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We apply the Merrifield variational method to the Holstein molecular crystal modé& gimensions to
compute nonadiabatic polaron band energies and Fra@iokdon factors at general crystal momenta. We
analyze these observable properties to extract characteristic features related to polaron self-trapping and potential
experimental signatures. These results are combined with others obtained by the-Gtaladlvariational

method in 1D to construct a polaron phase diagram encompassing all degrees of adiabaticity and alt-electron
phonon coupling strengths. The polaron phase diagram so constructed includes disjoint regimes occupied by
smallpolaronsJarge polarons, and a newly-defined classcoimpactpolarons, all mutually separated by an
intermediate regime occupied by transitional structures.

1. Introduction of the nonadiabatic regime to preclude a meaningful assessment
o of the self-trapping transition there. Necessarily, therefore, what
The theory of polarons has undergone an evolution in recent,ye have been able to say about the polaron phase diagram in

years that has substantially improved our ability to put solid, the nonadiabatic regime has been based on extrapolations from
quantitative accuracy to matters that have heretofore enjoyedmore adiabatic behaviors.

only semiquantitative estimation or qualitative characterization.
This can be said in view of a convergence of reduhst has
been found in a number of independent and high-quality
methods that have been brought to bear in particular on the
analysis of the Holstein molecular crystal mod&élmportant
among these methods are cluster diagonalizdtiérgensity

The nonadiabatic regime is important to many narrow-band
systems and particularly to molecular crystals for which the
Holstein model was originally formulatéd:?%32 Polaron
properties in the nonadiabatic regime generally depend quite
smoothly on the basic system parameters, without the relative
) o oo abruptness that tends to emerge in the adiabatic regime, and
matrix renormalization groupguantum Monte Qaﬂé_’ *and the low orders of perturbation theory, either weak-coupling or
certain variational approachés> 2 Though quite distinctin gy onq_coupling, tend to do a reasonable job of capturing most
their conception and implementation, these methods have alljyopayiors. Paradoxically, perhaps, it is this relative unremark-
been found to be in deep and broad quantitative agreement 0vehjeness of the nonadiabatic regime that raises some of the
wide regions of the polaron parameter space. questions motivating our study, in particular, how the dramatic

Our own effort in this area has relied mainly upon the character of the self-trapping transition that is so obvious at
Global-Local variational method, certain results of which will  high adiabaticity dissembles into relative obscurity, and how,
figure in the present work. A significant part of this effort has as a practical matter, its lingering presence may be recognized
dealt with the problem of developing a reliable and interpretable in observable polaron properties.
polaron phase diagram on which can be clearly delineated the /e approach this problem through the use of the Merrifield
distinct regions of the polaron parameter space where distincty 5riational method®34 The Merrifield method can be viewed
classes of polaron structure may be found. In the course of this 35 g1 antecedent to the Globalocal method in that it is the
development, some familiar notions that have become part of first in a sequence of increasingly refined variational methods
the polaron lore have had to be revised, including the real |eading to the GlobatLocal method. Although the Merrifield
physical nature of the large polaf8ii*?°and the meaning of  method suffers some very characteristic limitations that restrict
self-trapping inD dimensiong:’?8 its usefulness as a tool for implementing polaron theory at

Here, we continue to be concerned with the polaron phase general points in the polaron parameter space, it is at its best in
diagram, but in a manner and regime that are complementarythe nonadiabatic regime where computation by the more general
to what has already been developed. For practical and formal Global-Local method becomes difficult, and is thus well-suited
reasons, the utility of the GlobalLocal variational method  to the present task. Moreover, owing to its relative simplicity,
deteriorates significantly when the fundamental electron transfer it is possible to pursue results i dimensions, and to obtain
integrals are small and the electrophonon coupling is weak;  some degree of analytical guidance and support for numerical
as a practical matter, this limitation excludes a sufficient portion studies.
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To locate the self-trapping transition, we need to analyze The Merrifield trial state may be written as
observable physical properties that take on distinguishable .
asymptotic behaviors on each side of the transition and |W(k)(= N’D/zz e”"“a:ﬂ X
objectively locate a boundary that discriminates between these n
behaviors. Here, we focus on two properties that are particularly exp[—N’D’ZZ(lge"q'”bg — h.c)]|00(4)
important to spectral studies, the polaron ground-state energy q
(related in well-known ways to Stokes shifts) and Franck
Condon factors (related in well-known ways to oscillator
strengths). As a function of the electrephonon coupling
strengthg, the ground-state energy generally exhibits a “knee
between distinct weak- and strong-coupling trends that can be
located and followed in parameter space to develop a self-
trapping line. FranckCondon factors generally exhibit a
distorted Gaussian dependence on the coupling strength, allow
ng _the pentral peak region (W(_aak cpuphng) to be ob_Jectlver correlations that are essentially local in character. Here, that
distinguished from the outer tail region (strong coupling). local character is such that the electronic component located at

We use the Holstein Hamiltoniah on a D-dimensional siten is associated with a “phonon cloud” centered on that site,
Euclidean lattice determined by the set of lattice amplitudg} .

