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We have recently presented a new pharmacophore design method that allows for the incorporation of the
inherent flexibility of a target active site. The flexibility of the enzymatic system is described by collecting
many conformations of the uncomplexed protein; this ensemble of conformational states can come from a
molecular dynamics (MD) simulation, multiple crystal structures, or many NMR structures. Binding sites for
functional groups that complement the active site are determined through multiple-copy calculations. These
calculations are conducted for each protein conformation, providing a large collection of potential binding
sites. The Cartesian coordinates from each protein conformation are overlaid through RMS fitting of essential
catalytic residues, and the pharmacophore model is described by binding regions that are conserved over
many protein conformations. Previously, we developed a “dynamic” pharmacophore model for HIV-1 integrase
using 11 conformations of the protein from an MD simulation; the MUSIC procedure was used to calculate
binding positions for methanol molecules in each configuration of the active site. Here we present “static”
pharmacophore models developed with a single conformation of the protein from two new crystal structures
(standard protocol for multiple-copy methods). The static models do not perform as well as the previous
dynamic model in fitting known inhibitors of HIV-1 integrase. To test the applicability of the dynamic
pharmacophore method and the assumption that any reliable source of protein conformations is applicable,
we have now developed a second dynamic pharmacophore model based on the two crystal structures also
used for the development of the static models. Though the dynamic model based on the two crystal structures
does not fit as many known inhibitors as the previous dynamic model, it is a significant improvement over
the static models. Even better performance is expected with the addition of new crystal structures as they
become available. However, it is notable that using only two structures leads to great improvement in the
models.

Introduction

Unresolved segments of protein crystal structures can be very
problematic when using those structures in computer modeling.
We were recently faced with such a problem in our studies of
HIV-1 integrase.1,2 Until only recently, all available crystal
structures of the catalytic core were incomplete with unresolved
flexible loops. Particularly problematic was the fact that the
largest section of missing structure was a flexible loop adjacent
to the active site. With a portion of the active site environment
unresolved, our efforts in computer-aided inhibitor design were
greatly hindered. To overcome this, the missing loops were
modeled on the basis of the conformation of the homologous
loops in the crystal structure of the integrase from Avian
Sarcoma Virus.3 This completed structure was then used to
initiate two 1 ns molecular dynamics (MD) simulations of the
core domain, with and without a catalytic metal ion present in
the active site.1 Conformations from these simulations were used
in the development of the “dynamic” pharmacophore model for
HIV-1 integrase.2

One of our goals in studying the integrase is to develop
receptor-based pharmacophore models to identify compounds
that complement the active site. Given the uncertainty in the

homology-modeled loop adjacent to the active site, it was
important to develop a new method that could reduce the
propagation of errors in an individual protein conformation into
the resulting pharmacophore model. By using multiple structures
of the protein, an “averaged” picture emerges, potentially
focusing the design of inhibitors to the most important features
of the active site. Current methods to develop receptor-based
models usually rely on a single representation of the protein
conformation.4-12 Our previous study demonstrated that a
“static” pharmacophore model, based on the crystal structure
used to initiate the MD study, exhibited a poorer performance
than the dynamic model when fitting known inhibitors of the
integrase.2

HIV-1 integrase is an interesting test case for developing
dynamic methods because it has an active site that is shallow,
solvent exposed, and minimally restricted in conformational
sampling. Also, the flexibility of the active site loop is required
for catalytic activity; this must be incorporated into any reliable
pharmacophore model of the system.13 Studies have demon-
strated the need for protein flexibility in ligand docking and
multiple-copy simulations in order to achieve proper results;14-17

however, the large majority of publications continue to report
the use of only one static structure for multiple-copy simula-
tions.4,5,7-12 Because dynamic behavior is very important for
regulating function in many protein systems, this method has
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been proposed to accommodate such information in drug design.
The goal of developing a dynamic pharmacophore model is to
identify compounds that complement the protein while causing
minimal disruption of the conformation and flexibility of the
active site, potentially reducing the entropic penalties4,5 incurred
by the protein upon binding a ligand. While rigid versions of
the ligands can be synthesized to reduce such penalties on the
part of the ligand, this is the first method introduced to reduce
similar entropic penalties incurred by the receptor. Multiple
configurations of a protein receptor can be obtained from an
MD simulation, multiple crystal structures, or NMR structures5,14

to describe the inherent flexibility of the active site. These
methods each provide the uncomplexed receptor under the
influence of explicit solvent molecules. Binding sites for various
functional groups within each receptor configuration can be
determined with calculations employing multiple-copy methods.

