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A Simple Theory of Optimal Coherent Control
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By combining the theories of optimal control and coherent control, we derive an analytical formulation to
evaluate the optimal 1-photon an¢pbhoton fields together with their relative phase and intensity in the optimal

“1 + n"-coherent control scheme. The optimal coherent control exploits tailored light pulses to produce the
best overlap with a predefined nuclear target in an electronically degenerate region. It also exploits explicitly
the quantum interference between two optimal excitation pathways to achieve the product electronic selectivity.
Numerical demonstrations are carried out to selectively control a minimum-uncertainty outgoing wave packet
target in a molecular system. The electronically degenerate byproduct is shown to be completely discriminated
against via the destructive interference between two optimal excitation pathways. The target considered in
this paper would neither be achievable via the conventional continuous-wave coherent control nor via a single
optimal control pathway in the weak response regime. Proposed is also a time-dependent excitation frequency
degeneracy condition that incorporates the evolution of carrier frequencies in the optimal coherent control
with tailored light fields.

. Introduction workers34-3¢ Extension of OCT to molecular systems with
) ) ) ) multiple electronic surfaces was made by Kosloff efalnd
In recent years rapid progress in the use of tailored light 10 1, ¢ondensed phases by Wilson and co-workéscently, Yan
actively guide chemical and molecular events has occurred. Kentanol co-workers have further extended OCT to the multiple

(R:h Wi_Ison,Atodwdh_om ghiﬁ iszue oThe H]ournal of _Phy(sjical Sphase-unlocked control fields, such as in the case of pump
emistry As dedicated, has been one the most active advocate dump or pump-pump processe-5° Successful experiments

of this scientific endeavor. His concerted research activities ;| optimal control are now emerging rapidiy: 145153 Recent
:ﬁ\évﬁreo\l/glloep?noe?:tcgf?3:;:;2:2géﬂﬁ?&%@gﬁgﬁ&'@;?,ﬂga?u;rom devel_opment involves a combination of the pulse shaping
experimentd%-14 together with the staging of his sta’te-of-the- techn|.que%4—56 and auto.mated control feedback l0§ps> The .
art multimed’ia seminars. One of us (Y.J.Y.) fortunately par- a_daptlve feedback optimal control scheme uses '.[he dynamic
’ . signals of molecular system to teach the pulse shaping apparatus

.tlc!‘pated n thg ear!y phase of the JO'Pt theetyxpenment eflfo'rt to generate the improved field as it drives the molecule toward
in “Kent R. Wilson’s La Jolla school” with the goal of realizing . 53
the desired targét

the manipulation of molecular dynamics by light. | s i ) h i
Generally speaking, there are two active control approaches In general, OCT resu t_s In a noniinear equation whose solution
can only be solved in an iterative manner. The converged control

that use the coherent property of light to manipulate molecular

or chemical dynamic® One approach is based on the coherent fie!d. i.s Onlﬁ’ Igcally optimal ;nd o\l/(\elﬂﬁnql; usually on thg |(r:1(p:t_1rt
control theory (CCT) originally proposed by Brumer and to initiate the iteration procedure. While it is transparent in ,

Shapirot17In CCT the chemical selectivity is controlled as a the quantum interference among various excitation pathways

direct consequence of quantum interference. One of the IS Often obscure in OCT. Mathematically, OCT is a problem of

representative coherent control scenarios is the interference®Ptimization in a functional space, and CCT is in a parameter
pace. In this sense, one may view CCT as a special case of

between one- and three-photon pathways, both of which connect® ) > g )
the initial bound state of reactant to a degenerate doorway to OCT with certain appropriate constraints such as the shapes of