We evaluate the variational energy band as the expectation
value of the Holstein Hamiltonian

W (k)W (K')E= O (5)

» in which the{/l’;} are the variational parameters specifying the
coherent state amplitude in the phonon madé&hough these
trial states are delocalized and satisfy the appropriate Bloch
symmetry condition, and thus any property measured in the
“lab” frame is uniform over the lattice, the internal structure of
‘these delocalized states is determined by exeiftonon

D
A==5 5 Jai@n, Tan o)+
n i= D
ho bib, — ghoy ala,bl +b) (1) B =WOHW)D= —3 J(EST +e st +
n n =
N*thZugF - N*Dghwz(/lf’; +2¢) (6)
in which a,, creates a single electronic excitation in the rigid- q q
lattice Wannier state at site and b/ creates a quantum of
vibrational energyiw in the Einstein oscillator at site. TheJ;
are the nearest-neighbor electronic transfer integrals along the _ b K2, 2ig;
primitive crystal axes, and thgare unit vectors associated with Sii = expN qu' (e —1)] (@)
the primitive translations. The above model encompasses all a
Brava_us lattices, Wlth the different lattice _stru_ctures appearing \sinimization of EX
only in the relative values of the hopping integraks For
simplicity in the following, we use terms appropriate to

whereinS}, is the Debye-Waller factor

with respect toi’é* leads to the self-
consistency equations fdf:

orthorhombic lattices in which conventionally= x, y, or z dhow
however, all results hold for lattices of lower symmetry with /1’; = s (8)
appropriate transcription of these labels to those of the primitive . .
axes. ho — Z[4JiS‘ sin(; — @ — g/2) sin@/2)]
We use the following Fourier conventions for ladder operators .
(c" = af, b") and scalars: g = exp[l\l’Dz|/1’(§|2(cosqi - 1)] (9)
q
T _ D2 —ipn o F D2 dpn WF _ )
=N Ze ey =N Ze"’"cn 2 P =N Dz|/1§|25'”% (10)
p n
q
J=NTPF 9k k= g lamn K 3 _ ok K_ gk 2k _ 4K
N S =0 e @ §=5% of=—oF =15 (11

where §° and +®! are the magnitudes and phases of the
complex Debye-Waller factorsS;;. This shows the optimall;
to be real, and establishes the “sum rule”

It is convenient in the following to characterize tunneling
strength inD dimensions in part through a parameder 3 J;
when restricting discussion to isotropic tunneling, we use the
nolt:atlonJ = J;, such t_hatJ_ =DJin those_z gases. _ _ Xiﬁ =), =g (12)

or the most part in this paper, we limit our discussion to o
the nonadiabatic regime, defined by the conditithw < 1/4.
Polarons at such smallhw are quite narrow since we know  valid at anyk and in any number of dimensions.
that thelargestpolaron in any dimension (as characterized by ~ When any particuladi/iw — 0,/1’(; loses any dependence on
the size of the phonon cloud) has a width ofi{2w)'? along g andx;, becoming “flat” in those variables. The Deby@/aller
thei axis since naJi/iw is greater than 1/4 in the nonadiabatic ~ factor (§) and phase®!) associated with that direction drop
regime, no polaron in this regime has a width greater than a out of the problem, and the real-space phonon amplitifjes
lattice constant, even at vanishing coupling. Thus, the variational become completely localized along theaxis. Although a
space in which the problem is solved numerically neetlbe disparity among the relative magnitudes of sevérahn result
large to contain the complete polaron. This ability to contain in a polaron that is in respects “small” in certain directions and
the present problem in a small real-space volume facilitates “large” in others, there is not a distinct self-trapping transition
computation considerably. associated with each?® This can be seen in the present context
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in the fact that the DebyeWaller factorS; associated with a
vanishingJ, does not approachr &, which would be expected
of 1D small polarons along the axis, but a quantity that is
characteristic of the 2D polaron structure in the two surviving

dimensions, whether this be large-polaron-like or small-polaron- 1.2
like. ! ’:::::‘:‘“f‘::?% SIRIIIITILSGHE ::’0’0’;’00
. . . . 305
The sum rule continues to be satisfied as dimensions are 0.8 ‘0.::‘:::’::‘:::‘:"::‘5::‘3::‘:“:‘:::::::::::@0:’
turned off or on (e.g.J, — 0 in three dimensions), since "“‘}‘“‘3:8:‘::\‘:‘%:0:0:0:0:0:0
OSSO KKK
S
lim Aleiegicd) — ek § = § (k) — (13) SIS
(Nxy.ng) (Nwny,)~'n,0 (nwny) 9 S
30 NNy, nLnyn, Nhy

Thus, there is no need for dimension-specific formulation if
dimensions are controlled through the tuning{dfaw} .

