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Control of THz Emission from Stark Wave Packets
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We present calculations of the quantum control of THz emission from Stark wave packets in sodium. Our
method is based on the direct integration of the one-electron, time-dependeindiBglreequation on a
non-uniform, finite difference grid. We find that simple, experimentally feasible laser pulses are sufficient to
optimize the frequency and intensity of the emitted THz radiation. A genetic algorithm is used to optimize
the parameters of the excitation pulse. Our results indicate that the dynamics, and hence the emitted radiation,
depend sensitively on these parameters, and that the control space is rich and quite complicated.

I. Introduction emission spectra were shown to be extremely sensitive to the
excitation conditions and the magnitude of the static field.
ic DC field | ited with a | 158 The DG field dRecent experimental work has demonstrated structure in the
static DC field is excited with a laser pulse.The DC fie momentum distribution of Stark wave packets reminiscent of
lifts the orbltal_angular momentum degeneracy, and _the ENergyine dipole moments predicted in our calculatidms.this work
levels are split by the Stark effect. For small DC fields and e oyamine the extent to which the magnitude and frequency
degenerate states, the shift is linear in the static field, and theof the THz emission from Stark wave packets can be controlled

i =12 +3 i :
energy levels are given b = —/n + %2Rk, wheren is We show that simple laser pulses can be used to optimize the
t_he principle quantum numbe_lF,S IS the magnitude of the _DC radiation at a desired frequency, over a broad range of
field, andk = n; — n, is the projection of the (permanent) dipole frequencies. We discuss the implications of our results for future

moment ththe Sbt.arll( statels on the axis defined by the a(i:zeﬂeld. experiments, in which Stark wave packets may find application
Because the orbita angular momentum quantum nu r as sources of tunable, ultrafast THz radiation, or as THz
not conserved, the dipole selection radle= +1 is not obeyed, detectors

and .the oscillator strength is distributed over the entire The work presented in this paper began when both authors
manifold, forl =0, ...,n — 1. With an appropriate laser pulse, \;ore members of Kent Wilson's group in La Jolla, and its
a t!me-dependent superposition Qf Stark states is created, II"inspiration springs directly from Kent’'s dream of observing and
which the expectation value ébscillates from = 0 tol = n controlling electron dynamics in molecules. We are grateful for

— 1, with a period ofr = 27/3Fsn. . his continued enthusiasm, insights, and encouragement.
Stark wave packets have attracted attention for several

reasons. First, they are manifestly quantum objects. They allow||. Method
studies of time-dependent laser-matter interactions in systems
that are simple enough to understand, yet display non-trivial
complexity. Second, they have proven to be amenable to
experimental study via a variety of methods. In particular, the
evolution of Stark wave packets can be monitored by photo-
ionization with optical pulse%;THz (half-cycle) pulses (HCP)?

and wave-packet interferometfyRecently, the HCP technique
was used to deduce the entire momentum-space distribution o
a Stark wave packétFinally, by modifying the form of the
excitation field and the magnitude of the static DC field, Star
wave packets offer the potential to control the multi-dimensional

dynamics of electrons in atorfid, Thus, Stark wave packets on a more limited basis. These include direct integration of the

are prototypes for the possible control of electronic dynamics Schralinger equation on a finite difference grid, for low

in molecules and materials. They may also be useful as reagents ; .
in chemical reactiontoil y may 9€" 3 tatest4 15 and the use of a complex Sturmian basis to study

| . d h dth K K ionization of Rydberg eigenstates in hydrodéA recent study
h a previous stu ?'We showed that Stark wave packets i this method highlights the differences between experimental
exhibit complicated, time-dependent dipole moments, and as 3rasults on Na and calculations based on hydrogenic wave

result should radiate in the THz frequency regime. The prediCtedfunctions.” Reinhold et al. have studied hydrogen using a
Sturmian basis set, and sodium using a classical trajectory,