two different products in a continuu#- 9 It has been shown control fields with specific quantum interference scheme.
that the product selectivity can be controlled by varying the Paramonov and Manz and their co-worEéTéO have described
relative phases and amplitudes of multiple independent but@ Parameterspace control scheme using pulse sequence in
degenerate excitation pathwais® The coherent control which the duration, intensity, frequency, and time delay of each
scheme has been demonstrated experimentally in a variety ofPulse are optimized. Recently, Gross and Rébhave further
atomic and molecular syster#s20 pointed out that the coherent control based on a specific quantum
An alternative approach of active control is to design tailored [Nterference scheme can also be more generally formulated in
light pulses or pulse trains to drive reactions to the desired (€rMs of optimization in parameter space.
productst—439-44 The foundation of this approach is the optimal ~ In this paper, we shall present an optimal coherent control
control theory (OCT) employed first by Rabitz and co- (OCC) scheme which coherently combines the OCT for the
individual one-photon and multiphoton excitation processes in

*To whom correspondence should be addressed. E-mail: yyan@ the Wea_k response regime. _The control scenariq may be
ust.hk. schematically represented in Figure 1. The molecule is initially
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4 amplitude of then-photon excitation field a€2, and Ex(t),
respectively. In the system of study, the field-matter interaction
—.;3 - can be described by
o
=PyR 1(4) — o iNQpta
c? H'(t) = e " '&™EN(t)|ell0| + H.c. (1)
19
>1r H.c. denotes the Hermitian conjugate, whjetl= {|+0) |—0
/ . . is the degenerate electronic excited state. In e§G(1,is the
0, 3 4 5 6 molecular polarizability operator for the-photon absorption

R(A) process. In the case of one-photon excitati®,= i assumes
Figure 1. Schematic diagram of control in a model molecular system the electronic transition dipole operator. The molecular wave

via one-photon and multiphoton excitation pathways either individually packet excited by the-photon process is then described by
or in the “I+n"-interference manner. The two excited state$land

|—Oare degenerate with same optical selection rules. _inQ,t [t ,
lpQO0=e "M de By Pt -10  (2)

in the groundOsurface (or reactant), and the target is an excited
|+Cspecies (or product) with a specific form such as a minimum physically,;'?z) in eq 2 can be considered as the molecular
uncertainty wave packet in the nuclear phase-space. It is well“pare” wave packet excited via an impulsingohoton excitation
established that the optimal control field to this target should fg|q in the electronic rotating wave approximatiop™z) is

be properly shapetiHowever, when the undesired byproduct purely a property of matter and given formally by

|—[state with the same optical selection rule is degenerate with

the_produc_t|+D state, the chem|cal_ selectivity is r_1e|t_h_er Iw'g])(T)D= e—iHerd(n)WnD 3)
achievable in a one-photon nor a multiphoton process individu-
ally in the weak response regime. The standard approach in

OCT is to iteratively solve the nonlinear equation in the strong dynamics in the degenerate excited state involving both-tfe *
response regime. The resulting field contains usually multiple and “—” electronic surfaces (cf. Figure 1)

Eﬂgﬁeélsc dke:a?;jitépgltsaﬁi’ isnh\:gwinc?v\)/;ri8lrjsa%oemnﬁ]etitixfuﬁgoﬁifsﬁs The goal of control is to find th&-photon field Eq(t) that
y P 9, b optimally drives the molecular system{"’(t;) to the desired

absorption, and ionization. The OCC scheme proposed in thistarget stat@e at a chosen target timteunder certain constraints
aper explicitly exploits the quantum interference between two ; e )
pap plCIly €Xp q that will be specified later. The time-dependent target expecta-

optimally tailored, e.g., one- and three-photon excitation tion value is aiven b
pathways. The relative phase and intensity between the one- 9 y
and three-photon control fields together with their optimal time-

Here, He is the Hamiltonian operator governing molecular

2 _ (n)
frequency shapes will thus be determined. The OCC theory 1Ch(O1” = 1WBele (t)mz (4)
provides a clear physical picture of the control processes in terms ) ) o
of light-matter interference in both phase-amplittfd& and Here,cy(t) is then-photon control amplitude which in general

time-frequency332-3 spaces. The remainder of this paper is 1S COmplex. At any given target tinit is given by

organized as follows. In section I, we develop a simple theory Cino Pt .