Owing to the symmetries (eq 11) and the periodicity of the
reciprocal Iattice,tbf vanishes at the Brillouin zone center and
everywhere on the Brillouin zone boundary. Consequently, we
have certain special values that play a significant role in the
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Figure 1. Sample surface showing the (real) variational amplitudes
Aq in the 1D case fod/hw = 0.2 andg = 1.

than experiencing the expected strong repulsion from the one-
phonon continuum, the outer-zone portions of Merrifield energy

following. Denoting the reciprocal lattice origin iyand any
of the most extreme points of the Brillouin zone &y« = +x
along each axis), we find

bands flatten relatively weakly and cannot be taken as ap-
propriately indicative of the polaron structure when
Jihw =z 1/4.

Although one cannot rely upon the numerical values of

20 = gho Merrifield band energies influenced by resonances with the one-
q D (14) phonon continuum, it is nonetheless true that the general
Ao + Z[4Ji§ sinz(qi/2)] character of the _variational lattice state responds to such
& resonance effects in a reasonably appropriate way, provided that
J/hw < 1/4. This suggests that changes in the variationally-
= gho (15) determined FranckCondon factors, as very direct figures of
q

merit for this general character, may reasonably indicate where
the essential changes in polaron structure occur. Thus, in the
following we rely upon Franck Condon factors as our primary
diagnostic of outer-zone polaron structure. Although this proves
The zone-center phonon amplitudes (eq 14) are well-behavedio be a very practical election, it is a choice that is in respects
under all circumstances because the denominators, similar toforced upon us by the limitations of the Merrifield method. As
those of weak-coupling perturbation theory, are sums of boundeda choice that in the larger picture should be sufficient, but not
positive terms. The zone-edge relation (eq 15), on the other handnecessary, other theoretical methods not so limited should find

suggests the possibility of encountering large or divergent similar behavior in the band energies and other polaron
phonon amplitudes for phonon wave vectors near the Brillouin properties near the band edge.

zone boundary if tunneling is sufficiently strond/kw > 1/4)

and the DebyeWaller factors{S'} are sufficiently near unity

(as generally occurs when electrgphonon coupling is suf-
ficiently weak; see the 1D examples below). This potential
divergence is both a real physical phenomenon and a generato

of artifacts in the Merrifield method. ) ) . .
The reality of the phenomenon is due to the resonance orone dimension, however, since the reduction to quadratures

near-resonance that can occur between the states of the ondnvolved in higher dimensions does not significantly facilitate
phonon continuum and zone-edge states of both the free electroffPMPutation.

and the self-consistent polaron when the energy gap between, Replacing f[he summations in eqs 9and 10 .W'th .lD Integra-
the latter and the one-phonon continuum is small. This tions, one arrives at the self-consistency equations first obtained

D
ho — Z[4Ji3” sinf(q;/2)]

2. The 1D Case

In principle, the set of eqs-810 can be closed in thg and
fbf‘ alone, greatly reducing the size of the self-consistency
problem to be solved. This is of practical advantage only in

circumstance occurs in any number of dimensions when by Merrifield:

J/hw z 1/4 andg is small. Under these circumstances, only a _ 2k

very small amount of electrefphonon coupling is needed to S =exp-g'A) (16)
produce intense interactions that flatten the outer polaron energy O = —g°A*(2IS hw) sin(@* — «) (17)

band (level repulsion) and create heavy phonon clouds strongly
modulated by the character of the zone-edge phonons.

The Merrifield method accommodates the nearness of the one-
phonon continuum by producing strong distortions of the A“={[1 + (2JS/hw) cos@" — «)]* —
variational amplitudes of a qualitatively appropriate nature; the (23S Thw)3 32 (18)
phonon amplitudes become highly focused around a single- . ) o
phonon wave vector, in clear approximation to the single-phonon USing €as 16-18 in eq 8 yields the full set of variational phonon
quantum that constitutes the exagt— O state. However, ~ amplitudes such as shown in Figure 1. _
because the Merrifield state is not well-equipped to emulate  ©ONe may further obtain the energy-momentum relation
the highly quantum mechanical character of such states, the_, % ;
energy balance central to the variational principle is distorted E'=gho(A" -
and the variational energy bound is raised. Consequently, rather

and

Z[AK] 1/3) _
2JS(1 — g°A") cosk — D) (19)
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The price paid for the compactness of this expression is the 1.0
self-consistency condition that makes eq 19 awkward to analyze;
however, it can be shown that eq 19 agrees with weak-coupling
perturbation theory through second ordergnand strong-
coupling perturbation theory through first order Jffiw. The

latter is actually a shortcoming of the Merrifield method since
important contributions from second order quickly dominate the

first order of strong-coupling perturbation theory; however, the ¥
first order is sufficient to properly determine that in the t
Jhw — 0 limit the knee in the dependence®Bfon g at anyx

is given by

0.6 |

0.4 |

02|

PE 3\ 12 J

3=o=»g=(—) at L =0 (20)
ag 2 hw
0.0 ‘ ‘ ‘
0 /4 /2 3n/4 n

The same differential criterion can be applied at finltew, K
which we will use to develop the phase diagram in section 4 Figure 2. Franck-Condon factors across the Brillouin zone in 1D.
below. Jhow = 0.2,g = 0.25-1.5.

