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By combining the theories of optimal control and coherent control, we derive an analytical formulation to
evaluate the optimal 1-photon andn-photon fields together with their relative phase and intensity in the optimal
“1 + n”-coherent control scheme. The optimal coherent control exploits tailored light pulses to produce the
best overlap with a predefined nuclear target in an electronically degenerate region. It also exploits explicitly
the quantum interference between two optimal excitation pathways to achieve the product electronic selectivity.
Numerical demonstrations are carried out to selectively control a minimum-uncertainty outgoing wave packet
target in a molecular system. The electronically degenerate byproduct is shown to be completely discriminated
against via the destructive interference between two optimal excitation pathways. The target considered in
this paper would neither be achievable via the conventional continuous-wave coherent control nor via a single
optimal control pathway in the weak response regime. Proposed is also a time-dependent excitation frequency
degeneracy condition that incorporates the evolution of carrier frequencies in the optimal coherent control
with tailored light fields.

I. Introduction

In recent years rapid progress in the use of tailored light to
actively guide chemical and molecular events has occurred. Kent
R. Wilson, to whom this issue ofThe Journal of Physical
Chemistry Ais dedicated, has been one the most active advocates
of this scientific endeavor. His concerted research activities
toward the goal of controlling chemical dynamics range from
the development of fundamental theories,1-6 technology,7-9 and
experiments,10-14 together with the staging of his state-of-the-
art multimedia seminars. One of us (Y.J.Y.) fortunately par-
ticipated in the early phase of the joint theory-experiment effort
in “Kent R. Wilson’s La Jolla school” with the goal of realizing
the manipulation of molecular dynamics by light.

Generally speaking, there are two active control approaches
that use the coherent property of light to manipulate molecular
or chemical dynamics.15 One approach is based on the coherent
control theory (CCT) originally proposed by Brumer and
Shapiro.16,17 In CCT the chemical selectivity is controlled as a
direct consequence of quantum interference. One of the
representative coherent control scenarios is the interference
between one- and three-photon pathways, both of which connect
the initial bound state of reactant to a degenerate doorway to
two different products in a continuum.16-19 It has been shown
that the product selectivity can be controlled by varying the
relative phases and amplitudes of multiple independent but
degenerate excitation pathways.16-19 The coherent control
scheme has been demonstrated experimentally in a variety of
atomic and molecular systems.20-29

An alternative approach of active control is to design tailored
light pulses or pulse trains to drive reactions to the desired
products.1-4,30-44 The foundation of this approach is the optimal
control theory (OCT) employed first by Rabitz and co-

workers.34-36 Extension of OCT to molecular systems with
multiple electronic surfaces was made by Kosloff et al.,33 and
to condensed phases by Wilson and co-workers.1 Recently, Yan
and co-workers have further extended OCT to the multiple
phase-unlocked control fields, such as in the case of pump-
dump or pump-pump processes.45-50 Successful experiments
in optimal control are now emerging rapidly.10-14,51-53 Recent
development involves a combination of the pulse shaping
techniques54-56 and automated control feedback loops.57-59 The
adaptive feedback optimal control scheme uses the dynamic
signals of molecular system to teach the pulse shaping apparatus
to generate the improved field as it drives the molecule toward
the desired target.14,53

In general, OCT results in a nonlinear equation whose solution
can only be solved in an iterative manner. The converged control
field is only locally optimal and depends usually on the input
to initiate the iteration procedure. While it is transparent in CCT,
the quantum interference among various excitation pathways
is often obscure in OCT. Mathematically, OCT is a problem of
optimization in a functional space, and CCT is in a parameter
space. In this sense, one may view CCT as a special case of
OCT with certain appropriate constraints such as the shapes of
control fields with specific quantum interference scheme.
Paramonov and Manz and their co-workers37-40 have described
a parameter-space control scheme using pulse sequence in
which the duration, intensity, frequency, and time delay of each
pulse are optimized. Recently, Gross and Rabitz60 have further
pointed out that the coherent control based on a specific quantum
interference scheme can also be more generally formulated in
terms of optimization in parameter space.

