similar
power law exponents. An exponential with constant weighting (to fit
the short-time data) is also shown, and greatly underestirRéfesfter
about 0.01 ps.

both cases; émelv, modes are particularly slow at taking up population

because of the hierarchical structure of the vibrational Hamil-
tonian exposed by Figure 6 and cannot be represented by
uncorrelated random coupling4", as is usually done in the
application of the Golden Rule. As a result, the power laws in
Figures 2 and 3 arise instead of exponential dynamics.

4. Discussion

Table 2 shows the values &%, calculated from eq D, is
the average obD,(3) andDy(4), weighted by the local density
of states coupled by cubic and quartic terms, respectively. We
find that the manifold of cubic couplings generally has a lower
dimension than the manifold of quartic couplings. The agree-
ment between the dynamical observabknd the IVR manifold
dimensiorD, is very good for all states in Table 2. In particular,
edge states have small valuednfandd, while interior states
have larger values. A quantum diffusion picture for the IVR
process is therefore appropriate, and eq 9 provides a satisfactory
expression for the dimension of the IVR manifold embedded
in state space, at least for the examples studied here. The fact
that this number can be calculated using only short-time
evolution (eq 3) in a feature basis indicates that the dynamics
are controlled by the local structure of state space. More-
over, the fact that a feature state space is sufficient indi-
cates that the vibrational Hamiltonian, even at substantial total
energyE, retains a memory of the simple effective Hamilton-

on the calculation, one can therefore assign tiers to the energyi;, (e.g., eq 11) which provides a zero-order approximation at

flow, as discussed previouslyContrast this to a “Golden Rule”
basis, composed of the feature stglig and the eigenstates of
Hg = QH\inQ, whereQ = | — |O|. In a Golden Rule basis,

the dispersing wave packet samples all bath states simulta-
neously (although in a correlated manner as described below).
This is so because the bath states are already highly premixed
and dephased. Although the exact dynamics are equally well

obtained in a Golden Rule basis, first-order time-dependent
perturbation theory applied to such a basis and leading to
Fermi’s Golden Rule is sufficient only at short times:Uf is

the operator diagonalizingg, then the actual off-diagonal matrix
elements in the Golden Rule matrix are given by

VeR = Ul{PH,,,Q + QH,;,P} U, (14)

low energies. It has been discussed elsewhere that this is due
to the small value of the BornOppenheimer parameter=
V(mdmp), which is responsible for the large ratio of the
electronic:vibrational:anharmonic:rotational energy scales of
molecules’10:11,17.40

The good agreement indicates that for SC€iperexchange
coupling chains are at most comparable to direct couplings. This
is not surprising in a compact molecule with many low-
frequency vibrations. In a larger system with XH stretching or
bending modes, one would expect corrections due to superex-
change to appear. As described in section 2, one can realistically
expect this underestimate to be as largdBs = 2. However,

the qualitative picture remains unchanged, and for backbone
vibrations involving low frequency motions, which are most
interesting from the point of view of controlling chemical

These matrix elements are highly correlated with one another reactivity, the error is likely to be<2 in most cases.
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Figure 6. Dispersion of the IVR wave packet in state space. The axes in A and B are labeled in terms of the most important resonances in Table
2: Av=(0,-1,0,0,1,-1),A,=(-1,-1,0,0, 2, 0), and\s = (1, O, 0, 0,—2, 0); the color code corresponds to the 0, 8, 28, and 101 fs times

in C; the size of each point is |loo| (A) Edge state: the probability flow is an at most 1-dimensional “jet” inAh&\, plane. (B) Interior state:

the probability flows into a three-dimensional manifold, but it is still anisotropically flattened id\ghdirection, corresponding to the smaller

for that resonance in Table 1. (C) Dispersion of an interior state i3 of all participating features shown; new feature states appear gradually.

(D) o(t) for C, showing that the number of features participating in the dynamics indeed grows as a power law only. Th&, peter same as

that observed for the correspondiR() in Figure 3.

The experiment in Figure 2, as well as the wave packet space comprising the three strongest resonances in Table 1.
propagation and analytical formula, all yield a dimensionality Although the expansion of the evolving IVR wave packet
near 3 for interior and partially interior states, and less for edge throughout state space is more uniform (in keeping \Bith~
states. Both are considerably less than the maximum pos-3), even here structure due to the different strength of the
sible value of 5-6. The edge states are easily explained in resonancesR in Table 1) is evident. In the full state space,
terms of the smaller number of coupling partners. TH&000] plot 6B would appear as an expanding disk which initially
states in particular diffuse mostly along one single resonanceremains thin in theAvs and Av, directions. Thatvs and v4
direction in state space: Figure 6A shows a “probability jet” in contribute only on a long time scale is also evident from Figure
state space emanating from the initially prepaf@d000Q, 4: energy flow from thé700000 state is slow, but the increase
which fans out only slightly, accounting for the low dimen- in [Vs0and W40is particularly slow, and they are last to reach
sionD, ~ 0.8 (1.0 in the full dynamics calculation used to plot equilibrium starting with|233222]