3. Franck—Condon Factor In terms specific to our variational development
A qu_antit_y intimately rela_ted to the Del_oy@Na_lIIer factors F(k) = exp(_N—DszZ) (22)
appearing in the self-consistency equations is the Franck q

Condon factor o )
which is just the exponential of the average number of phonons

er mode in the phonon cloud.
F(k) = |BIJ(K)|aI|OII|]2 (21) P In the 1D caseF,) we find

This is one of many FranekCondon factors associated with F(x) = exp{ —g°A“[1 — (2JSThw) cosg — D]} (23)
various transitions between correlated electrphonon states.

This particular factor characterizes the oscillator strength of the as shown in Figure 2 in selected cases.

zero-phonon line associated with a transition between a free It is simple to show that in the absence of tunneling
electron state of crystal momentumand the polaron it forms F(k) = e ¢ for all k in any number of dimensions. Thus, in

at the samek; these are direct transitions, resolved by crystal the J/hw — 0 limit the self-trapping features associated with
momentum. Though one is often concerned primarily with the Franck-Condon factor are found at= 1/+/2, for anyk.
transitions near the Brillouin zone center, we will use the full With increasing tunneling, this degeneracy is broken, and these
k dependence d¥(k) across the Brillouin zone, and particularly ~ features fan out; the manner in which this occurs can be seen

at the zone center and the zone boundary. most clearly in the 1D case, where
Our principal interest in zero-phonon lines in the present
context is in the possibility that they may offer an observable F(c=0) = _ 5 1—2)Shw 24
. . ((k=0)=exp — g~ — ——=> (24)
means for mapping the essential polaron features on the polaron a1+ 4J§/hw)

phase diagram. Owing to the strong similarity between the
Franck-Condon factor and the Deby#Valler factors intimately F(e=n) = _ 2 1+ 2)SThw

. . o K=m) = exp —g (25)
connected with the polaron effective mass, it is reasonable to (1 — S hw)*?
expect that an analysis of the dependence of the Frafiokdon
factor on model parameters should be able to yield the location (see Figure 3). It is clear from these that the FranCkndon
of the self-trapping line. Also owing to the fact that the factor is independent of at J/iw = 0. It is also clear that
Merrifield method is at its best in the nonadiabatic regime and increasingl/hw from 0 cause$(0) to broaden out to stronger
weak coupling, it is reasonable to hope that such an analysiscoupling and causes(:r) to narrow toward weaker coupling.
would complement others made by other methods generally Perhaps the most interesting behavior revealed in egs 23
more accurate (e.g., the Globdlocal method), but which 25 is that of F(xr) at JJhw = 1/4. Using the fact that at this

deteriorate in quality at small/hw andg. particularJ/hw value
The quenching of the zero-phonon line is an experimental . 5 3
signature that has long been associated with the self-trapping S'=exp[-g(1 - S) 2] (26)

transition. As a function of model parameters, this quenching
occurs continuously as electrephonon coupling is tuned from
the weak-coupling to the strong-coupling regimes. There is thus S 27
some inherent ambiguity in the assignment of the point we 9 27)
associate with the self-trapping transition; our criterion here,  Thjs in turn implies that in the same approximation

as elsewhere, is to identify the self-trapping transition as the

point of most rapid changein a property that takes on F(Jt)Nexp[—(3/2)g4/5] (28)
characteristically different behaviors in the weak- and strong-

coupling regimes. In the case of the Frantkondon factor, (see Figure 4). This singular behavior in the Fran€london
this criterion takes the form of an inflection point in the factor atJ/Jhw = 1/4 suggests that the self-trapping feature
dependence df(k) on g at fixed {J;}. identified by an inflection point ing moves tog = 0 at

one can show that the leading dependenc&ain g is
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100~ DJ. This implies that the particular results shown in Figure 3
AR hold not only in 1D but also in 2D and 3D when parameters
\Q\\‘X\\ are scaled appropriately.
NN \% x=0 Results can be obtained numerically for any degree of
075 1 ‘\\‘\\‘}-\\‘:3\\\ i anisotropy and general; however, the qualitative nature of
\‘Q\{\ \‘\_\\k\ the dependence on anisotropy can be inferred from Figure 3
cex \\\‘{\ \.\\\:\\\\ without detailed analysis. Consider, for. exampes 0 and .
2 80 | SO ] Jhw = 0.05: The results for quasi-2D scenarios with
= NAY N Jdho = Jlho = 0.05 and 0< J/hw < 0.05 are contained
N between theDJ/hw = 0.15 andDJhw = 0.1 cases shown in
X \\ \ Figure 3. Similarly, the results for quasi-1D scenarios with
0.25 | | ===~ DJ=0.10 \\\\\\ 1 Jdho = 0.05, 0< Jy/hw < 0.1, andJ/hw = O are contained
——-DJ=0.15 \Q\s:“\ between theDJ/hw = 0.05 andDJ/hw = 0.1 cases shown in
- ijg-gg % Figure 3.
—_— The tunneling parameters and the effective dimensionality
0.00,5 0 10 15 2.0 determined by them are not generally subject to any practical

