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The experimental and theoretical evidence suggests that vibrational wave functions at high energy or in large
molecules are not mixed to the maximum extent possible. One consequence is that average vibrational survival
probabilities slow to a power law decayt-δ/2 with a small value ofδ. An approximate formula is presented
for estimatingδ from the vibrational Hamiltonian and tested by comparing with wave packet propagations
on an experimentally fitted potential surface of SCCl2 in six degrees of freedom. Characterization of the
wave packet by a dispersion parameterD furthermore shows that the state space accessed during vibrational
energy flow remains nearly as compact as allowed by the decay law, opening the possibility for coherent
control on a low-dimensional manifold embedded in the full vibrational state space.

1. Introduction

Vibrational spectra show features (groups of vibrational
eigenstates with correlated intensities) even at high energy (E)
or high density of states (Ftot).1-4 Although the vibrational
eigenfunctions may rapidly increase in complexity asE andFtot

increase, the wave functions associated with these features can
remain quite simple. In small molecules, the origin of these
features in the resonance structure of the Hamiltonian has been
studied in terms of conserved polyad quantum numbers.1,5

Spectral features result from the interplay of the transition
dipole operator, which weights the full density of eigenstates
according to oscillator strength with the hierarchical structure
of the vibrational Hamiltonian, which distributes the oscillator
strength in a nontrivial fashion.6 The hierarchical structure has
several origins: the size of the potential constants and matrix
elements decreases exponentially with the order of the coupling
when dimensionless normal or local mode coordinates are
used;7-10 a “triangle rule” for vibrational matrix elements due
to this exponential scaling restricts energy flow among triplets
of states;11 the local nature of most chemical bonding in large,
low symmetry molecules reduces coupling among pairs and
highern-tuplets of vibrational states further.12,13

In larger molecules, a consequence of this hierarchy which
has recently come to light is the slowness of vibrational
dephasing (IVR) at intermediate times.10,14 After a feature is
prepared, a power law connects the short time quasi-exponential
region of its survival probability to the long time region where
a maximally diluted survival probability is obtained:

This was first suggested on the basis of a scaling analysis of
diffusion or “hopping” of the vibrational wave packet density
in state space.14,15δ could lie between 1 andN - 1 orN, where
the dimensionN of the state space is the number of vibrational
modes, andδ ) N - 1 applies in the quasi-microcanonical limit
usually realized in laser spectroscopy experiments. It should
be noted that eq 1, like exponential dephasing, is a zero-order

model. It arises as a result of a hierarchical structure of the
Hamiltonian,6 and could also be expressed as a correlated sum
of exponential processes.16 Unlike single exponential dynamics,
eq 1 at least approximately builds these correlations right into
the zero-order model.

A missing ingredient is a relationship betweenδ and the
vibrational Hamiltonian. In particular, one would like to know
how δ behaves for backbone vibrations (as opposed to XH
vibrations), which are most important in chemical reactivity. It
appears from experiments and simulations thatδ rarely ap-
proachesN or N - 1.6,17 If IVR is indeed a quantum diffusion
process in state space, it is confined to much lower dimension
than the maximum possible. Here we present a simple formula
for the dimensionalityDv of the state space manifold within
which the IVR wave packet moves.Dv is obtained from the
vibrational Hamiltonian without any dynamical calculation, by
applying perturbation theory directly in the state space frame-
work, as opposed to the usual time dependent perturbation theory
leading to Fermi’s Golden Rule. We compareDv to numerical
simulations ofδ based on the high-quality experimentally fitted
vibrational Hamiltonian of SCCl2 with six degrees of freedom.3

We obtain good agreement within the range of applicability of
the formula. The dispersion of the vibrational wave packet is
also studied in detail numerically and found to proceed through
nearly the minimal number of vibrational features permitted by
the observed power law decays. We introduce the dispersion
D as a minimal parameter to describe the properties of the IVR
wave function both at short times and at infinite time (i.e., the
fully “relaxed” high-resolution spectrum of the vibrational
eigenstates). These findings have important implications for the
possibility of guiding molecular dephasing with coherent optical
fields.6

2. Vibrational Dephasing Manifold

a. State Space.Figure 1 illustrates a vibrational state space
in three dimensions.10,14,18,19Classically, the state space quantum
numbers are directly related to action coordinates,18 and the state
space therefore has the same dimensionality as the vibrational
coordinate space. Laser excitation is usually quasi-microca-
nonical. In a long time average, most states participating in the* To whom correspondence should be addressed.

P(t) ∼ t-δ/2 (1)
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dynamics are therefore confined to an energy shellE(0) ( δE,
whereE(0) is the energy of the feature state which carries the
oscillator strength (in red).

The states in Figure 1 are not vibrational eigenstates. Rather,
they belong to a feature basis,6,20 for example a normal or local
mode basis, or one of the more exotic examples which have
been studied in small systems.21 Feature bases are characterized
by a simple nodal structure and a complete set of well-defined
quantum numbersn.

