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We present calculations of the quantum control of THz emission from Stark wave packets in sodium. Our
method is based on the direct integration of the one-electron, time-dependent Schro¨dinger equation on a
non-uniform, finite difference grid. We find that simple, experimentally feasible laser pulses are sufficient to
optimize the frequency and intensity of the emitted THz radiation. A genetic algorithm is used to optimize
the parameters of the excitation pulse. Our results indicate that the dynamics, and hence the emitted radiation,
depend sensitively on these parameters, and that the control space is rich and quite complicated.

I. Introduction

Stark wave packets are created when an atom placed in a
static DC field is excited with a laser pulse.1,2 The DC field
lifts the orbital angular momentum degeneracy, and the energy
levels are split by the Stark effect. For small DC fields and
degenerate states, the shift is linear in the static field, and the
energy levels are given byEnk ) -1/2n2 + 3/2Fsnk, wheren is
the principle quantum number,Fs is the magnitude of the DC
field, andk ) n1 - n2 is the projection of the (permanent) dipole
moment of the Stark states on the axis defined by the DC field.
Because the orbital angular momentum quantum numberl is
not conserved, the dipole selection rule∆l ) (1 is not obeyed,
and the oscillator strength is distributed over the entirel
manifold, for l ) 0, ...,n - 1. With an appropriate laser pulse,
a time-dependent superposition of Stark states is created, in
which the expectation value ofl oscillates froml ) 0 to l ) n
- 1, with a period ofτ ) 2π/3Fsn.

Stark wave packets have attracted attention for several
reasons. First, they are manifestly quantum objects. They allow
studies of time-dependent laser-matter interactions in systems
that are simple enough to understand, yet display non-trivial
complexity. Second, they have proven to be amenable to
experimental study via a variety of methods. In particular, the
evolution of Stark wave packets can be monitored by photo-
ionization with optical pulses,3 THz (half-cycle) pulses (HCP),4,5

and wave-packet interferometry.6 Recently, the HCP technique
was used to deduce the entire momentum-space distribution of
a Stark wave packet.7 Finally, by modifying the form of the
excitation field and the magnitude of the static DC field, Stark
wave packets offer the potential to control the multi-dimensional
dynamics of electrons in atoms.8,9 Thus, Stark wave packets
are prototypes for the possible control of electronic dynamics
in molecules and materials. They may also be useful as reagents
in chemical reactions.10,11

In a previous study,9 we showed that Stark wave packets
exhibit complicated, time-dependent dipole moments, and as a
result should radiate in the THz frequency regime. The predicted

emission spectra were shown to be extremely sensitive to the
excitation conditions and the magnitude of the static field.
Recent experimental work has demonstrated structure in the
momentum distribution of Stark wave packets reminiscent of
the dipole moments predicted in our calculations.7 In this work
we examine the extent to which the magnitude and frequency
of the THz emission from Stark wave packets can be controlled.
We show that simple laser pulses can be used to optimize the
radiation at a desired frequency, over a broad range of
frequencies. We discuss the implications of our results for future
experiments, in which Stark wave packets may find application
as sources of tunable, ultrafast THz radiation, or as THz
detectors.

The work presented in this paper began when both authors
were members of Kent Wilson’s group in La Jolla, and its
inspiration springs directly from Kent’s dream of observing and
controlling electron dynamics in molecules. We are grateful for
his continued enthusiasm, insights, and encouragement.

II. Method

Several theoretical approaches to calculating the dynamics
of Rydberg wave packets have been discussed in the literature.
These include a variety of methods based on solutions of the
time-dependent Schro¨dinger equation in a basis set of either
hydrogenic or quantum defect wave functions, augmented by
WKB (Wentzel, Kramers, and Brillouin) solutions for the
continuum wave functions. For example, Alber and co-workers
have used semiclassical approximations to the quantum propa-
gator to predict recurrences and time-delayed, two-photon
transition probabilities due to the periodic return of the wave
packet to the ion core.12,13Other approaches have been pursued
on a more limited basis. These include direct integration of the
Schrödinger equation on a finite difference grid, for lown
states,14,15 and the use of a complex Sturmian basis to study
ionization of Rydberg eigenstates in hydrogen.16 A recent study
with this method highlights the differences between experimental
results on Na and calculations based on hydrogenic wave
functions.17 Reinhold et al. have studied hydrogen using a
Sturmian basis set, and sodium using a classical trajectory,
Monte Carlo method.18,19