Figure 3. Franck-Condon factors ifD dimensions at the zone center
(upper curves) and at the most extreme point of the Brillouin zone

(ki = 7) for DIhow = 0—0.25.

degree of experimental control; however, even greater changes
in the Franck-Condon factor can be induced by changing the
magnitude and/or the orientation of the crystal momentum
probed. To the extent that it is possible to achieve some
selectivity in thek values sampled in a particular experiment,
it should be possible to induce controlled variations in the
oscillator strengths associated with these Frar@@andon factors

by, for example, varying the orientation of the sample. Such
predictable “wobbles” in the intensities of appropriately-selective
spectral probes constitutggnaturesof polaron structure that
exist only if both electron-phonon couplingand electron
tunneling are sufficiently greatyithoutreducing the quasipar-
ticle to the status of a “mere” small polaron.

4. Phase Diagram

The overall character of the foregoing results can be sum-
1 marized on a diagram of the polaron parameter space in which
the loci of the knees in the polaron band energies and the
inflection points of FranckCondon factors play the role of
rough phase boundaries separating distinct classes of polaron
10 structure (see Figure 5). These lines are accurately described
9 by the simple relations
Figure 4. log(—In F(k)) vs log g, allowing the power ofg in the
exponent of the FranekCondon factor to be ascertained. Curves are
coded to correspond to Figure 3. Zone center (lower curves) and zone
edge (upper curves) ib dimensions foDJ/Aw = 0, 0.05, 0.1, 0.15,

——-DJ=0.15
g —-— DJ=020
DJ =0.25

3\Y4.  2DJ
Oeo (E) (1 + éf;), DJhw < 1/4 (29)

0.2, and 0.25. 3 1/2 2DJ
Jhw = 1/4. Indeed, on can show that, fdhw = 1/4 — ¢, the O ~ (5) (1 3 r;) Do < 1/4 (30)
Franck-Condon factor retains an initial finite negative curvature
in g, suggesting that there exists a proper inflection point at 1\¥3 DJ\??
e O~ 13| |2 +4—) , DJhw < 1/4 (31)
finite g. BV w

Thus, all these considerations suggest that the self-trapping 12 2
feature inF(0) should shift more-or-less steadily frag= 1/+/2 (1 1— 42 DIhw < 1/4 32)
at Jhw = 0 to strongercoupling with increasind/hw, while = 2 Aol

the self-trapping feature iR(;r) appears to shift from the same
g = 1/v/2 toweakercoupling with increasind/fiw, arriving at obtained in empirical fashion by noting the exdct 0 termini
g = 0 atJhw = 1/4. as discussed in prior sections and augmenting these with the
The particular results above have been obtained for the 1D simplest expressions in whole numbers that express the apparent
case, which enjoys sufficient tractability to admit some reason- trends in a quantitatively consistent way. The restrictions on
ably straightforward formal analysis. In higher dimensions, eqgs 29 and 31 are weak because such zone-center properties
numerical solution and analysis are generally more practical, are well-behaved under the Merrifield method 36w sub-
though certain exceptions warrant special attention. Throughoutstantially greater than 1/4; however, the quantitative accuracy
the foregoing we have highlighted the particular crystal mo- of the Merrifield method even at the zone center deteriorates
mentum values associated with the Brillouin zone center significantly with increasing/hw, warranting prudence beyond
(k = 0) and the most remote corners of the Brillouin zone where the strictly nonadiabatic regime. On the other hand, the
all the crystal momentum components take their maximum restrictions on eqs 30 and 32 are strong because zone-edge
values g = ). We demonstrate in the Appendix that, for these properties are strongly affected by the one-phonon continuum.
particulark values in the isotropic cases hdimensions, the These boundaries only roughly distinguish distinct polaron
dependence of the FranekCondon factors on the dimensionality regimes because the structural changes occurring in the nona-
and tunneling strength is reduced to the single scaled variablediabatic regime are quite smooth and broad, with changes in
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Figure 5. Polaron phase diagram in the nonadiabatic regime according Figure 6. Polaron phase diagram combining the empirical curves (egs
to the Merrifield method inD dimensions. Diamonds: location of ~ 29, 31, and 32) based on the present analysis employing the Merrifield
inflection points inF(x7). Circles: location of inflection points iR(0). method forDJ/Aiw < 1/4 with the complementary empirical curves
Squares: location of the kneefifi. Triangles: location of the knee in ~ (€gs 33 and 34) based on independent analyses by the Glohzal

E”. Solid line: eq 32. Long-dashed line: eq 31. Short-dashed line: Variational method fod/fiw > 1/4 in 1D.

eq 30. Chain-dotted line: eq 29.