Feature bases include the “bright” states which carry the
oscillator strength in spectroscopy experiments because of the
Franck-Condon principle. For example, the initial state prepared
at t ) 0 of an ultrafast experiment usually has a simple,
assignable structure. Likewise, in a high-resolution scan, there
are spectral features which can be assigned, even though they
may be fragmented into a set of perhaps unassignable eigenstates
as in the insert to Figure 2.3 Initiating IVR dynamics in a feature
state therefore leads to a different class of dynamics than
initiating dynamics in a highly dephased state which already
resembles an eigenstate.6

In the state space of Figure 1, the “dark” states are also
represented as feature basis states with well-defined quantum
numbersn. All states are treated on an equal footing. This is
very important and differs from the Golden Rule picture, whose
bath states resemble eigenstates of the vibrational Hamiltonian
(see section 3b). Unlike features, vibrational eigenstates have
complex and perhaps unassignable nodal structures at suf-
ficiently high E andFtot.

If the full vibrational Hamiltonian is used for calculations,
the exact choice of feature basis is irrelevant. Although the
choice of initial feature state can affect the precise values of
parameters such asδ in eq 1, it will be seen not to affect the
universal nature of the dynamics. If a simplified vibrational
Hamiltonian (effective or resonance Hamiltonian) is used, the
choice of basis becomes more important if accurate dynamics
are desired. For simplicity, we will discuss the dynamics in terms
of a normal mode basis, which turns out to be a reasonable
feature basis for SCCl2.

An ideal feature basis would adapt to the structure of state
space. For example, when two vibrational progressions tune
through resonance due to anharmonicity, they may best be
approximated by a normal mode basis below resonance, but by
a local mode (or more exotic) basis above resonance. Classically,

this would correspond to a coordinate system with adaptive local
action coordinates. Because we consider only the bound part
of the potential here, state space provides a conveniently simple
picture; in the presence of reactive modes, an equivalent
momentum-coordinate picture may prove useful in the future,
and we expect a power law analogous to eq 1 to emerge in
such a formulation. In section 4 we will discuss a well-defined
“optimal” choice for the feature basis.

b. A Simple Formula for the Dimension of the IVR
Manifold in State Space.Consider a feature|0〉 excited by a
short laser pulse, shown in red in Figure 1. It is characterized
by a set of quantum numbersn0. At short times it will evolve
into a superposition

The amplitude that has leaked into another state|i〉 in state space
is therefore

The probability density distribution in state space is ap-
proximately given by

Pi0 defines a manifold embedded in state space- a manifold
of those states among which the IVR initiated in|0〉 occurs.
Some states are efficiently coupled, such as by the Fermi
resonance indicated in Figure 1b; others are not, and the flow
of probability is therefore anisotropic.15

This manifold is the hypervolume in state space on which
the wave packet initially moves, if we consider the quantum
evolution as a diffusion-like process. The local dimension of
the manifold aboutn0 is given by22

wheren ) |n - n0| is the distance from state|0〉 to state|i〉
and the sum overi is over all states|i〉 which satisfies|n -
n0|e n. For example, if all couplingsci0 from |0〉 to the

Figure 1. (A) Molecular state space in three dimensions. Each circle corresponds to a feature state with quantum numbersn ) (v1, v2, ...). An
energy shell and feature states near it are highlighted. (B) Energy shell and states from (A). The possibility of a superexchange chain is indicated
by red arrows to a state off of the energy shell. A 2:1 resonance leading to IVR is also shown. The bright state|0〉 is shown in red, and successively
accessible states are shaded across the spectrum to blue. The resonance structure of state space does not allow random flow among all feature states.
(C) IVR flow manifold due to the resonances in (B). Because of energy conservation, its dimension must bee 2 in the example shown. The actual
dimensionDv lies somewhere between 1 and 2.

|∆t〉 ) e-(i/p)Ĥ∆t |0〉 ≈ |0〉 -i
∆t
p

Ĥ|0〉 (2)

ci0 ≈ i
t
p

〈i|Hvib|0〉 ) i
t
p
Vi0 (3)

Pi0 ) |ci0|2 ) | t
p
Vi0|2 (4)

Dv )
∂ ln ΣPi0

∂ ln n
|n0

Dv(n) )
∆ ln ΣPi0

∆ ln n
|n0

(5)
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surrounding states|i〉 were identical, and if the flow in the three-
dimensional state space of Figure 1 were not restricted by energy
conservation, thenΣPi0 ∼ n3 and Dv ) 3, in accord with
intuition. As another example, the manifold shown in Figure
1C is restricted to the energy shell and has a dimension 1< Dv

< 2. If Dv were less than 1, only isolated patches of resonantly
coupled states would exist in state space, and there would be
no IVR.

In practice, the sum in eq 5 must be evaluated as a finite
difference because the state space is discrete. Each state|0〉 is
surrounded by shells of hyperpolyhedra withn ) 1, 2, 3, 4...
(octahedra forN ) 3 ), which may be truncated if the state lies
near the edge of the state space or energy conservation is
invoked.13 The resultingDv(n) depends on the initial state and
also on which pair of hyperpolyhedra is used to evaluate eq 5,
as indicated on the right-hand side of the equation by the
dependence ofDv on n.