In our first study,2 the multi-unit search for interacting
conformers (MUSIC) method was used to determine the binding
sites for hydrogen-bond donating groups within the active site
of multiple protein configurations provided from an MD
simulation.1 The MUSIC procedure is a Monte Carlo (MC)
simulation that simultaneously calculates multiple, gas-phase
minimizations for hundreds of probe molecules within the active
site. The many configurations of the protein are then overlaid
to reveal conserved binding sites that are highly occupied over
the course of the MD simulation despite the motion of the active
site. These conserved binding sites define a pharmacophore
model for inhibitors that should in theory bind to the active
site and still allow for almost the same flexibility.

In this study, we examine the possibility of using the multiple
crystal structures to create a second dynamic pharmacophore
model (Dynamic-Crystal). Shortly after the completion of the
MD simulations,1 crystal structures became available for the
complete catalytic core of HIV-1 integrase with resolved flexible
regions.18,19 Two static models are presented, each based on
only one of the two available crystal structures. The Dynamic-
Crystal pharmacophore was developed by combining the data
for the two static models.

Computational Details and Results

Preparation of the Protein Structures. As the dynamic
model from the MD simulations has been described elsewhere,2

we will limit this discussion to the development of pharma-
cophore models based on the crystal structures. For comparison,
the dynamic model based on the MD simulations (Dynamic-
MD) is provided in Table 1 with the models derived from the
crystal structures. To test the models, the Catalyst program20

was used to fit a set of known inhibitors to the pharmacophore
models; see Table 2.

In the original MD simulations, the system was fully solvated
with explicit water molecules and a divalent ion was present in
the active site.1 The ion and all solvent molecules were removed
to provide a “bare” active site for the MUSIC studies. All
ionization states were kept the same in the MUSIC studies
except that H66 (adjacent to the active site) was modeled as
protonated, which is its charge state in the absence of the
divalent ion.2 Also, the N- and C-termini of the catalytic domain
were modeled as neutral methyl amides to avoided any false
minima associated with the terminal charges at residues 57 and
210, since they are not present in the full integrase enzyme.
The pepz utility27 available with the BOSS28 and MCPRO29

programs was used to add hydrogens to the crystal structures
of the catalytic core from Maignan et al.18 (monomer C of 1BI4
in the protein data bank) and Goldgur et al.19 (monomer B in
1BIS).

MUSIC. In 1991, Miranker and Karplus introduced multiple-
copy methods6 based on ideas presented with the development
of the GRID method.30 The method was quickly embraced and
is now a standard practice in computational drug design.4,5,7,31-34

MUSIC is the multiple-copy method that is employed in the
development of the dynamic and static pharmacophore models;
it is a procedure available in the Monte Carlo program BOSS.28

Methanol molecules have been used to describe binding sites
that complement the catalytic residues D64 and D116 in the
active site. The probe molecules and the protein were described
with the all-atom OPLS force field.35,36 Large cutoff radii (50
Å) were used so that no nonbonded interactions were neglected.
The protein configurations were held rigid because the flexibility
was represented through the use of multiple configurations of
the protein; however, it should be noted that the side chains
can be conformationally sampled within the MUSIC procedure.

The protein structures were not rotated or translated during
the MUSIC studies, and the methanol probe molecules were
held internally rigid. Sampling moves for the probes were
limited to displacements of 0.15 Å or less and rotations of 15°
or less. The system was initiated with a 17.0 Å sphere of densely
packed methanol molecules centered at the active site (backbone
nitrogen of Q62 in the Goldgur et al. structure and Oε of D64
of the Maignan et al. structure), resulting in 245 and 383 copies
of methanol, respectively. A half-harmonic potential was applied
at the boundary of the 17.0 Å sphere (force constant of 5 kcal/
(mol‚Å2)) to keep the probes from possibly dissociating from
the protein. The following simulated annealing protocol was
used to minimize the hundreds of probe molecules: 106

iterations of MC sampling at 300°C, 106 iterations at 200°C,
106 iterations at 100°C, 106 iterations at 0°C, and finally 2×
106 iterations at-100 °C.