Stark wave packets are created when an atom placed in

Several theoretical approaches to calculating the dynamics
of Rydberg wave packets have been discussed in the literature.
These include a variety of methods based on solutions of the
time-dependent Schdinger equation in a basis set of either
hydrogenic or quantum defect wave functions, augmented by
WKB (Wentzel, Kramers, and Brillouin) solutions for the
fcontinuum wave functions. For example, Alber and co-workers
have used semiclassical approximations to the quantum propa-
K gator to predict recurrences and time-delayed, two-photon
transition probabilities due to the periodic return of the wave
packet to the ion cor&13Other approaches have been pursued
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Schrainger equation on a non-uniform finite difference grid. where the coefficientsbﬁl are obtained by diagonalizing a
The grid-based method allows great flexibility in the choice of sparse banded matrix. The eigenstak&&lo not have definite
the atomic system, and a natural way to include the continuum. angular momentum, as noted above.
It also provides a practical basis for intuitive analyses and The total numberN of basis states required in a given
visualization of the dynamics. The methods discussed here arecalculations is dictated bymin andnmax, the lowest and highest
generalizations of the uniform grid methods reviewed in Stark manifolds that are included in the diagonalization of the
Kulander et al?? which have been used to study such intense- Hamiltonian. Definingn = (Nmax + Nmin)/2 andAN = Nmax —
field phenomena as above-threshold ionizafibhjgh-order Nmin + 1, the total number of basis statesNs= nAn. As n
harmonic generatio?? and high-frequency stabilizatidA. increases, it is desirable to maintain the enek@yspanned by
The method begins with the time-dependent Sdimger the finite subspace as approximately constant. Due to the
equation for a one-electron atom interacting with a coherent compression of the Rydberg states in energy, this requires

laser field€(t) in the presence of a static DC fiel&s. This including additional manifolds in the diagonalization. Qualita-
equation can be written in the length-gauge as tively, to lowest order inAn/n,

ip(rt) =[Hy+ Fz+ ) Tly(r.t 1 ~ 2 AN

Y(r,t) = [Hy Z T € Tly(ry 1) AE ~ 4Eﬁ? (5)

where Hyp is the (field-free) one-electron Hamiltonian. We ] o ) . )

assume that the laser polarization is parallel to the applied DC ThiS equation implies that avincreases, holding\E constant

field, which means that the total Hamiltonian has azimuthal 'eduiresAn 0, and thusN scales asv. ,

symmetry and the magnetic quantum numieris conserved. Solving eq 1 pro_cee_ds by expanding the full time-dependent

For simplicity, we assumen = 0 throughout, and suppress the Wave functiony () in eigenstates ofts,

m label in the following equations. Atomic unith & e = me _

= 1) are used throughout. w(ry) = ZCk(t)|kD (6)

The wave functiony(r,t) is expanded in a mixed basis of

discretized radial functions and spherical harmonics. Although |n the weak field limit, the promoted wave packet is defined as

it is certainly possible to use other coordinate systems, spherical

coordjnates offer a simple way to treat non-hydrogenic atoms |1//O(t)D= e—i(Hs—Eo—wL)tﬁ.ﬂOD (7)

by usingl-dependent pseudopotentials of the fét#}
where is the laser polarization direction, ang is the center

Vpseudﬁ) = ZVI (N m| — 1/ ) frequency of the laser. The time-dependent wave packet (within

the usual rotating wave approximation and first-order perturba-

tion theory) is
whereV, (r) contains only short-range interactions. There is no

additional computational labor associated with using such GRS ft_todre(t — 7)|y%7)0 (8)
potentials as compared to solving the pure Coulomb problem, P 0
and excellent pseudopotentials are available for the alkali meta'whereto is a time well before the beginning of the laser pulse.

atomsz® _ Under these approximations, the expansion coefficients in eq 6
We solve the full atom plus DC field plus laser problem by 5.

first computing a basis of eigenstatefk[] of the Stark
Hamiltonian, HS k(= Eyk(] whereH® = Hy + Fgz This is _ [t Ry

accomplished by diagonalizing® in a finite subspace of the G0 = 0 dre(t — 7)e "kzI00 ©)
field-free HamiltoniarHo. The calculation of the field-free basis
states is discussed in detail in the Appendix. The main technical
innovation employed in this work is the use of a non-uniform
finite difference grid. The radial grid is very fine near the ion
core and becomes progressively coarser away from thed
boundary. A useful parameterization of the grid is in terms of
three parameterg\min, Amax, anda where

In this equationg(t) is the (complex) envelope of the laser field
andwy = Ex — Eg — oL = wx — @, Whereo is the center
frequency of the excitation. The transition momef¥o =
(K|z|O[) connects the initial state, with a definite angular
momenturrL, to theL + 1 components of the variok states.
Sincel is not a good quantum number, all of tHélstates are
populated rapidly by the field. The transition moments depend
on the initial state and the static field. They must be recalculated
if either quantity is changed. To be explicit, if the initial state
is |000= ®(r)|LCthen