Eq 4 does not impose the necessary restriction of the
probability flow to the energy shell at long times. This restriction
is a natural consequence of the full quantum dynamics following
finite bandwidth laser excitation, but not accounted for by
perturbation theory. In the full dynamics, a state far off the
energy shell can only participate in the dynamics on a time scale
satisfying

Introducing this constraint into eq 4, one obtains

Finally, when|∆Ei0|<|Vi0|, |0〉 and|i〉 are strongly mixed. Such
states|i〉 make the maximum possible contribution to the IVR
flow manifold, and eq 7 should not increase further. It has been
shown that the function

provides a good description of the state mixing among pairs of
states both in the perturbative and resonant limits,6 and we will
therefore use it instead of eq 7 to evaluate the dimensionality
of the flow manifold, which is then given by

Equation 9 is an approximate formula for the dimensionality
of the manifold on which the IVR wave packet originating in
state|0〉 explores the state space. The dimension of this manifold
generally lies between 1 andN - 1 or N, depending on the
excitation conditions (the example in Figure 1c has 1< Dv <
2). ForDv < 1, there are only disconnected patches of resonantly
interacting states, and IVR in the usual sense no longer occurs.
If energy redistribution in state space is indeed a quantum
diffusion process as given by eq 1, thenDv, which can be
obtained without computing actual dynamics, should equal the
power law coefficientδ obtained fromP(t) or from spectra (via
eq 12 below).

c. Limitations of the Formula. A number of approximations
were made in deriving eq 9, which will limit its applicability
and are worth discussing in detail. However, eq 9 will be seen
in sections 3 and 4 to yield very reasonable results compared
to exact calculations of the exponentδ.

Dv(n) depends on the initial state|0〉 and order of coupling
n. However, eq 9 does not take into account averaging ofDv

once multiple feature states are populated. At the very least,
one should average over states coupled to|0〉 by different orders
n. Our computational results (section 3b) indicate that regions
of state space with very different values ofDv tend to be
partitioned from one another. Simply evaluating atn0 is therefore
a good approximation for the dimension of the IVR flow
manifold originating from a given state|0〉, as long as one
averages over all orders of coupling from that state.

If a pure normal mode basis is used, the nonresonant
anharmonicity as well as changes in the optimal feature basis
are neglected. Neglect of anharmonicity in evaluating∆Ei0

means that vibrational progressions cannot go into and out of
resonance. In systems with large anharmonicities, one can
partially correct for this by using an anharmonic feature basis
which provides correct eigenvalues for edge states of the
type |0,‚‚‚ni,‚‚‚,0>. Alternatively, one can replaceHvib by a
contact-transformed effective Hamiltonian which explicitly
separates resonant interactions from nonresonant interactions
responsible for anharmonic constants such asøij. Either ap-
proach allows the differences∆Ei0 to shift for different states
|0〉 and |i〉 with the same∆n ) n - n0. How one should
transform the full vibrational Hamiltonian into the most ap-
propriate effective Hamiltonian is an unresolved question in
general. In section 3 we do present a simplified effective
resonance Hamiltonian for SCCl2 and later compare it with
the full Hamiltonian matrix evaluated in a normal mode basis.
In section 4, we develop a criterion for the “optimal” feature
basis.

Equation 9 also neglects certain off-resonant couplings
(superexchange).23 As illustrated in Figure 1b, states far away
from the energy shell can make significant contributions to the
dynamics if they have sufficiently large coupling matrix
elements. Equation 6 allows such states to participate only if
they couple back directly to|0〉. This constraint therefore does
not take off-resonant coupling chains into account properly.
However, it has been shown that in most molecules direct and
off-resonant chain contributions are of comparable importance
at sufficiently high E and Ftot;13 their contributions toLi0

2

generally lie within an order of magnitude of one another. Since
eq 9 depends logarithmically on the couplings,Dv could be
underestimated by as much as∆Dv ) 2 if superexchange
dominates the dynamics.

A completely rigorous proof of the correct value of the
temporal exponentδ, to which eq 9 is an approximation, will
require a nonperturbative approach to the probability flow, such
as renormalization of the state space. Renormalization techniques
have their own convergence problems,24 and it is not clear at
present whether such an approach would produce a formulation
more accurate than eq 9.

3. Numerical Results

a. Potential Surface and Computational Methods.To test
eq 9 in detail, we have chosen a recently developed potential
surface for the tetratomic molecule SCCl2.3 An N ) 3 system
is too small because only the range 1< Dv < 2 can be covered
using quasi-microcanonical preparation. AtN ) 6, SCCl2 is
large enough to allow nontrivial deviations ofDv from the
minimal or maximal postulated dimensions (1 and 5). On the
other hand, it is sufficiently small that one can perform full
quantum dynamics simulations for comparison of the resulting
P(t) with eqs 1 and 9. A final reason for the choice is that SCCl2

has only low-frequency vibrations. It is therefore a model for

∆Ei0∆t ≈ p (6)

Pi0 ≈ ( Vi0

∆Ei0
)2

(7)

Li0
2 ) [1 + (∆Ei0/Vi0)

2]-1 (8)

Dv(n) ≈ ∆ ln Σ Li0
2

∆ ln n
|n0

(9)

Energy Flow in State Space J. Phys. Chem. A, Vol. 103, No. 49, 199910085



IVR among backbone modes, which dominate any IVR process
at intermediate and long times.