Our approach to the dynamics of Rydberg wave packets is
based upon direct numerical solutions of the time-dependent
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Schrödinger equation on a non-uniform finite difference grid.
The grid-based method allows great flexibility in the choice of
the atomic system, and a natural way to include the continuum.
It also provides a practical basis for intuitive analyses and
visualization of the dynamics. The methods discussed here are
generalizations of the uniform grid methods reviewed in
Kulander et al.,20 which have been used to study such intense-
field phenomena as above-threshold ionization,21 high-order
harmonic generation,22 and high-frequency stabilization.23

The method begins with the time-dependent Schro¨dinger
equation for a one-electron atom interacting with a coherent
laser fieldεb(t) in the presence of a static DC field,Fs. This
equation can be written in the length-gauge as

where H0 is the (field-free) one-electron Hamiltonian. We
assume that the laser polarization is parallel to the applied DC
field, which means that the total Hamiltonian has azimuthal
symmetry and the magnetic quantum number,m, is conserved.
For simplicity, we assumem ) 0 throughout, and suppress the
m label in the following equations. Atomic units (p ) e ) me

) 1) are used throughout.
The wave functionψ(r,t) is expanded in a mixed basis of

discretized radial functions and spherical harmonics. Although
it is certainly possible to use other coordinate systems, spherical
coordinates offer a simple way to treat non-hydrogenic atoms
by usingl-dependent pseudopotentials of the form24,25

whereVl (r) contains only short-range interactions. There is no
additional computational labor associated with using such
potentials as compared to solving the pure Coulomb problem,
and excellent pseudopotentials are available for the alkali metal
atoms.26

We solve the full atom plus DC field plus laser problem by
first computing a basis of eigenstates,|k〉, of the Stark
Hamiltonian, Hs|k〉 ) Ek|k〉, where Hs ) H0 + Fsz. This is
accomplished by diagonalizingHs in a finite subspace of the
field-free HamiltonianH0. The calculation of the field-free basis
states is discussed in detail in the Appendix. The main technical
innovation employed in this work is the use of a non-uniform
finite difference grid. The radial grid is very fine near the ion
core and becomes progressively coarser away from ther ) 0
boundary. A useful parameterization of the grid is in terms of
three parameters,∆min, ∆max, andR where

with the convention that the first grid point is located at+∆min/
2. The grid spacing varies smoothly from a∆min to ∆max. For
the calculations presented here, we typically use∆min ) 0.01
au, ∆max ) 5 to 10 au, andR ≈ 0.002. This creates a
computational “box” of sizeO(104) au, meaning that up ton ≈
100 bound states can be determined accurately for eachl value
using O(103) radial grid points. The radial basis states,φl

n(r),
satisfy Hl

0
φl

n ) Enlφl
n and have definite angular momentuml.

The Stark eigenstates|k〉 are calculated as linear combinations
of the field-free eigenfunctions,

where the coefficientsbnl
k are obtained by diagonalizing a

sparse banded matrix. The eigenstates|k〉 do not have definite
angular momentum, as noted above.

The total numberN of basis states required in a given
calculations is dictated bynmin andnmax, the lowest and highest
Stark manifolds that are included in the diagonalization of the
Hamiltonian. Definingnj ) (nmax + nmin)/2 and∆n ) nmax -
nmin + 1, the total number of basis states isN ) nj∆n. As nj
increases, it is desirable to maintain the energy∆E spanned by
the finite subspace as approximately constant. Due to the
compression of the Rydberg states in energy, this requires
including additional manifolds in the diagonalization. Qualita-
tively, to lowest order in∆n/nj,

This equation implies that asnj increases, holding∆E constant
requires∆n ∝ nj, and thusN scales asnj2.