In this paper, we shall present an optimal coherent control
(OCC) scheme which coherently combines the OCT for the
individual one-photon and multiphoton excitation processes in
the weak response regime. The control scenario may be
schematically represented in Figure 1. The molecule is initially
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in the ground|0〉 surface (or reactant), and the target is an excited
|+〉 species (or product) with a specific form such as a minimum
uncertainty wave packet in the nuclear phase-space. It is well
established that the optimal control field to this target should
be properly shaped.2 However, when the undesired byproduct
|-〉 state with the same optical selection rule is degenerate with
the product |+〉 state, the chemical selectivity is neither
achievable in a one-photon nor a multiphoton process individu-
ally in the weak response regime. The standard approach in
OCT is to iteratively solve the nonlinear equation in the strong
response regime. The resulting field contains usually multiple
phase-locked subpulses, involving various competitive processes
such as dynamic Stark shift, power broadening, multiphoton
absorption, and ionization. The OCC scheme proposed in this
paper explicitly exploits the quantum interference between two
optimally tailored, e.g., one- and three-photon excitation
pathways. The relative phase and intensity between the one-
and three-photon control fields together with their optimal time-
frequency shapes will thus be determined. The OCC theory
provides a clear physical picture of the control processes in terms
of light-matter interference in both phase-amplitude16-19 and
time-frequency1-3,32-36 spaces. The remainder of this paper is
organized as follows. In section II, we develop a simple theory
of optimal coherent control via the interference between two
optimal photon excitation pathways. In section III, we present
numerical demonstrations in a molecular system for controlling
a localized wave packet with a predefined product electronic
selectivity. Finally, we summarize and conclude this work in
section IV.

II. Theory

A. A Simple Theory of Multiphoton Control. In this
section, we shall develop a simple theory of optimal coherent
control that consists of two parts. The first part that will be
presented in the following deals with the optimal multiphoton
control. The second part that will be discussed in the next
subsection considers the quantum interference between two
optimal photon excitation pathways.

Let us consider the simplestn-photon excitation control in a
molecular system in which there are no resonant intermediates
to assist the multiphoton process (cf. Figure 1). The molecule
is assumed to be initially in a nuclear eigenlevel,ψ(0) ) |ν′′〉,
of the ground electronic state labeled as “0”. The control target
is a pure state|φe〉 that describes a nuclear wave packet on the
doubly degenerate electronic excited state involving both/either
“+” and/or “-” electronic surfaces (cf. Figure 1). For simplify-
ing the notation, we set the energy zero asεν′′ ) 0 andp ) 1.

In the presence of ann-photon excitation field, the molecule
is excited onto the degenerate excited state surfaces. We shall
denote the carrier frequency and the slowly varying complex

amplitude of then-photon excitation field asΩn and En(t),
respectively. In the system of study, the field-matter interaction
can be described by

H.c. denotes the Hermitian conjugate, while|e〉 ) {|+〉, |-〉}
is the degenerate electronic excited state. In eq 1,R̂(n) is the
molecular polarizability operator for then-photon absorption
process. In the case of one-photon excitation,R̂(1) ≡ µ̂ assumes
the electronic transition dipole operator. The molecular wave
packet excited by then-photon process is then described by

Physically,ψ′(n)
e (τ) in eq 2 can be considered as the molecular

“bare” wave packet excited via an impulsiven-photon excitation
field in the electronic rotating wave approximation.ψ′(n)

e (τ) is
purely a property of matter and given formally by

Here, He is the Hamiltonian operator governing molecular
dynamics in the degenerate excited state involving both the “+”
and “-” electronic surfaces (cf. Figure 1).

The goal of control is to find then-photon fieldEn(t) that
optimally drives the molecular systemψe

(n)(tf) to the desired
target stateφe at a chosen target timetf under certain constraints
that will be specified later. The time-dependent target expecta-
tion value is given by

Here,cn(t) is then-photon control amplitude which in general
is complex. At any given target timetf it is given by

For the clarity of theoretical formalism, we introduce in this
paper ann-photon scaled field intensity defined as

Obviously, then-photon control yield|cn(tf)|2 ∝ In. The control
objective can then be described as to find then-photon excitation
field En(t) that optimizes the control yield|cn(tf)|2 at a given
finite value of In. By using the Lagrangeλ-multiplier method,
the problem ofn-photon control can thus be cast as the
optimization of the following control objective functional,

We shall therefore consider the variation of the control
functionalJ(tf) with respect toδEn(t), the variation in the control
field En.