Pharmacophore Models.MUSIC calculations with methanol
molecules were used to identify binding sites for functional
groups to complement the active site. The hundreds of probes
clustered into many local minima within the receptor; given
that hydroxyl groups can be hydrogen-bond donors and accep-
tors, their orientation relative to the active site residues could
dictate either type of interaction site. Because the essential
residues of HIV-1 integrase are carboxylates, only hydrogen-
bond donor sites were identified (MUSIC calculations with
acetone probe molecules were also used to identify hydrogen-
bond acceptor sites, but none were located close enough to the
essential residues to be incorporated into the pharmacophore
models). The centers and radii of the hydrogen-bond donor sites
were calculated from the Cartesian coordinates of the oxygen
atoms of all the methanol probes in an individual cluster. The
center of each hydrogen-bond donor site in the pharmacophore
model was equal to the average position of the methanol
oxygens in each site. The radii of the hydrogen-bond donor sites
were set to double the RMS deviation of the oxygen coordinates.
The second and third models in Table 1 are from the crystal
structures of Maignan et al.18 and Goldgur et al.,19 respectively,
Static Model 1 and Static Model 2.

For the Dynamic-Crystal pharmacophore model, the Midas-
Plus37,38 program was used to overlay the MUSIC results for
the two protein structures by an RMS fit of the Câ, Cγ, and
Oδ atoms of the essential residues, D64 and D116, in both
conformations of the protein. In the development of the dynamic
pharmacophore model based on the MD simulations, only
conserved regions with probes from several protein configura-
tions were used. However, only two binding sites are conserved
regions when the two crystal structures are overlaid (HBd1 of
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Static Model 1 and Static Model 2, HBd4 of Static Model 1
and Static Model 2). If the model were to be restricted to only
conserved binding regions, as in the dynamic model based on
the MD simulations, it would result in a model with only two
hydrogen-bond donor sites. A two-site model is not specific
enough for drug design, so the two static models were simply
combined and the conserved regions treated as larger binding
sites with the centers and radii recalculated.

On the basis of the Cartesian coordinates from the overlays,
the average position for Cγ of D64 and Cγ of D116 were used
as the centers for two excluded volumes with radii of 1.5 Å in
the pharmacophore model. Two additional excluded volumes
were added at the relative positions of the backbone O of L63
in Static Model 1 and the Cδ of Q62 in Static Model 2 to
represent the bottom of the active site in the two crystal
structures. The excluded volumes in the static and dynamic

TABLE 1: Dynamic Pharmacophore Model Based on the MD Simulations and the Static and Dynamic Pharmacophore Models
Based on the Crystal Structurese

a Reference 18.b The side chain of Q62 is in an orientation away from D64 and D116 in the structure by Maignan et al., so the carbonyl oxygen
of L63 was chosen to represent the bottom of the active site.c Reference 19.d Both L63 and Q62 are retained from the static models. The change
in the coordinates reflects the change in origin and orientation when RMS-fitting the Oδ of D64 and D116, but similar views of the models are
presented above for clarity.e Atoms with gray spheres are hydrogen-bond donors; the black spheres are excluded volumes based on active site
residues.
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TABLE 2: Performance of the Pharmacophore Models Tested against Compounds from the Literature that Have Been Tested
for Inhibitory Activity (Compounds Ordered by Inhibitory Activity)

a Reference 18.b Reference 19.c Reference 21.d Reference 22.e Reference 23.f Reference 24.g Reference 25.h Reference 26. The numbers
listed for some of the compounds are the labels given in the referenced papers.
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models were used to eliminate compounds likely to have steric
conflicts with the protein. Though the binding regions are
specifically for hydroxyl groups, the criteria were extended for
the pharmacophore model to include any oxygen, nitrogen, or
sulfur that could donate a hydrogen bond (bound to one, two,
or three hydrogens). This resulted in a new dynamic pharma-
cophore model with 10 sites, four excluded volumes and six
hydrogen-bond donor sites. The two static models both consist
of three excluded volumes and four hydrogen-bond donor sites.