Solving eq 1 proceeds by expanding the full time-dependent
wave functionψ(t) in eigenstates ofHs,

In the weak field limit, the promoted wave packet is defined as

whereµ̂ is the laser polarization direction, andωL is the center
frequency of the laser. The time-dependent wave packet (within
the usual rotating wave approximation and first-order perturba-
tion theory) is

wheret0 is a time well before the beginning of the laser pulse.
Under these approximations, the expansion coefficients in eq 6
are

In this equation,ε(t) is the (complex) envelope of the laser field
and ωk ) Ek - E0 - ωL ) ωk0 - ωj , whereωj is the center
frequency of the excitation. The transition moment,Ωk0 )
〈k|z|0〉, connects the initial state, with a definite angular
momentumL, to theL ( 1 components of the various|k〉 states.
Sincel is not a good quantum number, all of the|l 〉 states are
populated rapidly by the field. The transition moments depend
on the initial state and the static field. They must be recalculated
if either quantity is changed. To be explicit, if the initial state
is |0〉 ) Φ(r)|L〉 then

where

There are slight modifications to these equations ifm is not, as
assumed here, equal to zero. The radial integrals can be
calculated rapidly as simple summations over the finite differ-
ence grid.

Once the excitation pulse is over (at timetp) the propagation
of the wave packet can be performed by multiplication by an

iψ̇(r,t) ) [H0 + Fsz + εb(t)‚ rb]ψ(r,t) (1)

Vpseudo( rb) ) ∑
l

Vl (r)|l 〉〈l | - 1/r (2)

rj ) rj-1 + ∆min + (1 - e-Rrj-1)(∆max - ∆min) (3)

|k〉 ) ∑
l
∑
nmin

nmax

bnl
k

φl
n(r)|l 〉 ) ∑

l

φl
k(r)|l 〉 (4)

∆E ≈ 4Enj
∆n
nj

(5)

ψ(r,t) ) ∑
k

Ck(t)|k〉 (6)

|ψ0(t)〉 ) e-i(Hs-E0-ωL)tµ̂‚ rb|0〉 (7)

|ψwp(t)〉 ) ∫0

t-t0dτε(t - τ)|ψ0(τ)〉 (8)

Ck(t) ) ∫0

t-t0dτε(t - τ)e-iωkτ〈k|z|0〉 (9)

Ωk0 ) aL∫ drφL+1
k (r)rΦ(r) + aL-1∫ drφL-1

k (r)rΦ(r) (10)

al ) l + 1

x(2l + 1)(2l + 3)
(11)
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appropriate phase,

In the weak-field limit the coefficientsCk(tp) are then

where ε̃(ωk) is the complex Fourier coefficient of the field at
the frequencyωk ) Ek - Eh. This equation illustrates explicitly
that in the limit discussed here, the phase of the laser field is
transformed directly to the phase of the wave function of the
electron.

After the basis states,|k〉, transition moments,Ωk0, and
coefficients,Ck(t), have been calculated and stored, a variety
of quantities of interest can be calculated. Defining the following
matrices:

and

allows facile calculation of expectation values such as

and

which are all double sums over the (few hundred) Stark
coefficients.

The acceleration form of the time-dependent dipole moment
can be calculated from the double commutator of the Hamil-
tonian as

After the laser pulse is over, the Stark states are eigenstates of
the Hamiltonian, and eq 20 simplifies to

whereωk,k′ ) ωk - ωk′.

III. Calculation of THz Emission

As can be seen in the preceding section, a variety of
expectation values can be calculated readily for Stark wave
packets, all of which are potential candidates for control. In
this work we choose to concentrate on the photon emission

resulting from the time-dependent dipole moment induced in
the atom by the excitation pulse. Figure 1 shows two snapshots
of a Stark wave packet created by a short (275 fs) laser pulse
centered near the middle of then ) 15 manifold in sodium. As
can be seen in the figure, the wave packet is quite complicated,
and the electronic distribution is highly asymmetrical, with a
rapidly varying dipole moment.