I'j = rj—]_ + Amin + (1 - 7wj71)(Amax_ Amin) (3)

with the convention that the first grid point is locatectahmir/
2. The grid spacing varies smoothly fromAgn t0 Amax. FOr K K
the calcgulatio%s pr?asented here, WZ typically psg = 0.01 Qo= aLf drépso(Nre(r) + aL—lf drgo(re(r) (10)
au, Amax = 5 to 10 au, anda ~ 0.002. This creates a
computational “box” of siz€d(10% au, meaning that up to~
100 bound states can be determined accurately forlezahe _ I+1 (11)
using O(10% radial grid points. The radial basis states(r), 2+ 1)@ +3)

satisfy H'¢' = Eq¢ and have definite angular momentum

The Stark eigenstatekllare calculated as linear combinations There are slight modifications to these equations i§ not, as

where

of the field-free eigenfunctions, assumed here, equal to zero. The radial integrals can be
calculated rapidly as simple summations over the finite differ-
Mmax . . ence grid.
k= Z zbm P(n)|l C= Z¢| Nino (4) Once the excitation pulse is over (at tiigpthe propagation
Nmin

of the wave packet can be performed by multiplication by an
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appropriate phase,

Yot = t)O= ch(tp)e*‘wk“*‘pnkm (12)
In the weak-field limit the coefficient€(t,) are then
Cltp) = €(@) €20 (13)

whereé(wy) is the complex Fourier coefficient of the field at
the frequencywx = Ex — E. This equation illustrates explicitly

that in the limit discussed here, the phase of the laser field is

transformed directly to the phase of the wave function of the
electron.

After the basis stateskl] transition momentsQyo, and
coefficients,Cy(t), have been calculated and stored, a variety
of quantities of interest can be calculated. Defining the following
matrices:

Ree = KIr K= Z Jdr r2gi(n)rey (r) (14)

Zy = KiZK = Z JdriiTia ¢y + a6l (15)
and

Ly = ZI (1 + 1) fdr ref(nef (1) (16)

allows facile calculation of expectation values such as

B = gcz(t)ckr(t)m (17)
L) = gCﬁ(t)ckr(oLik (18)

and
(19)

(@) = gci(t)ck(t)zkk

which are all double sums over the (few hundred) Stark
coefficients.

The acceleration form of the time-dependent dipole moment
can be calculated from the double commutator of the Hamil-
tonian as

2
(j'—tzatmr) — Gl [H.2] [0 (20)

After the laser pulse is over, the Stark states are eigenstates o

the Hamiltonian, and eq 20 simplifies to
2

2t > t) = gc;(t>cw(t)zw(wk,kr)2 (21)

dt®
wherewk,k = Wk — wWg.

lll. Calculation of THz Emission
As can be seen in the preceding section, a variety of

expectation values can be calculated readily for Stark wave

packets, all of which are potential candidates for control. In

Krause and Schafer

resulting from the time-dependent dipole moment induced in
the atom by the excitation pulse. Figure 1 shows two snapshots
of a Stark wave packet created by a short (275 fs) laser pulse
centered near the middle of the= 15 manifold in sodium. As
can be seen in the figure, the wave packet is quite complicated,
and the electronic distribution is highly asymmetrical, with a
rapidly varying dipole moment.

The acceleration form of the spectrum is the Fourier transform
of

Aw) = % IR 22)

with z defined in eq 19. The signal (number of photons) at a

detector is proportional tpA(w)|? times the integration timé&
S() O TIA@)/* (23)

One possible control scenario involving photon emission is to

optimize the spectral intensity in a band of frequencies centered

around a selected center frequeney At times after the
excitation pulse is over the spectrum is

Alw) = gC’;(tp)ckv(tp>zk,kv(wkk>26(w,wk,kv) (24)

Barring an accidental coincidence, the delta function picks out
a single set of states separated:ySince the number of states
is in general huge, and the Stark manifolds split linearly (at
low DC field), there is a high probability that two or more sets
of states will have nearly the same frequency differences.
Therefore, we choose a minimum difference between two sets
of states (i.e., a frequency bin) and add the contributions inside
the bin coherently.

Assuming that all of the frequency differences are distinct,
the spectral intensity can be written as

2_ 2 4
[A(@0)1” = PPeZi (@i ) (25)

whereP, = |Cy|2. This equation shows that the spectral intensity
is proportional to the product of the population in the two states
separated by = w, the square of the dipole matrix element
connecting the two states, and the fourth power of the frequency
difference. Notice, however, that the spectral intensity is
independent of thehaseof the population amplitudes. Thus,
chirping, or otherwise altering the time-dependent phase of the
excitation pulse cannot increase or decrease the total number
of photons in a particular frequency bin (at least within first-
order perturbation theory).