The surface from ref 3 is a fourth order normal mode
expansion derived by variationally fitting a curvilinear coordi-
nate PES12,25 pregenerated using ab initio calculations to
about 100 IR, fluorescence and SEP transitions covering ground-
state vibrational levels from about 300 to 10 000 cm-1.3 The
root-mean-square accuracy of the predicted energy levels is
about 5 cm-1. The normal mode surface was obtained by di-
rectly computing numerical derivatives of the analytical
surface.

For reference, the relevant experimental spectra are shown
in Figure 2.3 The spectrum has a highly hierarchical structure,
proceeding from an overall envelope of 10 000 cm-1 width, to
polyads≈800 cm-1 width, to features of≈100 cm-1 width,
which contain clusters of≈ <1-20 cm-1 in width made up of
individual vibrational levels (inset). From this type of structure
one would not expect an exponential decay. The survival
probabilityP(t) for excitation of the entire spectrum, computed
directly from the fluorescence and SEP data, is also shown in
Figure 2. It is seen to have the characteristic power law with
superimposed quantum beats. The overall spectrum is well fitted
by an exponentδ ) 3.0, and hence not well characterized by
an exponential decay (δ ) ∞, see eq 13).

Many of the potential constants of the normal mode surface
describing the spectrum in Figure 2 are rather small. As
discussed in the previous section, such terms are expected to
contribute mainly to nonresonant shifts of the vibrational energy
levels. To create a simpler effective Hamiltonian which captures
the most important interactions in the system, we combined a
standard expansion in (vi + 1/2) with the most important
resonance terms. The harmonic frequencies and anharmonic
constants were estimated by direct fit to vibrational levels in
several IR and fluorescence spectra.3,26,27 The resonant terms

were taken from the normal mode surface by generating all
frequency combinations

and selecting only potential constantsV{ni} such thatR )
|V{ni}/∆ω{ni}| > 0.05. The resulting approximate resonance
Hamiltonian has the form

with constants summarized in Table 1. Only six resonance terms
exceed the criterionR > 0.05. It should be noted that the
resonance criterionR is smaller than 0.05 for all couplings
involving modes 4 (out of plane bend) and 3 (symmetric bend).
The largest symmetry-allowed couplings involving these two
modes are also shown in Table 1. Because of the nature of the
potential constants in Table 1, none of the interactions in the
second line of eq 11 make contributions to the diagonal energy;
otherwise, such contributions would have to be projected out
of the summation.

Both time-dependent and time-independent calculations were
carried out to study the vibrational dynamics of the system. For
time-dependent calculations, the SUR symplectic propagator was
used.28,29 The initial states|t)0〉 were chosen from a normal
mode basis, including both interior and edge states (see b.
below).10 The vibrational numbering is the same as that used
in ref 3 (ν1 CS stretch,ν2 A1 CCl stretch,ν3 A1 bend,ν4 out of
plane bend,ν5 B2 CCl stretch,ν6 B2 bend). Wave packets were
factored into vibrational symmetry blocks to speed up the
calculation. Convergence was tested as a function of energy
window size and a perturbative state filter criterionL similar to
eq 8 (e.g., a>4000 cm-1 window andL ≈ 0.01 converged the
|233222〉 interior state near 7922 cm-1). The output of the
calculation yielded the complex time-dependent expansion
coefficientsc0i(t) of the wave packet in the normal mode basis.

Some of the smaller calculations were checked using the
matrix-fluctuation-dissipation theorem30,31in combination with
Lanczos matrix diagonalization32,33to obtain spectral intensities
without calculation of the eigenfunctions. Again, convergence
was tested as a function of window size andL; the convergence
criteria were found to be similar to the corresponding time-
dependent calculations. Windowing effects were also investi-
gated by generating Lorentzian line shapes with widths corre-
sponding toP(τ) ) 1/e, truncated to the window size used in
the calculations. The resultingP(t) could be fitted by exponential
decays with superimposed slight oscillations; no power laws
were required.

b. IVR Dynamics. The survival probability P(t) is a
particularly simple measure of the IVR process and can be
computed from time domain data or frequency domain data as

At long times, the survival probability oscillates about the small
“dilution factor” σ ) ΣIi

2, which is the inverse of the number
Np of states participating in the IVR process.34,35 Here,σ was
determined from the asymptotic value ofP(t). Decays computed
on the full surface for several states in theE ≈ 7000-9000

Figure 2. (A) Experimental fluorescence and SEP spectra of SCCl2,
the test system used in the calculations. The spectrum has a hierarchical
structure in the 10 000 cm-1 to 0.1 cm-1 range. (B)P(t) computed
from the experimental spectrum, with a 105 dynamic range correspond-
ing to the spectral coverage and resolution. The short time dynamics
can be fitted by an exponential function, the overall dynamics by a
power law withδ ) 3.