The acceleration form of the spectrum is the Fourier transform
of z̈:

with z defined in eq 19. The signal (number of photons) at a
detector is proportional to|A(ω)|2 times the integration time:27

One possible control scenario involving photon emission is to
optimize the spectral intensity in a band of frequencies centered
around a selected center frequencyω. At times after the
excitation pulse is over the spectrum is

Barring an accidental coincidence, the delta function picks out
a single set of states separated byω. Since the number of states
is in general huge, and the Stark manifolds split linearly (at
low DC field), there is a high probability that two or more sets
of states will have nearly the same frequency differences.
Therefore, we choose a minimum difference between two sets
of states (i.e., a frequency bin) and add the contributions inside
the bin coherently.

Assuming that all of the frequency differences are distinct,
the spectral intensity can be written as

wherePk ) |Ck|2. This equation shows that the spectral intensity
is proportional to the product of the population in the two states
separated byωk,k′ ) ω, the square of the dipole matrix element
connecting the two states, and the fourth power of the frequency
difference. Notice, however, that the spectral intensity is
independent of thephaseof the population amplitudes. Thus,
chirping, or otherwise altering the time-dependent phase of the
excitation pulse cannot increase or decrease the total number
of photons in a particular frequency bin (at least within first-
order perturbation theory).

In the weak field limit the expression for the frequency spectra
can be written as

If the pulse envelope is defined as

whereτ is the FWHM in intensity, the corresponding quantity
in the frequency domain is

where ωj is the central frequency and∆ω ) 4 ln 2/τ is the

|ψwp(t g tp)〉 ) ∑
k

Ck(tp)e
-iωk(t-tp)|k〉 (12)

Ck(tp) ) ε̃(ωk)Ωk0 (13)

Rk,k′ ) 〈k|r|k′〉 ) ∑
l

∫dr r 2
φl

k(r)rφl
k′(r) (14)

Zk,k′ ) 〈k|z|k′〉 ) ∑
l

∫dr r 2
φl

kr[al φl+1
k′ + al-1φl-1

k′ ] (15)

Lk,k′
2 ) ∑

l

l (l + 1)∫dr r 2
φl

k(r)φl
k′ (r) (16)

〈r〉(t) ) ∑
k,k′

Ck
/(t)Ck′(t)Rk,k′ (17)

〈L2〉(t) ) ∑
k,k′

Ck
/(t)Ck′(t)Lk,k′

2 (18)

〈z〉(t) ) ∑
k,k′

Ck
/(t)Ck′(t)Zk,k′ (19)

d2

dt2
〈z〉(t) ) 〈ψwp|[H,[H,z]] |ψwp〉 (20)

d2

dt2
〈z〉(t > tp) ) ∑

k,k′
Ck

/(t)Ck′(t)Zk,k′(ωk,k′)
2 (21)

A(ω) ) 1
T∫t0

t0+T
dt eiωt z̈(t) (22)

S(ω) ∝ T|A(ω)|2 (23)

A(ω) ) ∑
k,k′

Ck
/(tp)Ck′(tp)Zk,k′(ωk,k′)

2δ(ω,ωk,k′) (24)

|A(ωk,k′)|2 ) PkPk′Zk,k′
2 (ωk,k′)

4 (25)

|A(ωk,k′)|2 ) |ε̃(ωk)|2Ωk0
2 |ε̃(ωk′)|2Ωk′0

2 Zk,k′
2 (ωk,k′)

4 (26)

ε(t) ∝ e-2ln2t2/τ2
(27)

|ε̃(ω)|2 ∝ e-4ln2(ω-ωj )2/∆ω2
(28)
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frequency bandwidth. Using these expressions, eq 26 simplifies
to

whereωk ) ωk0 - ωj .
In eq 29, the expression in brackets has a maximum when

ωk,k′ ≈ .85∆ω. The second exponential is maximized if either
ωk or ωk′ is close to zero, i.e., if one or the other state is near
the central frequency of the excitation laser. This formula
suggests that the optimal signal can be obtained by exciting
two states, such that one is near the central frequency, and the
other is well off-resonance. However, as illustrated previously,
the situation is far more complex and non-intuitive than this
simple analysis suggests. In particular, the transition moments
have pronounced energy dependencies (because of the differing
angular momentum content of the various states) and the matrix
elementsZk,k′, which scale asn2, vary from zero to very large
numbers. In our previous work we presented an example in
which the THz signal had a dominant component at 30 cm-1

even though the bandwidth of the laser was only 6 cm-1. In
that case one state hadωk ≈ 0 and the other state was about
5∆ω away in energy. However, both states had relatively large
transition moments and the dipole elementZk,k′ was enormous
(Zk,k′

2 ≈ 15 000; the matrix elementsZk,k′
2 as a function ofωk,k′

varied over 7 orders in magnitude in that example).