of optimal coherent control via the interference between two ct)y=e " 0 dt En(t)E}beh/)'fs)(tf -0 (5)
optimal photon excitation pathways. In section Ill, we present

numerical demonstrations in a molecular system for controlling  For the clarity of theoretical formalism, we introduce in this
a localized wave packet with a predefined product electronic paper am-photon scaled field intensity defined as
selectivity. Finally, we summarize and conclude this work in

. 1;
section V. = fofdt |E, ()" (6)

Il. Theory . .
Obviously, then-photon control yieldcn(tf)|2 O 1. The control

A. A Simple Theory of Multiphoton Control. In this objective can then be described as to findrighoton excitation
section, we shall develop a simple theory of optimal coherent field E,(t) that optimizes the control yielgtq(t;)|2 at a given
control that consists of two parts. The first part that will be finjte value ofl,. By using the Lagrang#-multiplier method,
presented in the fO”OWing deals with the optimal multiphoton the prob|em Ofn_photon control can thus be cast as the

control. The second part that will be discussed in the next gptimization of the following control objective functional,
subsection considers the quantum interference between two

optimal photon excitation pathways. J(t) = e, ()P — A, 7)
Let us consider the simplestphoton excitation control in a
molecular system in which there are no resonant intermediates\ye shall therefore consider the variation of the control
to assist the multiphoton process (cf. Figure 1). The molecule fynctional(t;) with respect taSEq(t), the variation in the control
is assumed to be initially in a nuclear eigenlevg(D) = |v"[] field E,,.
of the ground electronic state labeled as “0”. The control target
is a pure statépe[that describes a nuclear wave packet on the 8J(t) = c(t)oc,(t) — 4,01 (8)
doubly degenerate electronic excited state involving both/either Mo nen
“+" and/or “—" electronic surfaces (cf. Figure 1). For simplify-
ing the notation, we set the energy zerocas= 0 andh = 1.
In the presence of amphoton excitation field, the molecule
is excited onto the degenerate excited state surfaces. We shall _inQu [t o el
denote the carrier frequency and the slowly varying complex ocy(t) = ne fj;dt@ew (e)(tf — OIE, (DIE(1) (9)

The asterisk %" denotes the complex conjugate. From eqs 5
and 6, we have
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ol, = n [FHEX(D]"EL (DOE, () (10) er®) = E (e + E (e +cc.  (15)

Here, 6 is the additional phase that determines the nature of
coherent control. We shall discuss this issue later.

In order to achieve the maximum interference between two
optical control pathways, the carrier frequencies should satisfy

By using the variation principléJ(t;) = 0, we thus obtain the
following solution to then-photon control field in the weak
response regime,

én(tf)Ebelw"e”)(tf — 0= A [ENO]" (11) the degeneracy condition,
n, =, (16)
Here,
) while the control amplitudes should be equal
COET I (12)

c=ley(t)l = [yt 17)

The optimal shapes of both the one-photon control fiel¢)
and then-photon control fieldEx(t), together with their relative
intensity, are given by eq 13. We obtain

Ey(t) O oyt — )3 (18)

is the control amplitude (cf. eq 5) with the removal of the
electronic phase. Obviously, eq 11 is the extension of one-photon
control formulatiod®®°to the simplen-photon scenario con-
sidered in this paper. Note that there is an arbitrary phase
associating with the control amplitude. In this paper, we shall
set&q(t;) to bereal andpositive. Moreover, we can show from
egs 5 and 6 that the Lagrange multiplier relates to the control n e
yield asin = |cq(tf)|¥1. The final equation for the optimal En(®) O el e)(tf - (19)

n-photon control can thus be written as Each of the above equations differs from eq 13 only by a

lc,(t)] positive prefactor. The above equations thus determine the
|}be|1p'(e”)(tf -8 =— EN(t) (13) optimal Ex(t) andEx(t) fields together with their relative phase.
I Their relative intensity can be obtained by using egs 14 and