Using the Catalyst Program. For the test set of known
inhibitors of HIV-1 integrase, 59 compounds from the
literature21-26 were built into a user-defined database through
the 3-D viewer interface in the Catalyst program.20 Structures
of all the compounds are given as Supporting Information;
readers are referred to that source and the cited sources in Table
2 for additional information about the compounds used in the
test set. To test the selectivity of the pharmacophore models,
noninhibitory compounds with structures similar to known
inhibitors were included in the test set. A total of 20 compounds
in the test set had IC50’s under 1µM for 3′ preprocessing or
strand transfer (referred to as very active compounds in Table
2 and the following discussion). An additional 26 compounds
had IC50’s between 1 and 35µM for both catalyzed processes
(active compounds). Three ineffective inhibitors (IC50’s of 46-
224 µM) and 10 noninhibitors were also included. All com-
pounds chosen to test the pharmacophore models contained at
least four hydrogen-bond donors. The inhibitors that are most
likely to bind to the side chains of D64 and D116 must contain
many hydrogen-bond donors to complement the carboxylate
groups.

Conformations of the inhibitors were created with the fast
conformational generator employing the default limits and the
built-in force field used in Catalyst.20 They were fit to the
pharmacophore models using the “best” routine. The best routine
allows for an additional cycle of fitting to refine the conforma-
tions of the compound to better fit the pharmacophore model.
Results for fitting the inhibitors to the pharmacophore models
are given in Table 2.

Discussion

We have previously reported the excellent performance of
the Dynamic-MD pharmacophore model to fit the test set;2 the
excellent fit rate for the very active compounds is particularly
encouraging (see Table 2). Somewhat discouraging is the
number of ineffective compounds that fit the Dynamic-MD
model (11 of 13), but it is emphasized that the ineffective
compounds chosen for the study closely resembled the very
active compounds. They were specifically chosen to be a
difficult countertest of the models. Each model in Table 2 that
fits significant numbers of very active compounds also fits many
ineffective compounds. Most of the compounds in the test set
were identified by searching the nonproprietary half of a small
molecule database maintained by the National Cancer Institute
(NCI). If the Dynamic-MD, Dynamic-Crystal, or Static 1 models
were used to search the NCI database, they would have also
identified many of these same successful compounds.

Poor performance is seen for Static Model 2 in fitting the set
of published inhibitors. Only six compounds fit the model, most
of which have IC50’s well over 10µM. The structure solved by
Goldgur et al.19 was used to develop Static Model 2. It is very
different from the MD structures and the crystal structure by
Maignan et al.2 In the structure by Goldgur et al., the flexible
loop adjacent to the active site is oriented away from the
catalytic residues. Though the flexible loops are very different

(see Figure 1), the relative positions of D64 and D116 are almost
the same in the two structures; it is the orientations of other
nearby residues that disagree and lead to different pharmaco-
phore models. While the structure solved by Goldgur et al. does
not appear to be appropriate for this particular set of inhibitory
compounds, it might well be appropriate for other classes of
inhibitors. Many inhibitors of HIV-1 integrase contain mostly
hydrogen-bond acceptor functionalities and would be expected
to dock in sites other than the active site or perhaps force the
active site into a different conformation. Furthermore, the
flexibility in this loop is essential for catalytic activity.13 It is
quite possible that the conformation is valid for ligand binding
even though not reflected in fitting the test set, and its
incorporation in to a dynamic model could lead to improvement.

Static Model 1 has the better performance of the static models,
identifying 18 compounds. Eight of which are very active
compounds. The structure solved by Maignan et al.,18 that was
used to develop Static Model 1, is very similar to the MD
structures.2 It is reasonable that this static model has the more
similar performance to the dynamic model. Table 3 presents a
comparison of the performance of the dynamic models and Static
Model 1. Static Model 1 is comparable in percent yield and
enrichment to the Dynamic-MD model. The excellent enrich-
ment values for both models fitting the very active compounds
are particularly notable. However, the Dynamic-MD model is
clearly superior in the number of active compounds that it
identifies (% actives in Table 3).