IV. Results

In the preceding section we sketched the derivation of some
simple formulas to determine the frequency spectrum of THz
emission from Stark states. Optimizing this emission, however,
is not as simple, for two main reasons. The first is that there
are a huge number of states, all of which are connected via
dipole moments. This means that there are many possible
sources for emission at a given frequency. The second is that

the amplitudes of the dipole moments vary over many orders
of magnitude, which implies that simply searching for a pair of
states with the proper energy difference will not guarantee that
that particular pair of states will contribute to the spectrum
significantly.

For concreteness, let us consider a specific example. Figure
2 shows a portion of then ) 15 Stark manifold of sodium.
Most of the calculations presented here are for DC fields of
∼500 V/cm, which, as seen in the figure, corresponds to a
regime in which the 16s and 16p states are split off from the
manifold, and the remaining|k〉 states are split linearly with
the DC field.

Figure 3 shows the square of the dipole transition moment
Ωk′0, and the expectation value of the distance of the electron
from the nucleus,〈z〉, again for then ) 15 manifold of sodium.
For this figure, the static DC field was set to 500 V/cm, and
the atom was assumed to be initially in the 3d state. The
bandwidth of the excitation laser was≈12 cm-1, and the center
frequencyE0 + ωL ) -480 cm-1, which placed it midway

Figure 1. Two snapshots of the probability distribution for the electron in a Stark wave packet in sodium. The initial state is the 3d state, and the
static DC field is 400 V/cm. The center frequency of the laser is 1.47 eV, with a pulse width of 275 fs. The left panel shows the wave packet after
12 ps, and the right panel after 40 ps. TheF axis ranges from-150 au (-7.9 nm) to 150 au (7.9 nm), and thez axis ranges from-450 au (-24
nm) to 450 au (24 nm).

|A(ωk,k′)|2 ∝ [ωk,k′e
-ln2ω2

k,k′/∆ω2
]4 e-4ln2ωkωk′/∆ω2

Ωk0
2 Ωk′0

2 Zk,k′
2

(29)

Figure 2. A portion of then ) 15 Stark manifold in sodium.
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between then ) 15 andn ) 16 Stark manifolds. The figure
shows, as expected from Figure 2, that fourteen of the sixteen
Stark states are split linearly inz. However, the distribution of
transition moments is much more complicated. The matrix
element to the 16s state is equal to zero, because at this value
of the static field the 16s state does not mix with the other
members of the manifold, and so the∆l ) (1 selection rule is
(nearly) obeyed. Notice, though, that the matrix element to the
7th Stark state is also (accidentally) nearly equal to zero, and
that the overall pattern is quite complex, with considerable, non-
intuitive structure.

As Figure 3 suggests, the THz spectrum is a complicated
function of the parameters of the excitation pulse and the
strength of the static field. One approach to optimizing the
emission is to use formal control theory to determine the optimal
laser fields.28-31 The difficulty with this approach is that most
existing methods assume a quadratic control functional. The
THz signal, which is proportional to the second derivative of
the time-dependent dipole moment, cannot be expressed in
quadratic form. Our solution to this problem is to use an
alternative control procedure, in which a functional minimization
routine is used to search for the optimal laser parameters (eq
28) and the static DC field strength. We note that other, more
elaborate, pulse-shaping schemes are certainly possible, espe-
cially with current laser technology. However, for the targets
considered below, only two laser parameters are important, the
excitation frequency,ωj , and the bandwidth,∆ω.