The asterisk “/” denotes the complex conjugate. From eqs 5
and 6, we have

Figure 1. Schematic diagram of control in a model molecular system
via one-photon and multiphoton excitation pathways either individually
or in the “1+n”-interference manner. The two excited states|+〉 and
|-〉 are degenerate with same optical selection rules.

H′(t) ) e-inΩntR̂(n)En
n(t)|e〉〈0| + H.c. (1)

|ψe
(n)(t)〉 ) e-inΩnt∫0

t
dτ En

n(τ)|ψ′(n)
e (t - τ)〉 (2)

|ψ′(n)
e (τ)〉 ) e-iHeτR̂(n)|ν′′〉 (3)

|cn(t)|2 ≡ |〈φe|ψe
(n)(t)〉|2 (4)

cn(tf) ) e-inΩntf∫0

tfdt En
n(t)〈φe|ψ′(n)

e (tf - t)〉 (5)

In ) ∫0

tfdt |En(t)|2n (6)

J(tf) ) |cn(tf)|2 - λnIn (7)

δJ(tf) ) cn
/(tf)δcn(tf) - λnδIn (8)

δcn(tf) ) ne-inΩntf∫0

t
dt〈φe|ψ′(n)

e (tf - t)〉En
n-l(t)δEn(t) (9)
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By using the variation principleδJ(tf) ) 0, we thus obtain the
following solution to then-photon control field in the weak
response regime,

Here,

is the control amplitude (cf. eq 5) with the removal of the
electronic phase. Obviously, eq 11 is the extension of one-photon
control formulation30,50 to the simplen-photon scenario con-
sidered in this paper. Note that there is an arbitrary phase
associating with the control amplitude. In this paper, we shall
setc̃n(tf) to bereal andpositiVe. Moreover, we can show from
eqs 5 and 6 that the Lagrange multiplier relates to the control
yield as λn ) |cn(tf)|2/In. The final equation for the optimal
n-photon control can thus be written as

The quantity on the left-hand-side of the above equation depends
only on the matter and the target, but not on the external driving
field. Equation 13 is the direct extension of one-photon
control30,50 to the solution of the optimaln-photon fieldEn(t)
in the present system of study. It is easy to show that by using
the optimaln-photon control field in eq 13 the control amplitude
c̃n(tf) evaluated via eqs 5 and 12 is real and positive. This result
is consistent with our choice of phase zero, arg[c̃n(tf)] ) 0. This
phase property will also be important in the development of
optimal coherent control theory to be presented in the next
subsection.

Note that eq 13 may be simplified asEn
n(t) ∝ 〈φe|ψ′(n)

e (tf -
t)〉* if only the single excitation pathway is considered. The
absolute intensity of singlen-photon field provides only a power-
law scaling factor in the weak response regime. A single optimal
n-photon control pathway would excite the wave packet onto
both the excited product|+〉 and the byproduct|-〉 states. We
shall in the next subsection consider the product selectivity
control via the coherent superposition of two optimal optical
excitation pathways (cf. Figure 1). In this case, not only the
phase arg[c̃n(tf)] (cf. eq 13 and its comments followed) but also
the amplitude|cn(tf)| will play important roles. The prefactor
to the field in eq 13 can then be used to relate the control yield
|cn(tf)|2 to the incidentn-photon scaled intensityIn (eq 6); that
is,

The above equation will be used to determine the relative
intensities of multiple excitation pathways (cf. eq 20) in the
optimal coherent control, allowing a discrimination against the
degenerate byproduct.

B. A Simple Theory of Optimal Coherent Control. We
shall now complete the optimal coherent control theory by
considering the coherent superposition of two independent
photon excitation pathways. Without losing the generality, we
consider one excitation pathway is the one-photon control and
another is ann-photon (n > 1) process. The total field in the
optimal coherent control assumes the following form:

Here, θ is the additional phase that determines the nature of
coherent control. We shall discuss this issue later.