Itis clear that zone-center properties follow a common pattern
of behavior, relatively indifferent to the crossover from the
nonadiabatic into the adiabatic regime, but for the possible role
the latter may play in setting the scale over which the disperse
self-trapping loci of the nonadiabatic regime begin to cluster
more tightly toward the more sharply-defined trend in the
adiabatic regime. This dispersity does not vanish suddenly at
the crossover, but is apparent as well in the dispersity of similar
loci found under the GlobalLocal method at smal/Aw still
greater than 1/4.

Further, it is interesting and surely no accident that the
Merrifield zone-center lines (eqgs 29 and 31) intersect, that this
Ijntersection falls very nearly upon the Glob#local zone-center
line (eq 33), and that this cluster of intersections coincides well
with the first appearance of discontinuities in the solutions of
the Merrifield method. It was, in fact, the set of such “critical
points” (JJ/Aw, gc) ascertained from our sequentially-refined
variational calculations (Merrifield methd8;Toyozawa methoéf
Global-Local methodf) that first led us to identify the simple
empirical curve (eq 33) as a convenient method-independent
approximant to the real physically-meaningful self-trapping line.
The “critical” appearance of solutions near such poidgif,

" 0o is, of course, a methodological artifact, and we should view
Ost = 1+ (Jhw) (33) the intersections of the several zone-center lines sar ~
0.9 as an artifact as well; the physical self-trapping line surely

to be identified that appears to accurately describe the centralPends smoothly through this region, seamlessly joining the

trend of such clusters of data over essentially the entire adiabaticcentral trend of the nonadiabatic loci with the more sharply-
regime. defined trend that develops at higher adiabaticity.

Similarly, a zone-edge curve These zone-center results of the Merrifield method suggest
an answer to one of the more empirical questions left open by
3\ 3 1 o] -18 our prior GIobaJ—Loc_:aI analyses. Tho_ugh quite accurate over
gy=1+ (—) - ’8(— — —) + (—) ] (34) a large range a¥how, it has seemed unlikely that the dependence
hw ho 4 3 of the empirical curvegst on (J/hw)Y2 should continue
unregularized all the way down tdhw = 0. If we are to
in 1D has been identified that appears to accurately describecontinue to regard the physically meaningdgt as representing
the characteristic changes in the outer energy band that signak central trend in the inherently disperse set of self-trapping
the onset of significant narrowing of the polaron energy band, loci even asl/Aw vanishes, the present results suggest that the
commencing the process that develops into the self-trappingleading dependence g&r on J/hw should not persist as a square

different aspects of polaron structure occurring with less
synchronization than is seen in the adiabatic regime. This is
seen clearly in the fact that the critical features of the band
energies and the FranelCondon factors are significantly
separated ing in the J/Aw — 0O limit, and while trending
similarly with increasingl/hw, remain well separated over the
entire nonadiabatic regime.

This disperse character of the collection of self-trapping-
related loci is not an artifact of the Merrifield method, of the
particular parameter regime, nor of the particular physical
quantities used to locate transition effects. A similar and
complementary dispersion has been found at somewhat large
Jhw in 1D using the GlobatLocal method, based on the
analysis of physical quantities such as the ground-state energy
kinetic energy, phonon energy, electrgshonon interaction
energy?° effective masg! and electror-phonon correlation
functions?? In such analyses, the self-trapping loci attributable
to different zone-center physical quantities have been found to
cluster increasingly tightly with increasirdiw, permitting an
empirical self-trapping curve

transition with increasing coupling strength. root, but yield to a more pedestrian linear dependence

It is telling to combine the empirical curves (egs 33 and 34)
abstracted from our prior 1D Globalocal analyses with the Ger~1+a J J 1 (35)
complementary curves (eqs 29, 31, and 32) that follow from ST Ao ho 4

our present analysis by the Merrifield method. This comparison
is presented in Figure 6. wherea is a constant of order unity.
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It is likewise clear that the zone-edge loci follow a common  The polaron Wannier function, however, is a construct of
pattern of behavior, albeit one that is exquisitely sensitive to theentire polaron energy band, being a superposition of polaron
the crossover from the nonadiabatic into the adiabatic regime. Bloch states of every; as such, it is a localized state that can
Although the loci illustrated above and below this crossover be viewed as energy band theory’s own answer to the inverse
are drawn from different physical properties (Francondon problem of determining the identity of the localized quasiparticle
factors from the GlobatLocal method are not available, and whose dynamical properties are manifested in the polaron energy
the Merrifield band energies near the zone edge are notband. The real-space width of this state can be gauged in various
meaningful in and beyond the crossover regime), they are closelyways, among them being a variance measure of the electron

related and reflect the same, if complementary, underlying density within the polaron Wannier state.
physical behavior. In present terms, we may construct polaron Wannier states

We are led to view the results of the Merrifield method in from the trial Bloch states in the fashion

the nonadiabatic regime and those of the Gleftalcal method
in the adiabatic regime as mutually confirming, and describing
one consistent set of self-trapping phenomena al/ib.