The minimization routine used in this work is a genetic
algorithm (GA) that uses the standard genetic operators of
crossover and mutation.32 We find that this method is quite
efficient, and converges rapidly to the optimal parameters,
typically after several hundred evaluations of the test function.
Other minimization algorithms can also be employed, which
may have advantages in certain cases. Particularly interesting
in this regard are evolution algorithms,33 which use the same
basic genetic operators as the GA, but apply them with different
precedence. In addition, some parameters of EAs are determined
adaptively during the optimization, which may be responsible
for some of their success in recent experimental implementa-
tions.34

Figure 4 shows the results of optimizing the THz emission
via excitation to near the center of then ) 15 Stark manifold
in sodium, at a fixed DC field of 500 V/cm. In this case we
chose to optimize the emission in a 1 cm-1 frequency bin at

five different frequencies. The figure indicates that as the desired
THz frequency increases, the optimal bandwidth also increases.
This is sensible because the larger the bandwidth, the more likely
it is that two states within the bandwidth of the excitation pulse
have a frequency difference equal to the desired emission
frequency. However, since the contributions are added coher-
ently, and since the system is often dominated by a single
transition, the optimal solution isnot simply to increase the
bandwidth to as large a value as possible (if the total energy
per pulse is kept constant, as it is in these calculations). Notice
also in Figure 4 that the center frequency increases as the desired
THz frequency increases. There is no particular reason to expect
this behavior a priori.

The results in Figure 4 give a hint of the extreme sensitivity
of the THz emission to the parameters of the excitation pulse.
However, the magnitude of the emission also depends on the
DC field. Figure 5 shows the dependence of the THz emission
in a frequency bin of 15-16 cm-1, as a function of the

Figure 3. Square of the dipole moment (filled squares) and expectation
value ofz (filled circles) for a Stark wave packet in sodium. The initial
state is the 3d state, and the static DC field is 400 V/cm. The center
frequency of the laser isE0 + ωL ) -480 cm-1, with a pulse width of
1 ps.

Figure 4. Optimization of the bandwidth and center frequency for a
set of 1 cm-1 bins. The height of the bars shows the relative magnitude
of the emission. The numbers in parentheses above the bars indicate
the bandwidth (in cm-1) and the center frequency (in cm-1), respec-
tively, of the excitation pulse. The magnitude of the static DC field is
500 V/cm. The initial state is the 3d state. In this figure, “center
frequency” refers to the frequency at which the excitation occurs.

Figure 5. Variation of the THz emission in a bin of 15-16 cm-1 with
the static DC field. The dashed line shows the magnitude of the signal
using the optimal bandwidth (19 cm-1) and center frequency (-485
cm-1) at 500 V/cm. The solid line shows the results when all three
parameters are allowed to vary. The globally optimal point occurs at a
bandwidth of 17.1 cm-1, a center frequency of-553 cm-1, and a DC
field of 426 V/cm. The initial state is the 3d state. In this figure, “center
frequency” refers to the frequency at which the excitation occurs.
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magnitude of the DC field. The figure contains two traces. In
one, the parameters of the laser field are held at their optimal
values for a field of 500 V/cm. In the other, all three parameters
are allowed to vary. As the figure illustrates, allowing the DC
field to vary increases the maximum THz emission by nearly a
factor of two. Finally, Figure 6 shows a control map of the DC
field versus the center frequency, with the bandwidth at its
optimal value. The basin of attraction for the globally optimal
solution is seen to be rather narrow, and well-localized in
parameter space. This would make it nearly impossible to locate
with low-level search methods such as conjugate gradient, or
by simply guessing.

V. Conclusions

In this paper we have investigated one aspect of the
optimization of THz emission from Stark wave packets. In
particular, we have shown that the magnitude of the emission
is extremely sensitive to the excitation conditions and the static
field, and that the parameters can be optimized with the aid of
a genetic algorithm. Of course, optimizing the magnitude of
the photon emission in a narrow frequency bin is only one of
many possible control scenarios. Other possibilities include
producing optimal trains of pulses, or coherently related bursts
of radiation that might be then compressed to form ultrashort
pulses, or used in spectroscopy. It may also be possible to
optimize additional expectation values to create, for example,
squeezed Stark wave packets, or wave packets localized in both
l and r.