∆ω{ni} ) ∑
i)1

6

niωi ∑
i)1

6

|ni| e 4 (10)

Heff ) ∑
i

ωi(vi + 1/2) + ∑
i,j

øij(vi + 1/2)(vj + 1/2) +

∑
{ni}

V{ni}∏
i

(ai
† + ai)

ni (11)

P(t) ) |〈0|t〉|2 ) ∑
i

I i
2 + 2∑

j>i

I iIj cos[ωij t] (12)
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cm-1 range are shown in Figure 3. They can be fitted to a power
law of the form

or similar equations which describe the early-time rolloff.17

Equation 13 has the advantage that it approaches an exponential
as δf∞, allowing unbiased comparison with an exponential
decay at long times. The exponentsδ derived from the fits are
tabulated for various initial states in Table 2. It should be noted
that at present we have no theory which connects the initial
cos-rolloff/exponential regions with the intermediate time
regime in a rigorous manner. While fitting models alternative
to eq 13 have little effect in those cases whereσ is small and
δ is large, they do introduce additional uncertainties into the
exponents for the edge states in Figure 3 and Table 2.

The edge states (those with most quanta equal to zero, and
hence at the edge of the state space in Figure 1) are seen to
have smaller powers than energetically nearby interior states
of state space. In fact,δ lies near the localization threshold
of 1, where the IVR manifold breaks up into disconnected
patches in state space. Correspondingly, the dilution factors in
Figure 3 and Table 2 are relatively large. This is expected for
a compact molecule in which vibrational modes cannot be-
come highly localized: edge states have fewer neighbors to
couple to, hence undergo IVR more slowly. It should be noted
that the opposite was first observed experimentally and inter-
preted correctly in “extreme motion states” of 1-propyne.36 In
a larger molecule, particularly in a chain molecule, vibra-
tional modes tend to be more localized. The energy of an in-
terior state is then broken into smaller, approximately isolated
packets, which behave more harmonically and undergo slower
IVR.13

The fact that nearly degenerate edge and interior states can
have such different IVR decays is a clear indication that the
local coupled density of states, not the total density of states,
controls IVR dynamics. The local number of coupled states in
Table 2 (computed as in ref 37) correlates well withδ andσ;
the total density of states does not. A large range ofδ andσ is
also observed for the resonance Hamiltonian (see below), with
slower and less complete IVR for states nearer the edge of state
space. The difference in dilution factors indicates large variations
in fragmentation for nearly isoenergetic bright states, with some
states approaching the statistical value ofσ, while others have
σ near unity. Similar fluctuations among overtones or combina-

tion states have been observed experimentally in SCCl2 (Figure
2 inset),3 as well as in other organic molecules.34,38

Figure 4 shows the average harmonic vibrational occupancies
for the |700000〉 and nearby|233222〉 initial states. They were
evaluated by expanding the IVR wave packet|t〉 ) Σci0|i〉 in
terms of harmonic feature states|i〉 ) |n1‚‚‚n6〉 and calculating
the expectation values〈vi〉 ) 〈t|ai

†ai|t〉. The edge state under-
goes very little decay in thev1 quantum number. It is only
weakly coupled to the surrounding bath states. In contrast, the
nearby interior state rapidly reaches a set of equilibrated〈vi〉,
which are close to those predicted by the Bose-Einstein
distribution for the energyE ≈ 7920 cm-1 of the|233222〉 state
and the frequencies listed in Table 1. In effect, the|233222〉
state rapidly mimics a thermalized system, inasmuch as a 6-D
system can do that. In this context, it is interesting to note that
the molecule appears thermalized in thefull 6-D vibrational
manifold. This is so even thoughδ is less than 3, implying an
IVR manifold which cannot completely cover the state space
since it is of smaller dimension. Classically, the dimensionality
argument holds rigorously; quantum mechanically, the finite size
of the state volume≈ hn makes this argument less convincing.
When the fractal dimensionDv < N - 1, the IVR manifold
can nonetheless be embedded in state space in a highly folded
manner which gives the impression of thermalization for a
highly averaged variable such as〈vi(t)〉. It would be interesting
to study how deeply the coherence of even such a small system
must be probed before its fundamentally nonthermal pure state
nature reemerges.

For comparison, Figure 5 shows theP(t) obtained by
propagating the|233222〉 initial state with the effective Hamil-
tonian of Table 1. Although the survival probability is generally
slightly larger than observed with the full Hamiltonian,δ is
very similar, and the qualitative nature of the dynamics is well
described by the resonance Hamiltonian.

It is evident from Figures 3 and 5 that, in addition to the
average decay discussed here,P(t) is subject to quantum beats
with rms amplitudeB(t). For a large system,B(t)/P(t) is initially
negligibly small; at long times,Bh(t)/Ph(t) ) Bh(t)/σ ≈ 1:35

fluctuations of the populations in state space, albeit small on
an absolute scale (mini-quantum beats), become pronounced
compared to the populations|ci0|2 themselves. At intermediate
times, the mini-quantum beats give additional clues to the
mechanism of energy transport. Although in this paper we fit
only the average behavior, one observation illustrated by Figure
5 is worth making: Invariably, the mini-quantum beats com-

TABLE 1: Parameters for the Simplified Resonance Hamiltonian of SCCl2a

ω1 ) 1149 ø11 ) -4.3 ø12 ) -2.5 ø14 ) -3.8
ω2 ) 508 ø23 ) 2.0 ø24 ) -4.0
ω3 ) 291 ø33 ) 1.0 ø34 ) 0.1
ω4 ) 476 ø44 ) -0.2
ω5 ) 806
ω6 ) 303