In order to achieve the maximum interference between two
optical control pathways, the carrier frequencies should satisfy
the degeneracy condition,

while the control amplitudes should be equal

The optimal shapes of both the one-photon control fieldE1(t)
and then-photon control fieldEn(t), together with their relative
intensity, are given by eq 13. We obtain

Each of the above equations differs from eq 13 only by a
positive prefactor. The above equations thus determine the
optimalE1(t) andEn(t) fields together with their relative phase.
Their relative intensity can be obtained by using eqs 14 and
17, resulting in

In eq 15,θ is an additional adjustable phase parameter to
regulate the total yield of optimal coherent control. As we
mentioned following eq 13, in the absence of the additional
phase, i.e.,θ ) 0, the phase difference between the control
amplitudes was given by arg[c1(tf)] - arg[cn(tf)] ) (Ω1 - nΩn)tf,
which is zero under the degeneracy condition (eq 16). By
introducing an additional phaseθ and under the maximum
interference condition (eq 17), the optimal “1+ n”-coherent
control yield is then given by

Equations 15-21 together with eq 3 constitute the final
formulation for the optimal “1+ n”-coherent control of
molecular systems in which there are no other resonant surfaces
between the initial and the final target states. The optimal
coherent control enables not only the maximum enhancement
of the target yield in the product electronic|+〉 state by setting
θ ) 0, but also the maximum elimination of the byproduct in
the |-〉 state by settingθ ) π. In the latter case, the target
maybe chosen as of the same nuclear wave packet but in the
electronic|-〉 state (cf. Figure 1). It is easy to show that in the
case of eigenstate control, the present theory recovers the well
established “1+ n” continuous-wave coherent control formal-
ism.16-19

III. Numerical Results and Discussions

For the numerical demonstration of optimal coherent control,
we consider a model molecular system of three Morse potential
surfaces (Figure 1) whose parameters are listed in Table 1. The
reduced molecular mass is set to bem ) 64 amu. The molecule
is initially at the ν′′ ) 0 vibronic level in the ground|0〉
electronic state. Its eigenenergy is 107.0 cm-1 above the
potential minimum. We shall consider the control of a minimum

δIn ) n∫0

tfdt[En
/(t)]nEn

n-1(t)δEn(t) (10)

c̃n
/(tf)〈φe|ψ′(n)

e (tf - t)〉 ) λn[En
/(t)]n (11)

c̃(tf) ≡ einΩntfcn(tf) (12)

〈φe|ψ′(n)
e (tf - t)〉* )

|cn(tf)|
In

En
n(t) (13)

|cn(tf)|2 ) In∫0

tf|〈φe|ψ′(n)
e (tf - t)|2dt (14)

εT(t) ) E1(t)e
-i(Ω1t+θ) + En(t)e

-iΩnt + c.c. (15)

nΩn ) Ω1 (16)

c ) |c1(tf)| ) |cn(tf)| (17)

E1(t) ∝ 〈φe|ψ′(1)
e (tf - t)〉* (18)

En
n(t) ∝ 〈φe|ψ′(n)

e (tf - t)〉* (19)

I1

In
)
∫0

tf|〈φe|ψ′(n)
e (tf - t)〉|2dt

∫0

tf|〈φe|ψ′(n)
e (tf - t)〉|2dt

(20)

|cT(tf)|2 ) |c1(tf) + cn(tf)|2 ) 4|c|2 cos2(θ/2) (21)
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uncertainty Gaussian wave packet in the excited|+〉 state; i.e.
φe ) φ+|+〉 with

Here, rj and pj are the position and the momentum centers,
respectively, while∆r is the variance in position. The coherent
state target in eq 22 satisfies the minimum uncertainty relation:
∆r∆p ) p/2. In the following calculation, we chooserj ) 4.8
Å, ∆r ) 0.166 Å, and a mean outgoing momentumpj > 0 that
corresponds to a kinetic energy ofpj2/(2m) ) 400 cm-1. The
mean vibronic energy of this target is about 4411 cm-1 above
the potential-zero of the|+〉 target surface. As the initial wave
packet in the|0〉 state is 107 cm-1 above the potential minimum,
it would be expected that the carrier frequency of then-photon
control field (n ) 1, 2, or 3) is aroundΩn ) (T+ - 107.0+
4411.4)/n cm-1 ) (T+ + 4304.4)/n cm-1 (cf. Figure 2). Here,
T+ ) 15769 cm-1 is the frequency difference between the
potential minimum (i.e.,Te) of the target|+〉 state and that of
the initial ground|0〉 surface (cf. Table 1). The target time is
chosen to betf ) 640 fs.