17, Iting i
The quantity on the left-hand-side of the above equation depends resting In

only on the matter and the target, but not on the external driving | tf@ Iw'(”)(tf _ t)[l]zdt

field. Equation 13 is the direct extension of one-photon 1_Jo €T € (20)
controP%>0to the solution of the optimah-photon field Ex(t) In tf@ W(n)(tf — {)Rdt

in the present system of study. It is easy to show that by using o reT e

the optimalin-photon control field in eq 13 the control amplitude In eq 15,6 is an additional adjustable phase parameter to
Ci(tr) evaluated via egs 5 and 12 is real and positive. This result oqjate the total yield of optimal coherent control. As we
is consistent with our choice of phase zero, &@)] = 0. This mentioned following eq 13, in the absence of the additional

pha_se property will also be important in the devel_opment of phase, i.e.f = 0, the phase difference between the control
optimal _coherent control theory to be presented in the next amplitudes was given by axgt;)] — argle.(t)] = (1 — nQo)ty,
subsection. which is zero under the degeneracy condition (eq 16). By
Note that eq 13 may be simplified &(t) 0 [$ly' Tt — introducing an additional phasgé and under the maximum
D if only the single excitation pathway is considered. The interference condition (eq 17), the optimal “4 n"-coherent
absolute intensity of single-photon field provides only a power-  control yield is then given by
law scaling factor in the weak response regime. A single optimal
n-photon control pathway would excite the wave packet onto ler(t)I” = ley(t) + c(t) > = 4l cog(0/2)  (21)
both the excited produdt-Uand the byproduct—[Ostates. We
shall in the next subsection consider the product selectivity ~Equations 1521 together with eq 3 constitute the final
control via the coherent superposition of two optimal optical formulation for the optimal “1+ n’-coherent control of
excitation pathways (cf. Figure 1). In this case, not only the molecular systems in which there are no other resonant surfaces
phase ardl(t7)] (cf. eq 13 and its comments followed) but also  between the initial and the final target states. The optimal
the amplitude|cy(t)| will play important roles. The prefactor ~ coherent control enables not only the maximum enhancement
to the field in eq 13 can then be used to relate the control yield of the target yield in the product electronie Cstate by setting
|c(ts)|2 to the incidentn-photon scaled intensitly, (eq 6); that 6 = 0, but also the maximum elimination of the byproduct in
is, the |—Ostate by settingd = x. In the latter case, the target
maybe chosen as of the same nuclear wave packet but in the
|Cn(tf)|2 = |nj(‘)‘f|@e|¢'én)(tf — t)|%dt (14) eIectronic_|—Dstate (cf. Figure 1). It is easy to show that in the
case of eigenstate control, the present theory recovers the well

established “H- n” continuous-wave coherent control formal-

The above equation will be used to determine the relative > ">
ism.

intensities of multiple excitation pathways (cf. eq 20) in the
optimal coherent control, allowing a discrimination against the
degenerate byproduct.

B. A Simple Theory of Optimal Coherent Control. We For the numerical demonstration of optimal coherent control,
shall now complete the optimal coherent control theory by we consider a model molecular system of three Morse potential
considering the coherent superposition of two independent surfaces (Figure 1) whose parameters are listed in Table 1. The
photon excitation pathways. Without losing the generality, we reduced molecular mass is set torhe= 64 amu. The molecule
consider one excitation pathway is the one-photon control andis initially at the »" = 0 vibronic level in the ground0O
another is am-photon @ > 1) process. The total field in the electronic state. Its eigenenergy is 107.0 énabove the
optimal coherent control assumes the following form: potential minimum. We shall consider the control of a minimum