In the weak field limit the expression for the frequency spectra
Fan be written as

A@)I? = [ PRIE(y) "RicZi(@i)* (26)
If the pulse envelope is defined as
G(t) D e*2|n2(2/‘[2 (27)

wherer is the FWHM in intensity, the corresponding quantity
in the frequency domain is

|E (a))|2 0 e—4|n2(w—&))2/Aw2 (28)

this work we choose to concentrate on the photon emissionwhere® is the central frequency anlw = 4 In 2k is the
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Figure 1. Two snapshots of the probability distribution for the electron in a Stark wave packet in sodium. The initial state is the 3d state, and the
static DC field is 400 V/cm. The center frequency of the laser is 1.47 eV, with a pulse width of 275 fs. The left panel shows the wave packet after
12 ps, and the right panel after 40 ps. Thexis ranges from-150 au (7.9 nm) to 150 au (7.9 nm), and tkeaxis ranges from-450 au (-24

nm) to 450 au (24 nm).

frequency bandwidth. Using these expressions, eq 26 simplifies ~ -440 ‘
to 17s |

-a60} |
| A(a)k w)|2 0 [ka e—|n2w2k,k/Awﬁ4 e—4|n2wkw|</AwZQEO Qﬁozi v . L_/\—\
' ' / v P__.
(29) ‘
g A480F
wherewy = ww — @. @ E
In eq 29, the expression in brackets has a maximum when @ -500p
W

wkk ~ .85Aw. The second exponential is maximized if either
wk Or wy is close to zero, i.e., if one or the other state is near 520
the central frequency of the excitation laser. This formula
suggests that the optimal signal can be obtained by exciting |
two states, such that one is near the central frequency, and the  -540 L . . L .

other is well off-resonance. However, as illustrated previously, 500 1000 _15 00 2000 2500 3000
the situation is far more complex and non-intuitive than this DC Field (V/cm)

simple analysis suggests. In particular, the transition momentsFigure 2. A portion of then = 15 Stark manifold in sodium.
have pronounced energy dependencies (because of the differing

angular momentum content of the various states) and the matri
elementsZy, which scale as?, vary from zero to very large
numbers. In our previous work we presented an example in
which the THz signal had a dominant component at 30tm
even though the bandwidth of the laser was only 6 &nin

that case one state hag ~ 0 and the other state was about
5Aw away in energy. However, both states had relatively large
transition moments and the dipole elem&pt was enormous
(Z ~ 15 000; the matrix element,, as a function ofvy
varied over 7 orders in magnitude in that example).

*the amplitudes of the dipole moments vary over many orders
of magnitude, which implies that simply searching for a pair of
states with the proper energy difference will not guarantee that
that particular pair of states will contribute to the spectrum
significantly.

For concreteness, let us consider a specific example. Figure
2 shows a portion of the = 15 Stark manifold of sodium.
Most of the calculations presented here are for DC fields of
~500 V/cm, which, as seen in the figure, corresponds to a
regime in which the 16s and 16p states are split off from the
manifold, and the remainingkdstates are split linearly with
the DC field.

In the preceding section we sketched the derivation of some Figure 3 shows the square of the dipole transition moment
simple formulas to determine the frequency spectrum of THz Qyo, and the expectation value of the distance of the electron
emission from Stark states. Optimizing this emission, however, from the nucleuszl] again for then = 15 manifold of sodium.
is not as simple, for two main reasons. The first is that there For this figure, the static DC field was set to 500 V/cm, and
are a huge number of states, all of which are connected viathe atom was assumed to be initially in the 3d state. The
dipole moments. This means that there are many possiblebandwidth of the excitation laser wagl2 cnT?, and the center
sources for emission at a given frequency. The second is thatfrequencyEy + w = —480 cnt?, which placed it midway

IV. Results
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Figure 3. Square of the dipole moment (filled squares) and expectation Frequency (Cm'1)

value ofz (filled circles) for a Stark wave packet in sodium. The initial
state is the 3d state, and the static DC field is 400 V/cm. The center Figure 4. Optimization of the bandwidth and center frequency for a
frequency of the laser B, + w. = —480 cn1?, with a pulse width of set of 1 cn! bins. The height of the bars shows the relative magnitude
1 ps. of the emission. The numbers in parentheses above the bars indicate
the bandwidth (in cm®) and the center frequency (in cf), respec-
tively, of the excitation pulse. The magnitude of the static DC field is
between then = 15 andn = 16 Stark manifolds. The figure 500 V/cm. The initial state is the 3d state. In this figure, “center
shows, as expected from Figure 2, that fourteen of the sixteenfrequency” refers to the frequency at which the excitation occurs.
Stark states are split linearly m However, the distribution of
transition moments is much more complicated. The matrix
element to the 16s state is equal to zero, because at this value
of the static field the 16s state does not mix with the other
members of the manifold, and so thé= 41 selection rule is
(nearly) obeyed. Notice, though, that the matrix element to the
7th Stark state is also (accidentally) nearly equal to zero, and
that the overall pattern is quite complex, with considerable, non-
intuitive structure.