For the purpose of comparison, we assume there is no
symmetry restriction. Each of the individual one-photon, two-
photon, or three-photon processes can excite the initial wave
packet in the ground|0〉 state to both of the electronically
degenerate states,|+〉 and |-〉. For simplicity, we neglect the
effects of nonadiabatic coupling and rotation. The transition
dipoles/polarizabilities are chosen such thatµ+ ) -µ- )
constant for the one-photon,R+

(2) ) R-
(2) ∝ exp(R) for the two-

photon, andR+
(3) ) R-

(3) ∝ exp(2R) for the three-photon
absorption processes. Their magnitudes in the experimental units

will be exemplified later in the discussion of the scaling law of
the control yield (cf. eq 26).

To measure the quality of a control field, we also calculate
the achievement function defined as2,3

Obviously, 0e a(tf) e 1. The perfect control may be referred
to the case ofa(tf) ) 1 at the target time. Notea(tf) is a
normalized measure attf for the overlap between the controlled
wave packet and the target. It provides no information on
whether there is byproduct or not. As to be demonstrated
numerically, each of the individual optimal excitation pathways
generates an excited wave packet that nearly 100% matches
with the predefined target in the product|+〉 electronic state at
the specified target timetf. However, none of them alone is
able to eliminate the byproduct in the degenerate|-〉 state. The
optimal coherent control theory developed in section II B will
be shown to be capable of not only a constructive enhancement
of product yield but also a destructive elimination of the
degenerate byproduct.

Figure 2 depicts the temporal (upper part) and spectral (lower
part) profiles of the optimal one-, two-, and three-photon control
fields. Their temporal peaks are all near 330 fs. Each of their
center frequencies is around the intuitively estimated value of
Ωn/(cm-1) ) (T+ + 4304.4)/n. The final achievementa(tf) (cf.
eq 23) for the optimal one-, two-, and three-photon controls
are 0.98, 0.97, and 0.97, respectively. All these three optimal
fields are of simple forms, and can be well represented by
chirped Gaussian pulses. Together with the carrier frequency
(cf. eq 15), we fit the control field as

with

Each Gaussian pulse field is characterized by seven parameters,
the peak powerAn, temporal centerthn, temporal varianceΓn,
constant phaseæn

(0), the carrier frequencyΩn, linear temporal
chirp c′n, and quadratic chirpc′′n, respectively.

As we mentioned earlier, the absolute value of peak power
An and constant phaseæn

(0) would not be well-defined in the
optimal control theory that employs an individual optical
excitation pathway in the weak response regime. However, the
relative peak power, or more precisely the relative intensity (eq
20 with eq 6), and the relative phase play crucial roles in an
optimal coherent control scheme in which multiple degenerate
excitation pathways interfere with each other. We can evaluate
the constant phases viaæn

(0) ) æn(t)0) (cf. eq 25) and the
relative scaled intensities via eq 20. For a given shape of control
field, the control yield scales with the peak power and the dipole/
polarizability magnitude as (cf. eq 14 with eq 3)

In order to specify the peak powerAn in an experimental unit,
we choose the transition dipoles/polarizabilities for the model
molecular system at its ground electronic state minimum asµ(

) (1 Debye,R(
(2) ) 10-27 m3, andR(

(3) ) 10-37 m3 (V/m)-1.
These values are of reasonable magnitude for molecules of

TABLE 1: Parameters for the Potential Surfaces: V(R) )
Te + De[1 - e-â(R-Re)]2

Te (cm-1) De (cm-1) â (Å-1) Re (Å)

V0 0 12550 1.871 2.666
V+ 15769 4381 1.876 3.016
V- 17097 3000 1.876 3.016

Figure 2. The temporal (upper part) and the spectral (lower part)
profiles of the optimal one-photon (El), two-photon (E2), and three-
photon (E3) excitation fields. Their peak powers are 8.14× 109, 3.06
× 1011, and 3.24× 1012 W/cm2, respectively (see text). The control
target is an outgoing minimum-uncertainty Gaussian wave packet in
the |+〉 state (see text). The potential minimum (Te) of the |+〉 state is
T+ ) 15769 cm-1. The target time is 640 fs.