In the adiabatic regime, it is quite straightforward to view from which we may construct the electron density profile as

the two linesgst andgy as dividing the polaron parameter space

into_ a small polaron r(_egime at str(_)ng coup_ling, a Igrge-polar(_)n o= BGI)(O)|a;rar|<I>(O)D (37)

regime at weak coupling, and an intermediate regime occupied

by transitional structures. In the nonadiabatic regime, it is  Using this density, we may construct a variance tensor

likewise clear that there is an unambiguous small polaron regime

at strong coupling; moreover, it is noteworthy that the nona- oijz = z ririo, (38)

diabatic small polaron states are continuously deformable into fir;

the adiabatic small polaron states without encountering transition

behavior in any basic polaron property, so that there is no formal in terms of which the spatial variance of the electron density in

distinction to be made between nonadiabatic and adiabatic smallthe polaron Wannier state may be given in an arbitrary direction.

polarons. A complementary observation can be made about largdn the particular case of measurement alongxiagis in three

polarons; although large polarons as we have thus far characterdimensions, for example, this result after summing overythe

ized them reside in the adiabatic regime, there is no formal andz axes takes the form

distinction to be drawn between large polarons at greater or ) , ,

lesser electronphonon coupling strengths since these are Oy = Z (r FIN2ye i 28 00) £ (0000 (39)

continuously deformable into each other without encountering Pkt

any transition behavior. The intermediate regime can be defined

in similar terms as that in which transition behavior is found in where

some basic polaron property at every point; for example, (k20,0 (6,00

although the linegst (zone center) angdy (zone edge) are only [Mq )H{Aq )}D:

discrete curves, the domain between them is dense with similar 1 (1
N,N NZZ 2

|D(n)C= N*D’Zz e My (k)O (36)

(1x,0,0)
lq

1 , .
2 +E‘}'g(x,o,0) 2 ig(* ,0,0)) (40)

curves associated with the occurrence of transition behavior at €X
generalk values.

These observations lead us to consider the more darkly-shaded
region of Figure 6 at the weak-coupling end of the nonadiabatic with further manipulation it can be shown that
regime. The transition line (eq 32) associated with the zone-
edge Franck Condon factor and the more limited, qualitative , 1 1
information available in the Merrifield band-edge energies Oxx
(eq 30) suggests that this regimedisconnectedrom both the
small polaron regime and the large polaron regime in the sense
of continuous deformability as used above. Provided that this
nonadiabatic weak-coupling regime is not dense with transition
loci, which seems quite unlikely, it would appear that this regime
is occupied by a polaron structure that is neither small nor large

nor of a transitional nature that would identify it with the " \yinout further explicit calculation, this relationship provides
intermediate regime. a means of understanding what is distinct in the weak-coupling
Indeed, some very basic polaron properties behave in polaron behaviors found in the nonadiabatic and adiabatic
qualitatively distinct ways in this insular regime, perhaps regimes. In the adiabatic regime, the weak-coupling polaron
foremost being the polaron radius as given by the polaron pand is nearly identical to that of the free electron in the inner
Wannier function. Intuitively, one expects the polaron radius Brillouin zone, but is strongly flattened in the outer Brillouin
by any definition to decrease monotonically with increasing zone where the effects of interaction with the one-phonon
electron-phonon coupling, and this is generally the case in the continuum are severe. The phonon amplitudes exhibit strong
regimes we have here characterized as the small polaron regimehanges ik which, through eq 41, are associated witioad
and the large polaron regime. Even in the nonadiabatic weak-polaron Wannier states. With increasing electrphonon
coupling regime now under discussion, the radius of the phonon coupling the severity of thesedependent distortions decreases,
cloud associated with zone-center polarons has an initial width resulting in thenarrowing of the polaron Wannier state. In
of order (Ji/hw)Y? along thei axis?® and decreases with  qualitative terms, this narrowing trend is what is expected of
increasing coupling strength. large polarons.