I1l. Numerical Results and Discussions
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TABLE 1: Parameters for the Potential Surfaces: V(R) =
Te + D[l — e AR-RJ)2

Te(cm™) De (cm™) BA Re (A)
Vo 0 12550 1.871 2.666
Vi 15769 4381 1.876 3.016
V- 17097 3000 1.876 3.016
—— E1
R I
N_ N . === E3 .
ol . 1
.'/
L oy ]
TP ", . / N re
0 100 200 300 400 500 600
t (fs)
E:« 2 E1
2
ar ]
0 1 2 3 4 5

®-T./n (10°cm™)

Figure 2. The temporal (upper part) and the spectral (lower part)
profiles of the optimal one-photorEf, two-photon E), and three-
photon E) excitation fields. Their peak powers are 8.%41(°, 3.06

x 104, and 3.24x 10" W/cn, respectively (see text). The control
target is an outgoing minimum-uncertainty Gaussian wave packet in
the |+Ostate (see text). The potential minimuify)(of the |+Ostate is

T, = 15769 cn™. The target time is 640 fs.

uncertainty Gaussian wave packet in the excjtedistate; i.e.
e = ¢+|+Dwith

¢.(R) = (2r Arz)—1/46—(R—T)2/(4A,2)—ip(R—f)/h (22)
Here, T and p are the position and the momentum centers,
respectively, while\, is the variance in position. The coherent
state target in eq 22 satisfies the minimum uncertainty relation:
ArAp = A/2. In the following calculation, we chooge= 4.8
A, A, =0.166 A, and a mean outgoing momentpra 0 that
corresponds to a kinetic energy p¥(2m) = 400 cntl. The
mean vibronic energy of this target is about 4411 émbove
the potential-zero of thetCtarget surface. As the initial wave
packet in thg0state is 107 cmt above the potential minimum,
it would be expected that the carrier frequency oftighoton
control field h = 1, 2, or 3) is around2, = (T+ — 107.0+
4411.4)h cm™t = (T4 + 4304.4)h cm™1 (cf. Figure 2). Here,
T+ = 15769 cm? is the frequency difference between the
potential minimum (i.e.Te) of the target+Ustate and that of
the initial ground|00surface (cf. Table 1). The target time is
chosen to bé; = 640 fs.

Xu et al.

will be exemplified later in the discussion of the scaling law of
the control yield (cf. eq 26).

To measure the quality of a control field, we also calculate
the achievement function defined?ds

|y, (0
alt) =
V16, T, (1) ()0

Obviously, 0< a(ty) < 1. The perfect control may be referred
to the case ofa(ty) = 1 at the target time. Nota(t;) is a
normalized measure gtfor the overlap between the controlled
wave packet and the target. It provides no information on
whether there is byproduct or not. As to be demonstrated
numerically, each of the individual optimal excitation pathways
generates an excited wave packet that nearly 100% matches
with the predefined target in the prodyetCelectronic state at
the specified target timg. However, none of them alone is
able to eliminate the byproduct in the degenetatestate. The
optimal coherent control theory developed in section Il B will
be shown to be capable of not only a constructive enhancement
of product yield but also a destructive elimination of the
degenerate byproduct.

Figure 2 depicts the temporal (upper part) and spectral (lower
part) profiles of the optimal one-, two-, and three-photon control
fields. Their temporal peaks are all near 330 fs. Each of their
center frequencies is around the intuitively estimated value of
Qy/(cm™Y) = (T4 + 4304.4)h. The final achievemers(t) (cf.
eq 23) for the optimal one-, two-, and three-photon controls
are 0.98, 0.97, and 0.97, respectively. All these three optimal
fields are of simple forms, and can be well represented by
chirped Gaussian pulses. Together with the carrier frequency
(cf. eq 15), we fit the control field as

(23)

E (e = JA e (IR -t (24)
with
B = ¢+ 2+ 08 + et (25)

Each Gaussian pulse field is characterized by seven parameters,
the peak poweA,, temporal centet,, temporal variancd™,,
constant phasg?, the carrier frequencf2,, linear temporal
chirp ¢, and quadratic chirjg;, respectively.