Though we are quite pleased with the success of the Dynamic-
MD model, it is important to evaluate the general method using
a different protocol. It would be best if the method of overlaying
many structures would lead to a better performance of the
pharmacophore models whether using MD simulations or

Figure 1. Crystal structure solved by Maignan et al.18 (shown in white)
and the Goldgur et al.19 structure (shown in gray). The structures show
excellent agreement in the secondary structure except in the flexible
loop over the active site (a second smaller flexible loop is also in slight
disagreement, but it is far from the active site and not shown for clarity).
The side chains of D64 and D116 are in black. The orientation of these
two essential aspartic acids is in excellent agreement between the two
structures.
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experimentally determined structures. For this reason, we created
and evaluated the Dynamic-Crystal model. Even though Static
Model 2 only fit six compounds (all of which were also fit with
Static Model 1), combining the information leads to many more
inhibitors fitting the Dynamic-Crystal model. Twelve of the 20
very active compounds are identified, a 50% improvement over
Static Model 1. Thirteen of the active compounds in Table 2
fit the Dynamic-Crystal model, which is a very large improve-
ment over Static Model 1 (260%). The Dynamic-Crystal model
appears less selective for the very active compounds (lower %
yield and enrichment values in the first half of Table 3).
However, the lower % yield only reflects the improvement in
fitting active compounds in Table 2, and the enrichment value
is approximately 1, indicating that the model is not preferentially
binding the active and inactive compounds over the very active
ones. Furthermore, the % actives values in Table 3 for both
very active and all active compounds is significantly improved
over Static Model 1.

Conclusion

The method for developing dynamic pharmacophores has
been shown to be successful when using experimentally
determined protein structures or structures from MD simulations.
The Dynamic-Crystal model is significantly improved over the
static models. What is surprising is the excellent performance
of the Dynamic-Crystal model given that only two protein
structures were used to represent the flexibility of the system.
This points to the versatility of the method and its applicability
even when few structures are available for a given system.

The Dynamic-MD, static 1, or Dynamic-Crystal pharma-
cophore models could all be used in database searching to
identify new inhibitors. Each would have different advantages.
Dynamic-MD appears capable of identifying many very active
compounds; 90% of the very active compounds fit the model,
and the enrichment value is 1.23. But the high number of
compounds fitting this model may imply that a very large
number of compounds would be identified in database searching,
making experimental testing of the compounds time-consuming.
Static Model 1 is also selective for very active compounds with
lower fit rates that the Dynamic-MD model, but the number of
compounds identified could be too small, leading to an

insufficient number of compounds being identified. The Dynamic-
Crystal model is most likely preferable over Static Model 1, as
it identifies many more active and very active compounds. The
size and nature of the database would dictate which dynamic
pharmacophore model would be best. We are currently involved
in searching the Available Chemicals Database for inhibitory
compounds, and our collaborators have begun experimental
testing of those compounds. We eagerly await further experi-
mental studies employing these models.
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(4) Böhm, H.-J.; Klebe, G.Angew. Chem., Int. Ed. Engl.1996, 35,
2588.

(5) Walters, W. P.; Stahl, M. T.; Murcko, M. A.DDT 1998, 3, 160.
(6) Miranker, A.; Karplus, M.PROTEINS1991, 11, 29.
(7) Zheng, Q.; Kyle, D. J.DDT 1997, 6, 229.
(8) Miranker, A.; Karplus, M.PROTEINS1995, 23, 472.
(9) Joseph-McCarthy, D.; Fedorov, A. A.; Almo, S. C.Protein Eng.

1996, 9, 773.
(10) Joseph-McCarthy, D.; Hogle, J. M,; Karplus, M.PROTEINS1997,

29, 32.
(11) Leclerc, F.; Karplus, M.Theor. Chem. Acc.1999, 101, 131.
(12) Castro, A.; Richards, W. G.; Lyne, P. D.Med. Chem. Res.1999,

9, 98.
(13) Greenwald, J.; Le, V.; Butler, S. L.; Bushman, F. D.; Choe, S.