V{ni} ntot mode numberni resonance condition R

1 2 3 4 5 6 1 2 3 4 5 6

-11.5 3 0 1 0 0 1 1 0 -1 0 0 1 -1 1
-5.4 4 1 1 0 0 2 0 -1 -1 0 0 2 0 0.22
34.5 3 1 0 0 0 2 0 1 0 0 0 -2 0 0.07
4.9 3 0 1 0 0 0 2 0 1 0 0 0 -2 0.06
7.9 3 1 2 0 0 0 0 1 -2 0 0 0 0 0.06

-31 3 0 1 0 0 2 0 0 -1 0 0 0 0 0.06
-7.7 3 0 0 1 0 1 1 0 0 -1 0 1 -1 0.04

9.8 3 0 1 0 2 0 0 0 1 0 -2 0 0 0.02

a Only coupling constantsV satisfyingR ) |V/∆ω| > 0.05 are shown, except for those involving modes 4 and 6, where the largest coupling
constants have been included. The vibrational numbering follows the Mulliken symmetry convention.

P(t) ) (1 - σ)(1 + 2t
δτ)-δ/2

+ σ (13)
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puted for Hres are smaller than those obtained for the full
Hamiltonian Hvib, although the averagePh(t) are similar;
couplings weaker than those included in our minimal resonance

Hamiltonian, and a fuller accouting for anharmonicity, are
necessary for the mini-quantum beats.

P(t) and its parametersσ, δ, andτ are not alone an adequate
description of the dynamics because they focus mainly on the
history of the initial feature or “bright” state. At the very least,
one would also like to know how the rest of the vibrational
wave packet is dispersing through state space.39 For example,
the probability could be hopping to many energetically acces-
sible dark states at once. In that case, the component of the
wave packet orthogonal to|0〉 is highly dephased from the
outset. Or the probability could be hopping to only a few
additional features. In that case, the energy flow has the
hierarchical structure often described as a “tier picture”. Figure
6 illustrates for the|700000〉 and|333222〉 states how the IVR
wave packet disperses in state space. Figure 6A,B shows the
dispersion in three linearly independent combinations of vibra-
tional quantum numbers based on the effective Hamiltonian in
Table 1, while Figure 6C shows the gradual dispersion as a
function of time and energy, corresponding to a tier structure.

Figure 6C shows that the probability disperses gradually into
other feature states. Although no tiers were imposed a priori

Figure 3. IVR decays of representative edge and interior states sampling three energy ranges. SUR calculations were 5-point smoothed to reduce
the mini-quantum beat amplitude and show the average behavior; for the|233222〉 state (right center), the circles illustrate the fluctuations of the
unsmoothedP(t). For the interior states, eq 13 is plotted in black. For the edge states withn ) 7 and 8,P(t) was fitted to the equation in ref 17,
which accounts for the correct rolloff att ) 0; no reliable estimate ofδ was possible for then ) 6 case. The second curve for the|333222〉 state
(right top) shows the best-fit exponential (weights inversely proportional to weight all time scales equally on a log-log plot) for comparison.

TABLE 2: Comparison of Power Law Coefficients from
Experiment, Quantum Dynamics Using the Full Vibrational
Hamiltonian (∆), and Eq 9 (Dv)

state Ebright Dh v
b δ σ Nloc

c Ftot
d

experimenta

full spectrum 2.8
Hvib

|600000〉 6905 0.4 0.3 5.8
|133222〉 6771 2.5(2) 2.6(1) 0.0003 4.8 5.5
|700000〉 8055 0.6(2) 0.6(3) 0.1 0.4 10.4
|233222〉 7922 2.7(2) 2.8(1) 0.0001 8.5 9.9
|800000〉 9206 0.7(2) 0.9(3) 0.02 0.5 18.1
|333222〉 9072 2.8(2) 3.0(1) 9× 0-5 12.6 17.2

a SEP and fluorescence following 10
2B̃ excitation.b Average of

Dv(3) evaluated usingn ) 1 and 3, andDv(4) evaluated usingn ) 2
and 4, corresponding to the cubic and quartic terms inHvib. c The
local number of coupled states was evaluated as discussed in ref
38. d In cm-1; evaluated in a 50 cm-1 window surrounding the bright
state.
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on the calculation, one can therefore assign tiers to the energy
flow, as discussed previously.10 Contrast this to a “Golden Rule”
basis, composed of the feature state|0〉, and the eigenstates of
Hd ) QHvibQ, whereQ ) I - |0〉〈0|. In a Golden Rule basis,
the dispersing wave packet samples all bath states simulta-
neously (although in a correlated manner as described below).
This is so because the bath states are already highly premixed
and dephased. Although the exact dynamics are equally well
obtained in a Golden Rule basis, first-order time-dependent
perturbation theory applied to such a basis and leading to
Fermi’s Golden Rule is sufficient only at short times: ifUd is
the operator diagonalizingHd, then the actual off-diagonal matrix
elements in the Golden Rule matrix are given by

These matrix elements are highly correlated with one another

because of the hierarchical structure of the vibrational Hamil-
tonian exposed by Figure 6 and cannot be represented by
uncorrelated random couplingsVi0

GR, as is usually done in the
application of the Golden Rule. As a result, the power laws in
Figures 2 and 3 arise instead of exponential dynamics.