As we mentioned earlier, the absolute value of peak power
A, and constant phasg!” would not be well-defined in the
optimal control theory that employs an individual optical
excitation pathway in the weak response regime. However, the
relative peak power, or more precisely the relative intensity (eq
20 with eq 6), and the relative phase play crucial roles in an
optimal coherent control scheme in which multiple degenerate
excitation pathways interfere with each other. We can evaluate
the constant phases V'tﬁ(?) = @n(t=0) (cf. eq 25) and the
relative scaled intensities via eq 20. For a given shape of control

For the purpose of comparison, we assume there is nofield, the control yield scales with the peak power and the dipole/

symmetry restriction. Each of the individual one-photon, two-

photon, or three-photon processes can excite the initial wave

packet in the groundOCstate to both of the electronically
degenerate stategt-[and |—[J For simplicity, we neglect the
effects of nonadiabatic coupling and rotation. The transition
dipoles/polarizabilities are chosen such that = —u- =
constant for the one-photou,(f) = a® [0 exp(R) for the two-

photon, anda® = o O exp(®R) for the three-photon

polarizability magnitude as (cf. eq 14 with eq 3)

eyt 1% O oA

In order to specify the peak powgy, in an experimental unit,
we choose the transition dipoles/polarizabilities for the model
molecular system at its ground electronic state minimum.as

= +1 Debye,a? = 1027 m3, anda® = 10737 m3 (V/m) L.

(26)

absorption processes. Their magnitudes in the experimental unitsThese values are of reasonable magnitude for molecules of
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TABLE 2: Best-Fit Gaussian Pulse Parameters for the
Optimal One-, Two-, and Three-Photon Excitation Fields L
one-photon two-photon three-photon o I
1, (fs) 329.8 322.6 314.7 = [
T'n (fs) 37.57 55.10 70.21 - r
Q. (cm™) 20025 9999 6657 :
¢© ~1.40 ~0.70 -0.47 |
c, (cm¥fs) 4.174 1.966 1.223
c, (cm Yfs?) 0.039 0.0171 0.0102 |
~al fitted ' o |
k: =
2 20f :
8
19 B
21 fitted

4 ., B
R(A)
Figure 4. Wave packet evolution on the two degenerait€land |—[
state surfaces via the optimal one-photon control. The wave packet
dynamics controlled individually by the optimal two- or three-photon
field behave similarly. The target is also depicted (dotted) to demonstrate
the control quality.

©) |
)

-
©0

N

R
o
21
=
1]
o

the degenerate excitation frequency (eq 16) todbgenerate
time-frequency coheren@®ndition (cf. eq 25):

e
0

&
Q

200 300 400 200 300 400 Net) = @4() (27)

t (fs) t(fs)
Figure 3. Wigner spectrograms of the optimal one-photon (upper), [OF the optimal “1+ n"-coherent control. _ L
two-photon (middle), and three-photon (bottom) excitation fields in  T0 proceed, let us first use the obtained optimal/best-fit fields
Figure 2. The best-fit Gaussian fields are presented in the right. individually to numerically propagate wave packets on both of