Biochemistry1999, 38, 8892.
(14) Knegtel, R. M. A.; Kuntz, I. D.; Oshiro, C. M.J. Mol. Biol. 1997,

266, 424.
(15) Sandak, B.; Wolfson, H. J.; Nussinov, R.PROTEINS1998, 32,

159.
(16) Zheng, Q.; Kyle, D. J.PROTEINS1994, 19, 324.
(17) Totrov, M.; Abagyan, RPROTEINS1997, Suppl 1, 215.
(18) Maignan, S.; Guilloteau, J.-P.; Zhou-Liu, Q.; Cle´ment-Mella, C.;

Mikol, V. J. Mol. Biol. 1998, 282, 359.
(19) Goldgur, Y.; Dyda, F.; Hickman, A. B.; Jenkins, T. M.; Craigie,

R.; Davies, D. R.Proc. Natl. Acad. Sci. U.S.A.1998, 95, 9150.
(20) Catalyst 3.10;Molecular Simulations Inc.: San Diego, CA, 1996.
(21) Neamati, N.; Sunder, S.; Pommier, Y.DDT 1997, 2, 487.
(22) Neamati, N.; Hong, H.; Sunder, S.; Milne, G. W. A.; Pommier, Y.

Mol. Pharmacol.1997, 52, 1041.
(23) Farnet, C. M.; Wang, B.; Lipford, J. R.; Bushman, F. D.Proc.

Natl. Acad. Sci. U.S.A.1996, 93, 9742.

TABLE 3: Comparison of the Performance of the Dynamic
Models versus Static Model 1 in Fitting the Compounds in
the Test Set Given in Table 2a

% yield ) (active compounds fit to model/all compounds fit to model
% actives) (active compounds fit/all active compounds in test set)
enrichment) (active fits/total fits)/(all active compounds in test

set/all in test set)b

dynamic-
MD static 1

dynamic-
crystal

Active Compounds) 20 Very Active Compounds
% yield 42 44 36
% actives 90 40 60
enrichment 1.23 1.31 1.07

Active Compounds) All 46 Active Compounds
% yield 74 72 76
% actives 70 28 54
enrichment 0.95 0.93 0.97

a The performance is evaluated for the fit of the very active
compounds and the fit of all active compounds.b An enrichment of
1.0 indicates that the model is fitting compounds with the same ratio
of active compounds as exist in the original test set, while values over
1 reveal that the model is identifying a higher percentage of active
compounds (model is preferentially identifying active compounds).

10218 J. Phys. Chem. A, Vol. 103, No. 49, 1999 Carlson et al.



(24) Hong, H.; Neamati, N.; Wang, S.; Nicklaus, M. C.; Mazumder,
A.; Zhao, H.; Burke, T. R., Jr.; Pommier, Y.; Milne, G. W. A.J. Med.
Chem.1997, 40, 930.

(25) Farnet, C. M.; Wang, B.; Hansen, M.; Lipford, J. R.; Zalkow, L.;
Robinson, W. E. Jr.; Siegel, J.; Bushman, F. D.Antimicrob. Agents
Chemother.1998, 42, 2245.

(26) Nicklaus, M. C.; Neamati, N.; Hong, H.; Mazumder, A.; Sunder,
S.; Chen, J.; Milne, G. W. A.; Pommier, Y.J. Med. Chem.1997, 40, 920.

(27) Tirado-Rives, J.; Jorgensen, W. L.pepz.; Yale University: New
Haven, CT, 1998.

(28) Jorgensen, W. L.BOSS,version 3.8; Yale University: New Haven,
CT, 1996.

(29) Jorgensen, W. L.MCPRO, version 1.5; Yale University: New
Haven, CT, 1997.

(30) Goodford, P. J.J. Med. Chem.1985, 28, 849.
(31) Kuntz, I. D.Science1992, 257, 1078.
(32) Colman, P. M.Curr. Opin. Struct. Biol.1994, 4, 868.
(33) Blundell, T. L.Nature1996, Suppl. 384, 23.
(34) Marrone, T. J.; Briggs, J. M.; McCammon, J. A.Annu. ReV.

Pharmacol. Toxicol.1997, 37, 71.
(35) Kaminski, G.; Duffy, E. M.; Matsui, T.; Jorgensen, W. L.J. Phys.

Chem.1994, 98, 13077.
(36) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J.J. Am. Chem.

Soc.1996, 118, 11225.
(37) MidasPlus; Computer Graphics Lab: University of California, San

Francisco.
(38) Ferrin, T. E.; Huang, C. C.; Jarvis, L. E.; Langridge, R.J. Mol.

Graphics.1988, 6, 13.

Dynamic Fluctuations of a Protein J. Phys. Chem. A, Vol. 103, No. 49, 199910219