4. Discussion

Table 2 shows the values ofDh v calculated from eq 9.Dh v is
the average ofDv(3) andDv(4), weighted by the local density
of states coupled by cubic and quartic terms, respectively. We
find that the manifold of cubic couplings generally has a lower
dimension than the manifold of quartic couplings. The agree-
ment between the dynamical observableδ and the IVR manifold
dimensionDh v is very good for all states in Table 2. In particular,
edge states have small values ofDh v andδ, while interior states
have larger values. A quantum diffusion picture for the IVR
process is therefore appropriate, and eq 9 provides a satisfactory
expression for the dimension of the IVR manifold embedded
in state space, at least for the examples studied here. The fact
that this number can be calculated using only short-time
evolution (eq 3) in a feature basis indicates that the dynamics
are controlled by the local structure of state space. More-
over, the fact that a feature state space is sufficient indi-
cates that the vibrational Hamiltonian, even at substantial total
energyE, retains a memory of the simple effective Hamilton-
ian (e.g., eq 11) which provides a zero-order approximation at
low energies. It has been discussed elsewhere that this is due
to the small value of the Born-Oppenheimer parameterκ )
x(me/mP), which is responsible for the large ratio of the
electronic:vibrational:anharmonic:rotational energy scales of
molecules.7,10,11,17,40

The good agreement indicates that for SCCl2 superexchange
coupling chains are at most comparable to direct couplings. This
is not surprising in a compact molecule with many low-
frequency vibrations. In a larger system with XH stretching or
bending modes, one would expect corrections due to superex-
change to appear. As described in section 2, one can realistically
expect this underestimate to be as large as∆Dv ) 2. However,
the qualitative picture remains unchanged, and for backbone
vibrations involving low frequency motions, which are most
interesting from the point of view of controlling chemical
reactivity, the error is likely to be<2 in most cases.

Figure 4. Average vibrational quantum distributions as a function of time for an edge and interior state. The edge state withDv andδ ≈ 0.8 lies
below the IVR threshold and shows resonant behavior without complete energy flow. On the other hand, the interior state〈vi〉 values rapidly
equilibrate to those expected from Bose-Einstein statistics, with populations sorted by the vibrational frequency. Such a state can be said to have
reached a “thermal equilibrium” within the bath of vibrational modes. In both cases, theν3 andν4 modes are particularly slow at taking up population
or reaching equilibrium.

Figure 5. SUR calculation for the|233222〉 bright state using the
effective resonance Hamiltonian of eq 11. For comparison, theP(t)
from the full Hamiltonian is shown; both are fitted by very similar
power law exponents. An exponential with constant weighting (to fit
the short-time data) is also shown, and greatly underestimatesP(t) after
about 0.01 ps.

V̂GR ) Ud
†{PHvibQ + QHvibP}Ud (14)
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The experiment in Figure 2, as well as the wave packet
propagation and analytical formula, all yield a dimensionality
near 3 for interior and partially interior states, and less for edge
states. Both are considerably less than the maximum pos-
sible value of 5-6. The edge states are easily explained in
terms of the smaller number of coupling partners. The|n00000〉
states in particular diffuse mostly along one single resonance
direction in state space: Figure 6A shows a “probability jet” in
state space emanating from the initially prepared|700000〉,
which fans out only slightly, accounting for the low dimen-
sionDh v ≈ 0.8 (1.0 in the full dynamics calculation used to plot
Figure 6A).

The interior states can be rationalized in terms of the effective
Hamiltonian in eq 11. Table 1 shows that the six largest
interactions do not involve theν3 (symmetric bending) andν4

(out of plane bending) modes at all. They only contribute with
a resonance criterionR e 0.03. One would therefore expect
the vibrational energy flow to be facile among all modes except
3 and 4. To a first approximation, the IVR manifold is subject
to the condition∆v3 ) ∆v4 ) 0, introducing approximately good
quantum numbers. With the addition of energy conservation
(within the bandwidth), the resonance Hamiltonian therefore
yields Dv ≈ 6 - 2 - 1 ) 3, close to the experimental and
computed values. Figure 6B shows the evolution of the|233222〉
state (nearly isoenergetic with|700000〉) in the subset of state

space comprising the three strongest resonances in Table 1.
Although the expansion of the evolving IVR wave packet
throughout state space is more uniform (in keeping withDv ≈
3), even here structure due to the different strength of the
resonances (R in Table 1) is evident. In the full state space,
plot 6B would appear as an expanding disk which initially
remains thin in the∆v3 and ∆v4 directions. Thatν3 and ν4

contribute only on a long time scale is also evident from Figure
4: energy flow from the|700000〉 state is slow, but the increase
in 〈v3〉 and 〈v4〉 is particularly slow, and they are last to reach
equilibrium starting with|233222〉.