the two degenerate excitéttCand|—Ckurfaces. Figure 4 shows

moderate to large size. The control yield at the target time is the resulting wave packet evolutions that are essentially the same
chosen to belc(t)2 = |@+|w$>(tf)u]z = 0.02 for each in either the one-, two-, or three-photon processes, and in either
individual op[ima| excitation pathway_ As a near|y perfect the Opti.mal or the best-fit Gaussian fields, individually. At the
control [cf. eq 23 witha(t) ~ 1] at the target time, the target time oft; = 640 fs, the controlled wave packet; (t;)
transferred population into therstate, Py (t) = (f)(tf)l overlaps almost perfectly with the predefined target (dotted curve
¢(+n)(tf)D = |ct)|%a2(t), will also be about 2% in each in the upper part_of Figure 4). It |nd|_cates tha_lt a nearly perfect
individual optimal excitation pathway. For the above given ggntrol a(tlfo) ~Lin te:lms ?f Eormallﬁed fai:r?levert?]ent (cf. t?q |
values of dipole/polarizabilities and control yield, the resulting ). can be accompliished by each ol these inree optima
peak powers arédy = 8.14 x 10° W/cr, A, = 3.06 x 10t excitation pathways. However, the control with a single optimal
W/cn?, andAg = 3124>< '1012 W/en®in thé o;timal-one- WO- excitation pathway generates also a significant amount of the
and th,ree-photon control processes, respectively. ' ' |—Celectronic state byproduct (cf. the lower part of Figure 4).

. . : . We now turn to the results of optimal coherent control (OCC
Listed in Table 2 are the other best-fit Gaussian parameters P ( )

. . L ) . ased on the formulation developed in section Il B. On the top
in eq 24 with 25 for each individual optimal field. The temporal of achieving a nearly perfect normalized wave packatget
centert, is found to be about the same in each field. However

] ) ' overlap,a(t;) ~ 1, the OCC is also able to control over the
the temporal width of control field", scales as~vn, the product selectivity in either thetCor the |—Ostates. Without
square root of photon number (cf. the upper panel of Figure 2). |5sing the generality, we shall in the following present the results
Th|s resultis consistent with eq 19. Correspondingly, the spectral ¢ optimal “14-3” coherent control. Note the optimal one-photon
width of the control field decreases as the photon numiber  anq three-photon fields obtained previously have been locked

increases (cf. the lower panel of Figure 2). with each other in both of their phases and intensities. The
The time-dependent phasge(t) (eq 25) that describes the  resulting control amplitudes satisfy the relations of eg()]

coherent time-frequency property of the optimal field plays a = arges(t;)] and |ci(tf)] = |ca(tf)|. Therefore, the additional

crucial role in the control of molecular dynami¢%10-1353 relative phasé (cf. eq 15) to the calculated optimal one-photon

Figure 3 presents the Wigner spectrograms of individual optimal pathway regulates the vyield (amplitude square) of optimal
fields (left part) and their best-fit Gaussian counterparts (egs “1+3"-coherent control (cf. eq 21). The physical origin of the
24 and 25 with Table 2). This figure provides thus a graphical product selectivity lies on the molecular phase difference
visualization of the time-frequency coherence in each optimal petween thg+0— |00and |—O<— |00transitions associated
field as well as its fitness into a simple Gaussian pulse. The with the “1+3”"-coherent control scheme.

optimal chirps are mainly linear. They are all positive, favoring  Figure 5 depicts the evolution of wave packets under the
the focused outgoing targét. It is interesting to notice that  optimal coherent “43" control without the additional phase,
besides the optimal carrier frequencynephoton field satisfying 9 = 0. While it remains a nearly perfect overlap with the target
nQn, ~ Q (cf. eq 16), the optimal zero-phase and linear chirp in terms of the normalized achievemeit)) ~ 1, the selectivity
also follow the similar relationg)g® ~ ¢® andnc, ~ ¢, (cf. on the |[+Oproduct is also achieved via an almost perfectly
Table 2). These results together may suggest the extension oflestructive interference against the_byproduct. In comparison
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| x0.25

Iyl

Figure 5. Wave packet evolution on the two degenerat€land |—O
state surfaces via the optimal+B"-coherent control. The additional
phasef = 0.