φ+(R) ) (2π∆r
2)-1/4e-(R-rj)2/(4∆r

2)-ipj(R-rj)/p (22)

a(t) )
|〈φ+|ψ+(t)〉|

x〈φ+|φ+〉〈ψ+(tf)|ψ+(tf)〉
(23)

En(t)e
-iΩnt ) xAne

-(t- thn)2/(2Γn
2)e-iæn(t- thn) (24)

æn(t) ) æn
(0) + Ωnt + 1

2
c′nt

2 + 1
6
c′′nt

3 (25)

|cn(tf)|2 ∝ |R(n)|2An
n (26)
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moderate to large size. The control yield at the target time is
chosen to be|cn(tf)|2 ) |〈φ+|ψ+

(n)(tf)〉|2 ) 0.02 for each
individual optimal excitation pathway. As a nearly perfect
control [cf. eq 23 witha(tf) ≈ 1] at the target timetf, the
transferred population into the|+〉 state, P+(tf) ≡ 〈φ+

(n)(tf)|
φ+

(n)(tf)〉 ) |cn(tf)|2/a2(tf), will also be about 2% in each
individual optimal excitation pathway. For the above given
values of dipole/polarizabilities and control yield, the resulting
peak powers areA1 ) 8.14 × 109 W/cm2, A2 ) 3.06 × 1011

W/cm2, andA3 ) 3.24× 1012 W/cm2 in the optimal one-, two-,
and three-photon control processes, respectively.

Listed in Table 2 are the other best-fit Gaussian parameters
in eq 24 with 25 for each individual optimal field. The temporal
centerthn is found to be about the same in each field. However,
the temporal width of control fieldΓn scales as∼xn, the
square root of photon number (cf. the upper panel of Figure 2).
This result is consistent with eq 19. Correspondingly, the spectral
width of the control field decreases as the photon numbern
increases (cf. the lower panel of Figure 2).

The time-dependent phaseæn(t) (eq 25) that describes the
coherent time-frequency property of the optimal field plays a
crucial role in the control of molecular dynamics.2,3,10-13,53

Figure 3 presents the Wigner spectrograms of individual optimal
fields (left part) and their best-fit Gaussian counterparts (eqs
24 and 25 with Table 2). This figure provides thus a graphical
visualization of the time-frequency coherence in each optimal
field as well as its fitness into a simple Gaussian pulse. The
optimal chirps are mainly linear. They are all positive, favoring
the focused outgoing target.2,3 It is interesting to notice that
besides the optimal carrier frequency ofn-photon field satisfying
nΩn ≈ Ω1 (cf. eq 16), the optimal zero-phase and linear chirp
also follow the similar relations,næn

(0) ≈ æ1
(0) andnc′n ≈ c′1 (cf.

Table 2). These results together may suggest the extension of

the degenerate excitation frequency (eq 16) to thedegenerate
time-frequency coherencecondition (cf. eq 25):

for the optimal “1+ n”-coherent control.
To proceed, let us first use the obtained optimal/best-fit fields

individually to numerically propagate wave packets on both of
the two degenerate excited|+〉 and|-〉 surfaces. Figure 4 shows
the resulting wave packet evolutions that are essentially the same
in either the one-, two-, or three-photon processes, and in either
the optimal or the best-fit Gaussian fields, individually. At the
target time oftf ) 640 fs, the controlled wave packetψ+(tf)
overlaps almost perfectly with the predefined target (dotted curve
in the upper part of Figure 4). It indicates that a nearly perfect
control a(tf) ≈ 1 in terms of normalized achievement (cf. eq
23) can be accomplished by each of these three optimal
excitation pathways. However, the control with a single optimal
excitation pathway generates also a significant amount of the
|-〉 electronic state byproduct (cf. the lower part of Figure 4).

We now turn to the results of optimal coherent control (OCC)
based on the formulation developed in section II B. On the top
of achieving a nearly perfect normalized wave packet-target
overlap,a(tf) ≈ 1, the OCC is also able to control over the
product selectivity in either the|+〉 or the |-〉 states. Without
losing the generality, we shall in the following present the results
of optimal “1+3” coherent control. Note the optimal one-photon
and three-photon fields obtained previously have been locked
with each other in both of their phases and intensities. The
resulting control amplitudes satisfy the relations of arg[c1(tf)]
) arg[c3(tf)] and |c1(tf)| ) |c3(tf)|. Therefore, the additional
relative phaseθ (cf. eq 15) to the calculated optimal one-photon
pathway regulates the yield (amplitude square) of optimal
“1+3”-coherent control (cf. eq 21). The physical origin of the
product selectivity lies on the molecular phase difference
between the|+〉 r |0〉 and |-〉 r |0〉 transitions associated
with the “1+3”-coherent control scheme.