Finally, it is intriguing, and certainly Wilsonian in spirit, to
speculate about the prospects of performing similar analyses in
polyelectron atoms and molecules. The one-electron Stark wave
packets discussed here display a remarkable range of complexity.
Systems with more electrons will be considerably more complex,
which will make them even more difficult to analyze. At the
same time, the vast number of states, and intricate couplings
will offer potential applications in a wide variety of control
scenarios.
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Appendix: Derivation of Non-Uniform Grid Equations

In this appendix we present the method that we have
developed to solve a discretized version of the Schro¨dinger
equation on a non-uniform finite-difference grid. We begin with
methods presented previously for uniform grids.20,35The action
is defined as

where the Lagrangian is

Variation of the action with respect toψ*, δS/δψ* ) 0, for
fixed t1 and t2, yields an equation of motion forψ. Note that
this is equivalent to requiring thatψ* obey the Euler-Lagrange
condition

For a continuous wave function, this procedure leads directly
to a formulation of the time-dependent Schro¨dinger equation
(TDSE) for ψ. For a discretized wave function, the procedure
leads to a discretized version of the TDSE that efficiently
accounts for the boundary conditions imposed onψ, especially
at smallr.

The static (atomic) potentials used in this work are of the
form

where U(r) is a spherically symmetric potential (containing
Coulomb and possibly polarization terms) andVl (r) are angular-
momentum-dependent, short-range pseudopotentials for the
atomic system. The centrifugal terml (l + 1)/2r2 is included in
Vl, soT refers to the radial kinetic energy only.

The wave function is expanded in a mixed basis consisting
of a product of discretized radial functions and spherical
harmonics,

To simplify the notation, we assume that the potential is
cylindrically symmetric, which means that them quantum
number is conserved. For this reason, the labelm is suppressed
in the following equations. The one-dimensional spacermin )
0 to rmax ) R is divided intoN intervals with knots atrj{j )
1...N}, which are not required to be evenly spaced. The wave
function is known at these points only. We assume thatφl (R)
) 0, rφl (r) ) 0, andr∂φl /∂r ) 0 atr ) 0. With these boundary
conditions, the equations of motions can be derived for the
coefficientsφl

j ≡ φl (rj,t).
To proceed, we must first define approximate integration

schemes for the integrals in the Lagrangian. This determines
the particular finite difference scheme that we use. After
integrating over the angular variables the remaining integrals

Figure 6. Control map showing the variation of the THz emission
with respect to the center frequency and the static DC field. The
bandwidth of the excitation laser is fixed at 17.1 cm-1. The initial state
is the 3d state. In this figure, “center frequency” refers to the frequency
at which the excitation occurs.

S ) ∫t1

t2dt L(ψ,ψ*) (A1)

L ) 〈ψ|i ∂∂t
- T - V|ψ〉 (A2)

d
dt(

∂L
∂ψ̇* ) - ∂L

∂ψ*
) 0 (A3)

V( rb) ) U(r) + ∑
l

Vl (r)|l 〉〈l | (A4)

ψ(rj,θ,φ,t) ) ∑
l,m

lmax

φlm(rj,t)Yl
m (θ,φ) (A5)
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in L are discretized as

and

As can be seen in these expressions, the derivative term is
evaluated at the mid point of each interval, using thelocal grid
spacing as an integration weight, and the potential term is
evaluated on the grid points, using theaVerageof the local grid
spacing on each side of the knot as the integration weight.

Substituting these expressions intoL and shifting indices on
the radial summations in accord with the boundary conditions
stated above leads to

We next transform to the normalized coefficientsgj
l, which are

related toφl
j by

Since the wave functionψ(rb,t) is normalized, it follows that

Imposing the Euler-Lagrange condition with respect to
(gl

j)*, we arrive at an equation for the time evolution ofgl
j. This

equation is

where the coefficientscj anddj are

and

Here,H̃0 is the field-free Hamiltonian matrix, which is block-
diagonal in thel quantum number and tridiagonal in the radial
index. Note that for a uniform grid spacing,∆, far from ther
) 0 boundary, bothcj anddj, as defined above, approach the
value 1/∆2, and the standard second-order finite-difference
equations are recovered.

To obtain the field-free basis states used in our calculations
we diagonalize separately a symmetric tridiagonal matrixH̃0

l

for each angular momentum value. Since we require only the
lowest few hundred states, this diagonalization can be performed
in O(N) operations, whereN is the number of radial grid points.
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