320 fs

+

320 fs

hyl

480 fs
. /\
- 7

160 fs

———
R(A)

Figure 6. Same as Figure 5 but with = 7.

with the individual optimal one- or three-photon process (cf.
Figure 4), the yield of+Cproduct is quadrupled, while that of
|—[Cbyproduct decreases by more than two orders of magnitude.
Note that the setting of = 0 is designed for the constructive
maximization of the|+Oproduct rather than the destructive
minimization of the|—Obyproduct. However, the transition
dipoles/polarizabilities have been chosemas= —u- for the
one-photon excitation and® = o) for three-photon path-
way. The electronic contribution to the molecular phase differ-
ence between the “&3"-control of |[+Oand |—[states has the
value of z. For the molecular system in study, the nuclear
contribution to the matter phase difference is relatively small.
As a result, in the optimal “H 3”-coherent control witt =
0 in which the|+Oproduct yield is constructively maximized,
the |—Obyproduct yield is about destructively minimized. In
the optimal coherent control scenario, the maximal discrimina-
tion against thd —Obyproduct should in general be done by
defining a suitable target in the-Cistate and then setting =
m (cf. eq 21 and its comments). In this case, the product
branching ratioP+/P_ is usually maximized, but the target
achievemeng(ty) and the control yieldcr(tr)|? in the product
|+Ostate may decrease.

Figure 6 shows the evolution of wave packets under the
optimal coherent “43” control with the additional phase ©f
= 7. In this case, the control yielr(tf)|2 and the population
P+(t) in the |+0O state at the target time are optimally
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Figure 7. Evolutions of populationd (solid) andP- (dotted) on
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control via the individual optimal one-photon or three-photon field (cf.
Figure 4). The middle and the bottom parts result from the optimal
“1+3"-coherent control with the indicated values of the additional phase
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discriminated against via destructive interference. The final
residue wave function,(t;) on the|+Osurface that satisfies
cr(ty) = +|y+(t)O= 0 (cf. eq 17) has actually a node at the
center of target region (cf. the upper part of Figure 6). For the
same reason as discussed in Figure 5, the resulting yield in the
|—[ktate, i.eP—(t) = [p—(t7)|y—(t;) C(cf. the lower part of Figure
6), is quadrupled with respect to that in the individual optimal
one- or three-photon process (the lower part of Figure 4).
Figure 7 summarizes the evolution of populations on the
degeneratg+Oand |—Ostate surfaces in the three control
schemes presented respectively in Figures6.4 Again, it
demonstrates that in the weak response regime the optimal
control via a single excitation pathway (the upper panel of Figure
7) is unable to achieve the selectivity between two degenerate
|[+0Oand |—Ostates. The optimal coherent control with two
degenerate excitation pathways provides a realistic and simple
scheme to achieve the desired selectivity. The maximization
and the minimization of th¢+Ostate product can be achieved
in the optimal coherent control scheme by setting the additional
phasef = 0 (the middle panel of Figure 7) artl= x (the
bottom panel of Figure 7), respectively.

IV. Summary and Concluding Remarks

We have developed a theory of optimal *1 n"-coherent
control that exploits the advantages of both the tailored pulses
and the direct quantum interference between two degenerate
optical excitation pathways. For the clarity of theoretical
development, we have only considered a simplified molecular
model in which there are no intermediate absorptions to compete
with the direct multiphoton excitation processes. In this case,
the optimal coherent control theory can be formulated analyti-
cally in terms of the individual optimal fields, their relative phase
and intensity (eqs 1820). In a general molecular system, the
analytical expressions may only be obtained for the optimal
“14-2"-coherent control of pure statéssince in this case the
two-photon (pump-pump) control is an eigenvalue probl&ff?

In the present work, the fields of individual pathways are
formulated via optimal control theory (OCT) as a problem of
optimization in a functional space (cf. eqs 18 and 19), while
their intensities and relative phase are determined by a simple
consideration of the quantum interference (cf. eqs 17, 20, and
21). It should be able to incorporate the intensities and relative
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