Figure 5 depicts the evolution of wave packets under the
optimal coherent “1+3” control without the additional phase,
θ ) 0. While it remains a nearly perfect overlap with the target
in terms of the normalized achievementa(tf) ≈ 1, the selectivity
on the |+〉 product is also achieved via an almost perfectly
destructive interference against the|-〉 byproduct. In comparison

TABLE 2: Best-Fit Gaussian Pulse Parameters for the
Optimal One-, Two-, and Three-Photon Excitation Fields

one-photon two-photon three-photon

thn (fs) 329.8 322.6 314.7
Γn (fs) 37.57 55.10 70.21
Ωn (cm-1) 20025 9999 6657
æn

(0) -1.40 -0.70 -0.47
c′n (cm-1/fs) 4.174 1.966 1.223
c′′n (cm-1/fs2) 0.039 0.0171 0.0102

Figure 3. Wigner spectrograms of the optimal one-photon (upper),
two-photon (middle), and three-photon (bottom) excitation fields in
Figure 2. The best-fit Gaussian fields are presented in the right.

Figure 4. Wave packet evolution on the two degenerate|+〉 and|-〉
state surfaces via the optimal one-photon control. The wave packet
dynamics controlled individually by the optimal two- or three-photon
field behave similarly. The target is also depicted (dotted) to demonstrate
the control quality.

næn(t) ) æ1(t) (27)

Optimal Coherent Control J. Phys. Chem. A, Vol. 103, No. 49, 199910615



with the individual optimal one- or three-photon process (cf.
Figure 4), the yield of|+〉 product is quadrupled, while that of
|-〉 byproduct decreases by more than two orders of magnitude.
Note that the setting ofθ ) 0 is designed for the constructive
maximization of the|+〉 product rather than the destructive
minimization of the|-〉 byproduct. However, the transition
dipoles/polarizabilities have been chosen asµ- ) -µ+ for the
one-photon excitation andR-

(3) ) R+
(3) for three-photon path-

way. The electronic contribution to the molecular phase differ-
ence between the “1+3”-control of |+〉 and |-〉 states has the
value of π. For the molecular system in study, the nuclear
contribution to the matter phase difference is relatively small.
As a result, in the optimal “1+ 3”-coherent control withθ )
0 in which the|+〉 product yield is constructively maximized,
the |-〉 byproduct yield is about destructively minimized. In
the optimal coherent control scenario, the maximal discrimina-
tion against the|-〉 byproduct should in general be done by
defining a suitable target in the|-〉 state and then settingθ )
π (cf. eq 21 and its comments). In this case, the product
branching ratioP+/P_ is usually maximized, but the target
achievementa(tf) and the control yield|cT(tf)|2 in the product
|+〉 state may decrease.

Figure 6 shows the evolution of wave packets under the
optimal coherent “1+3” control with the additional phase ofθ
) π. In this case, the control yield|cT(tf)|2 and the population
P+(tf) in the |+〉 state at the target time are optimally

discriminated against via destructive interference. The final
residue wave functionψ+(tf) on the|+〉 surface that satisfies
cT(tf) ) 〈φ+|ψ+(tf)〉 ) 0 (cf. eq 17) has actually a node at the
center of target region (cf. the upper part of Figure 6). For the
same reason as discussed in Figure 5, the resulting yield in the
|-〉 state, i.e.P-(tf) ) 〈ψ-(tf)|ψ-(tf)〉 (cf. the lower part of Figure
6), is quadrupled with respect to that in the individual optimal
one- or three-photon process (the lower part of Figure 4).

Figure 7 summarizes the evolution of populations on the
degenerate|+〉 and |-〉 state surfaces in the three control
schemes presented respectively in Figures 4-6. Again, it
demonstrates that in the weak response regime the optimal
control via a single excitation pathway (the upper panel of Figure
7) is unable to achieve the selectivity between two degenerate
|+〉 and |-〉 states. The optimal coherent control with two
degenerate excitation pathways provides a realistic and simple
scheme to achieve the desired selectivity. The maximization
and the minimization of the|+〉 state product can be achieved
in the optimal coherent control scheme by setting the additional
phaseθ ) 0 (the middle panel of Figure 7) andθ ) π (the
bottom panel of Figure 7), respectively.