Figure 6A). It is realistic to expect thaD, remains fairly small even in

The interior states can be rationalized in terms of the effective large molecules: this has already been deduced from several
Hamiltonian in eq 11. Table 1 shows that the six largest experiments and quantum dynamics calculatidnghe reason
interactions do not involve the; (symmetric bending) and, for this expectation is straightforward: although a large molecule
(out of plane bending) modes at all. They only contribute with has more nearly degenerate and low-frequency modes which
a resonance criterioR < 0.03. One would therefore expect could in principle become resonant, these modes tend to be
the vibrational energy flow to be facile among all modes except localized. Mixed potential constants (such as the ones for SCCI
3 and 4. To a first approximation, the IVR manifold is subject in Table 1) are mostly very small. This has also been found in
to the conditiovs = Av, = 0, introducing approximately good  statistical analyses of potential constant distributions. (It is not
guantum numbers. With the addition of energy conservation true for liquids, clusters or macromolecules with a highly
(within the bandwidth), the resonance Hamiltonian therefore corrugated energy landscape, to which this analysis does not
yields Dy ~ 6 — 2 — 1 = 3, close to the experimental and apply1?19 If this is true, then much can be learned about the
computed values. Figure 6B shows the evolution of 2382221 IVR mechanism and value @, in large molecules by studying
state (nearly isoenergetic wit@0000Q) in the subset of state  reduced dimensionality resonance Hamiltonians. So far, these
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Icool2= 0.5 The vibrational Hamiltonian therefore imposes a structure on
state space which is well represented by feature basis sets, in
the sense that they can describe the dynamics for the longest

6()=0.55 possible time with the smallest number of functions. In section
I 2a, it was stated that the exact choice of feature basis is irrelevant
T T T T T if one computes exact dynamics, but becomes relevant if one
Energy — attempts a simplified description of the molecule. In light of eq
15, we can now make a reasonable definition of the optimal
|000|2 =0.5 feature basis for IVR dynamics initiated in a st
The optimal feature basis is the orthonormal set of functions
{1id which includes|O00and maximizes

o(t)=0.02
bl leh 0 {m fot dt’ of(t') (16)

Energy —

Figure 7. Two extreme cases of how amplitude flows from the initial Equation 16 ensures that a minimum number of states will
state into other states such tfR{t) = 0.5. In A, only a small number ~ describe the IVR dynamics for as long as possible.
of states become active; in B, the saR(#® is obtained but many more
states have become active. The upper scenario corresponds to a properl. Conclusions
selected feature basis; the lower scenario corresponds to an eigenstate
or Golden Rule basis. The dispersi@ = o(t)~! can distinguish During IVR, the survival probability of the initially prepared
between the two cases. state decreases toward the statistical limit via a slow power law
process. The powercan now be estimated from the vibrational
potential constants using a simple formula. In addition, the IVR
wave packet disperses only slowly throughout state space, unlike
the wave packets governed by a random Hamiltonian, such as
a GOE matrix. The classical tier picture of IVR therefore
remains approximately valid to long times.

This has important consequences for the possibility of
controlling IVR via manipulation of coherence. Feature states

ave a simple structure and should therefore be amenable to
coherent control. For each such state, generally a complex
8mplitude (population and phase) has to be controlled, resulting
In two control parameters. If the number of controllable feature
states grows with time a>(t), then the control problem up to
time t requires D(t) parameters. The results of this work
indicate that this number is not much larger th({t)~1, even
if low-frequency backbone motions are involved in the IVR

have been applied mainly to small systeth8. general method
for finding an appropriate resonance Hamiltonian which opti-
mally tracks the IVR manifold embedded in the full dimensional
state space would have to be developed.

The power law decays in Figure 3 illustrate the slowness of
the IVR dynamics. As shown in Figure 6C, the IVR wave packet
not only leaks slowly out of stat®[] it also disperses slowly
in state space. This behavior cannot be adequately captured b
P(t) alone, or by its associated paramet&ys, ando. Figure
7 illustrates two extreme caseB(t) = |cy|? has decreased to
1/2 in both cases, yet in one case the wave packet has disperse:
in state space far more extensively than in the other.

To remedy this we introduce a dispersion param&er
o(t)"* closely related ta = N,, but applicable to the time-
evolving IVR wave packet:

(1-|c |2)2 process. Experiments and calculations for_larger organic mol-
D=o(t) '= R +1 (15) ecules have already shown thr{t) decays with a small power
4 law coefficient. If D(t) is only slightly larger tharP(t)=1 in
Z'%i' those cases also, this opens the possibility for coherent
[E=

manipulation of vibrational energy flow in larger molecules with

where theg, = [{|tCare again the expansion coefficients of the qmodest number Qf control parameters up to significantly long
wave packet in the feature state bdgig}. Just ad\, measures ~ times. Here, D(t) is a much more useful upper bound than
the number of participating eigenstates in a fragmented IVR that provided by a Golden Rule or eigenstate picture without
spectrumD measures the number of participating feature states correlations, in-which the guaranteed bound is an often
excluding the initial bright state. (Hence the removatgofrom unfavorableo™.
the normalization and the sum in the denominator.) For a
molecule with substantial fragmentation(t) approaches the
dilution factoro ast—co.

Figure 6D shows a plot af(t) for dynamics initiated in the
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the “Golden Rule” basis discussed in the previous section. The
converse is not true: not every Hamiltonian has a feature basis
such thatD is small over any significant time period. For (1) Solina, S. A. B.; O'Brien, J. P.; Field, R. W.; Polik, W. F.Phys.

example, a GOE Hamiltonian has no basis for which D is small, Chem.1996 100, 7797.

unless the initial state is an eigenstate: the couplings areChe(r%)_ F?%”;fggg; ibg'égfzrfte" E.R. T.; Lehmann, K. K.; Scoles]G.
unstructured and access most basis states immediately, in any () gigwood, R.; Milam, B.; Gruebele, MChem. Phys. Lett199§

representation. 287, 333.
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