It is realistic to expect thatDv remains fairly small even in
large molecules: this has already been deduced from several
experiments and quantum dynamics calculations.17 The reason
for this expectation is straightforward: although a large molecule
has more nearly degenerate and low-frequency modes which
could in principle become resonant, these modes tend to be
localized. Mixed potential constants (such as the ones for SCCl2

in Table 1) are mostly very small. This has also been found in
statistical analyses of potential constant distributions. (It is not
true for liquids, clusters or macromolecules with a highly
corrugated energy landscape, to which this analysis does not
apply.12,13) If this is true, then much can be learned about the
IVR mechanism and value ofDv in large molecules by studying
reduced dimensionality resonance Hamiltonians. So far, these

Figure 6. Dispersion of the IVR wave packet in state space. The axes in A and B are labeled in terms of the most important resonances in Table
2: ∆1 ) (0, -1, 0, 0, 1,-1), ∆2 ) (-1, -1, 0, 0, 2, 0), and∆3 ) (1, 0, 0, 0,-2, 0); the color code corresponds to the 0, 8, 28, and 101 fs times
in C; the size of each point is ln|ci0|2. (A) Edge state: the probability flow is an at most 1-dimensional “jet” in the∆1/∆2 plane. (B) Interior state:
the probability flows into a three-dimensional manifold, but it is still anisotropically flattened in the∆3 direction, corresponding to the smallerL
for that resonance in Table 1. (C) Dispersion of an interior state with|ci0|2 of all participating features shown; new feature states appear gradually.
(D) σ(t) for C, showing that the number of features participating in the dynamics indeed grows as a power law only. The powerδσ is the same as
that observed for the correspondingP(t) in Figure 3.
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have been applied mainly to small systems.21 A general method
for finding an appropriate resonance Hamiltonian which opti-
mally tracks the IVR manifold embedded in the full dimensional
state space would have to be developed.

The power law decays in Figure 3 illustrate the slowness of
the IVR dynamics. As shown in Figure 6C, the IVR wave packet
not only leaks slowly out of state|0〉, it also disperses slowly
in state space. This behavior cannot be adequately captured by
P(t) alone, or by its associated parametersδ, τ, andσ. Figure
7 illustrates two extreme cases:P(t) ) |c00|2 has decreased to
1/2 in both cases, yet in one case the wave packet has dispersed
in state space far more extensively than in the other.

To remedy this we introduce a dispersion parameterD )
σ(t)-1 closely related toσ-1 ) Np, but applicable to the time-
evolving IVR wave packet:

where theci ) 〈i|t〉 are again the expansion coefficients of the
wave packet in the feature state basis{|i〉}. Just asNp measures
the number of participating eigenstates in a fragmented IVR
spectrum,D measures the number of participating feature states
excluding the initial bright state. (Hence the removal ofc0 from
the normalization and the sum in the denominator.) For a
molecule with substantial fragmentation,σ(t) approaches the
dilution factorσ as tf∞.

Figure 6D shows a plot ofσ(t) for dynamics initiated in the
|233222〉 state. It can be seen thatσ(t) decays as a power law,
just like the survival probabilityP(t); hence the dispersionD
increases very slowly in a feature basis. This is a nontrivial
consequence of the structure of the molecular vibrational
HamiltonianHvib. One can of course easily find bases in which
D is large at all timest > 0. Examples are the eigenstates, or
the “Golden Rule” basis discussed in the previous section. The
converse is not true: not every Hamiltonian has a feature basis
such thatD is small over any significant time period. For
example, a GOE Hamiltonian has no basis for which D is small,
unless the initial state is an eigenstate: the couplings are
unstructured and access most basis states immediately, in any
representation.

The vibrational Hamiltonian therefore imposes a structure on
state space which is well represented by feature basis sets, in
the sense that they can describe the dynamics for the longest
possible time with the smallest number of functions. In section
2a, it was stated that the exact choice of feature basis is irrelevant
if one computes exact dynamics, but becomes relevant if one
attempts a simplified description of the molecule. In light of eq
15, we can now make a reasonable definition of the optimal
feature basis for IVR dynamics initiated in a state|0〉.

The optimal feature basis is the orthonormal set of functions
{|i〉} which includes|0〉 and maximizes

Equation 16 ensures that a minimum number of states will
describe the IVR dynamics for as long as possible.

5. Conclusions

During IVR, the survival probability of the initially prepared
state decreases toward the statistical limit via a slow power law
process. The powerδ can now be estimated from the vibrational
potential constants using a simple formula. In addition, the IVR
wave packet disperses only slowly throughout state space, unlike
the wave packets governed by a random Hamiltonian, such as
a GOE matrix. The classical tier picture of IVR therefore
remains approximately valid to long times.

This has important consequences for the possibility of
controlling IVR via manipulation of coherence. Feature states
have a simple structure and should therefore be amenable to
coherent control. For each such state, generally a complex
amplitude (population and phase) has to be controlled, resulting
in two control parameters. If the number of controllable feature
states grows with time asD(t), then the control problem up to
time t requires 2D(t) parameters. The results of this work
indicate that this number is not much larger thanP(t)-1, even
if low-frequency backbone motions are involved in the IVR
process. Experiments and calculations for larger organic mol-
ecules have already shown thatP(t) decays with a small power
law coefficient. If D(t) is only slightly larger thanP(t)-1 in
those cases also, this opens the possibility for coherent
manipulation of vibrational energy flow in larger molecules with
a modest number of control parameters up to significantly long
times. Here, 2D(t) is a much more useful upper bound than
that provided by a Golden Rule or eigenstate picture without
correlations, in which the guaranteed bound is an often
unfavorableσ-1.
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