Yy

2
iﬂ(’%oro)

q
0Ky

Nx Kx NxNyNz q

(41)

The spatial variance of the localized electron density within the
polaron is thus seen to be the average over all phonon modes
and over polaron crystal momenta in the measurement direction
of a mean square measure of the amount of distortion present
in the phonon amplitudes along the measurement direction.
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In the nonadiabatic regime, however, quite a different erations, here extended for the first time to the nonadiabatic
situation is found. At weak coupling, the polaron band is nearly weak-coupling regime, we have been able to complete a
identical to that of a free electron all K, and in the limit of systematic appraisal of polaron structure spanning all regimes.
vanishing coupling is completely undistorted. The associated The delineation of transition curves by means of the Franck
phonon amplitudes are not only very small, but are also very Condon factors has compelled us to distinguish a third kind of
weakly distorted irk which, through eq 41, implies the complete characteristic polaron structure, tbempactpolaron, from the
localization of the polaron Wannier state on a single site as more familiar notions of themall polaron andarge polaron.
g— 0. Conversely, with increasing electrephonon coupling, It is suggested that each of these three classes of polaron
the presence of the higher-lying one-phonon continuum is felt structure is separated from the others by an intermediate regime
more strongly at highek, resulting in an enhancement of in which transition behavior is found in some basic polaron
phonon amplitudes in the outer zone with which is associated properties, but that this classification is essentially complete.

a slight flattening of the polaron energy band. Tgiewthin Thus, suitably discriminating experimental studies of the
k-dependent distortion results inbmoadeningof the polaron detailed behavior of zero-phonon lines would appear to afford
Wannier state with increasing electrephonon coupling until versatile, powerful, and interpretable means of deducing the
a transition is made into the small polaron regime. structure of polarons in real materials. Suitably constructed

Although suchcompactpolarons are straightforwardly un-  surveys of such structure in a variety of materials should be
derstood, that they are completely localized in the weak-coupling capable of mapping such globally-important features as the
limit and broaden with increasing electrophonon coupling polaron self-trapping line, providing experimental tests of the
suggests that they be regarded as distinct from both the largeproposed polaron phase diagram.
polarons and small polarons that dominate the outer reaches of
the polaron parameter spaeMoreover, that the compact Acknowledgment. This work was supported in part by the
polaron regime appears to bisconnectedrom both the large ~ Engineering Research Program of the Office of Basic Energy
polaron regime and the small polaron regime by observable Sciences at the U.S. Department of Energy under Grant No.
transition behavior suggests that such distinctions may be DE-FG03-86ER13606.

important to the clear classification of polaronic systems. ) ) ) )
Appendix. Dimensional Scaling

5. Conclusion In some of our illustrations of specific results, we take
advantage of a certain scaling property that holds under the

Our study of the Holstein model has focused on the basic o S
y Merrifield method at the Brillouin zone center and at selected

properties of observable zero-phonon lines in optical spectra, " oo .
specifically, the polaron ground-state energies that are principal'oc."mS on the B_rl_lloum zone boundary. The demonsration of
determinants of the spectral position of such lines and the th:(s prqperty uuhze_s th? fact that the Deby@/aller phases
Franck-Condon factors that are principal determinants of the . vanish at the Brillouin zone center and everywhere on the
oscillator strength of such lines. We have found in these results Brillouin zone boundary, and the fact that
several properties that facilitate both the application of these B
findings to experiments on real bulk materials and the inter- 332 _ —4ﬁS‘ .nz% 42
pretation of the experimental results in terms of underlying a1k - N S| 2 (42)
polaron structure. 4

First, although quantitative results can be obtained for any 55 follows from eq 9.
polaron wave vectok, we have found that, at the extremes of  Regtricting discussion to the zone center= 0) and any of
isotropic polaron bands, at the Brillouin zone center, and at its the most extreme corners of the Brillouin zorie £ ), we

most remote corner, the dependence of the Fra@undon find that the fundamental variational amplitudes can be ex-
factor on real-space dimensionaliy and the elementary pressed in the form

tunneling parameted reduces to the single scaled parameter

DJ. This permits a straightforward understanding of how ghow
observations in systems of reduced effective dimensionality, for /12 = (43)
example, can be expected to be related to observations in bulk NP o)l
systems. hw — 0 o Z‘J#S;
Second, with some additional care, this general trend in the iq 8’111 "=
dependence of the FranelCondon factors on dimensionality gho
can be seen to be similar to that which can be expected in the Ag = (44)
k dependence of the FranekCondon factor in a system of fixed NP 5| D
dimensionality; for example, in changing the orientation of the ho + [—— ZJ”S:
probed wave vector from [1,1,1] to [1,1,0] to [1,0,0]. Such Aq Odg| A=

experimentally-controlled variations in the FrargRondon
factor (and its associated zero-phonon line) of a fixed system Now further restricting to the isotropic case, we find
constitute a signature that can be associated with specific polaron

structure. 10— ghw (45)
Third, beyond such quantitative characteristics, we have found d N° 9

that the FranckCondon factors at the Brillouin zone center N Fﬁ [ §]

and at the extreme Brillouin zone edge constitute particularly a-a

direct means of revealing the changes in polaron structure that T ghw

are associated with the self-trapping transition. That is, it appears Aq - N 5 (46)
possible to map out the polaron phase diagram from surveys hw + —”—ﬂ) [DJS]

utilizing Franck-Condon factors alone. Through such consid- iq a}’q
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It is the reduction of the dimension adddependencies of the
principal quantities to the simple combinatiddJ that is
responsible for the simplicity of our main results.
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