IV. Summary and Concluding Remarks

We have developed a theory of optimal “1+ n”-coherent
control that exploits the advantages of both the tailored pulses
and the direct quantum interference between two degenerate
optical excitation pathways. For the clarity of theoretical
development, we have only considered a simplified molecular
model in which there are no intermediate absorptions to compete
with the direct multiphoton excitation processes. In this case,
the optimal coherent control theory can be formulated analyti-
cally in terms of the individual optimal fields, their relative phase
and intensity (eqs 18-20). In a general molecular system, the
analytical expressions may only be obtained for the optimal
“1+2”-coherent control of pure states,61 since in this case the
two-photon (pump-pump) control is an eigenvalue problem.50,62

In the present work, the fields of individual pathways are
formulated via optimal control theory (OCT) as a problem of
optimization in a functional space (cf. eqs 18 and 19), while
their intensities and relative phase are determined by a simple
consideration of the quantum interference (cf. eqs 17, 20, and
21). It should be able to incorporate the intensities and relative

Figure 5. Wave packet evolution on the two degenerate|+〉 and|-〉
state surfaces via the optimal “1+3”-coherent control. The additional
phaseθ ) 0.

Figure 6. Same as Figure 5 but withθ ) π.

Figure 7. Evolutions of populationsP+ (solid) andP- (dotted) on
two degenerate|+〉 and |-〉 state surfaces. The upper part is for the
control via the individual optimal one-photon or three-photon field (cf.
Figure 4). The middle and the bottom parts result from the optimal
“1+3”-coherent control with the indicated values of the additional phase
θ.
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phase in the context of optimization in a parameter space.60 A
general optimal coherent control (OCC) theory based on the
optimization in a joint functional and parameter space shall be
formulated in future.

As a numerical demonstration we considered a wave packet
focusing target with the electronic selectivity in one of two
electronically degenerate states. This electronically selected
phase-space target would neither be achievable via the conven-
tional continuous-wave (cw) coherent control scheme16-19 nor
via a single optimal control field1-3,50 in the weak response
regime. In principle, the general optimal control theory in the
strong response regime1,33-36 is capable of this type of selective
control. However, the resulting optimal field in the strong
response regime is usually too complicated to be theoretically
analyzable. The OCC scheme provides an alternative approach
to this selected phase-space target product, in which the control
fields are usually of simple forms and the underlying dynamic
processes are often readily analyzable. One of the interesting
results in the model calculation is the degenerate time-frequency
coherence condition (eq 27). This result may be considered as
a generalization of the degenerate excitation frequency condition
(eq 16) in the conventional cw coherent control scheme. In the
present simple model calculation, the control yield|cn(tf)|2 (or
the population transfer) in each individual pathway has been
chosen as 2%, leading to an 8% population transfer as two
optimal pathways are coherently superimposed (cf. eq 21 with
θ ) 0). The corresponding peak power forE3 control field is
A3 ) 3.24 × 1012 W/cm2 (cf. eq 26 and the comments).
Although it remains in the weak three-photon response regime
for the present model system, this field may strongly and
resonantly couple the target state to other excited surfaces in a
real molecule. To avoid the possible complication due to strong
field effect, OCC with lower field intensities could be considered
according to the scaling law of eq 26. However, a reduction of
peak powerA3 by a factor of 10 would cost the population
transfer by a factor of 103. Furthermore, the dispersion of an
optical medium at the one-photon frequencyΩ1 is usually
different from that at the three-photon frequencyΩ3 ) Ω1/3.
As a result, the relative phase between two excitation pathways
inside the molecular sample has a distribution. In this case, eq
21 should include an appropriate average over theθ-distribution.

Despite the simplified theoretical model and numerical
examples demonstrated in this paper, the principle of OCC is
general and applicable to arbitrary molecular dynamic systems.
There has been much recent interest in the matter phase lag
information associated with two coherent cw excitation
pathways.21-23,63-65 The optimal coherent control by two tailored
light pulses may provide a mean to the study of the transient
phase lag information arising from the matter wave packet
dynamics. Moreover, the OCC scheme could be readily
incorporated into experimental feedback-control setup with
computer-based automatic pulse shapers54-56 to control chemical
selectivity.14,53,57
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