As Figure 3 suggests, the THz spectrum is a complicated
function of the parameters of the excitation pulse and the
strength of the static field. One approach to optimizing the 0
emission is to use formal control theory to determine the optimal ‘ ‘ ‘
laser fields?®-31 The difficulty with this approach is that most %00 400 %00 600 700
existing methods assume a quadratic control functional. The DC Field (V/cm)

THz signal, which is proportional to the second derivative of Figure 5. Variation of the THz emission in a bin of 8.6 cnt* with
the time-dependent dipole moment, cannot be expressed inthe static DC field. The dashed line shows the magnitude of the signal
quadratic form. Our solution to this problem is to use an USing the optimal bandwidth (19 cr) and center frequency-485

alternative control procedure, in which a functional minimization ¢m ) at 500 Viem. The solid line shows the results when all three
P ! parameters are allowed to vary. The globally optimal point occurs at a

routine is used to search for the optimal laser parameters (€0pandwidth of 17.1 cr, a center frequency 6£553 cmi, and a DC
28) and the static DC field strength. We note that other, more field of 426 V/cm. The initial state is the 3d state. In this figure, “center
elaborate, pulse-shaping schemes are certainly possible, esperequency” refers to the frequency at which the excitation occurs.
cially with current laser technology. However, for the targets
considered below, only two laser parameters are important, the
excitation frequencyp, and the bandwidthAw. five different frequencies. The figure indicates that as the desired
The minimization routine used in this work is a genetic THz frequency increases, the optimal bandwidth also increases.
algorithm (GA) that uses the standard genetic operators of This is sensible because the larger the bandwidth, the more likely
crossover and mutatiold. We find that this method is quite itis that two states within the bandwidth of the excitation pulse
efficient, and converges rapidly to the optimal parameters, have a frequency difference equal to the desired emission
typically after several hundred evaluations of the test function. frequency. However, since the contributions are added coher-
Other minimization algorithms can also be employed, which ently, and since the system is often dominated by a single
may have advantages in certain cases. Particularly interestingtransition, the optimal solution isot simply to increase the
in this regard are evolution algorithrdswhich use the same  bandwidth to as large a value as possible (if the total energy
basic genetic operators as the GA, but apply them with different per pulse is kept constant, as it is in these calculations). Notice
precedence. In addition, some parameters of EAs are determinedilso in Figure 4 that the center frequency increases as the desired
adaptively during the optimization, which may be responsible THz frequency increases. There is no particular reason to expect
for some of their success in recent experimental implementa- this behavior a priori.
tions34 The results in Figure 4 give a hint of the extreme sensitivity
Figure 4 shows the results of optimizing the THz emission of the THz emission to the parameters of the excitation pulse.
via excitation to near the center of the= 15 Stark manifold However, the magnitude of the emission also depends on the
in sodium, at a fixed DC field of 500 V/cm. In this case we DC field. Figure 5 shows the dependence of the THz emission
chose to optimize the emission & 1 cnt! frequency bin at in a frequency bin of 1516 cnTl, as a function of the

0.5 T T

;

Globally Optimal
0.4

0.3

0.2
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Appendix: Derivation of Non-Uniform Grid Equations

In this appendix we present the method that we have
developed to solve a discretized version of the Sdimger
equation on a non-uniform finite-difference grid. We begin with
methods presented previously for uniform gr##i8>The action
is defined as

HEEEHD

DC Field (V/cm)

eVl

<

where the Lagrangian is

bandwidth of the excitation laser is fixed at 17.1¢nhe initial state
is the 3d state. In this figure, “center frequency” refers to the frequency

at which the excitation occurs. Variation of the action with respect tp*, 0S/dy* = 0, for
fixed t; andty, yields an equation of motion fap. Note that

magnitude of the DC field. The figure contains two tr.aces.. In thisis equiva|ent to requiring thm* obey the Eu|e-|L|_agrange
one, the parameters of the laser field are held at their optimal ¢gndition

values for a field of 500 V/cm. In the other, all three parameters
are allowed to vary. As the figure illustrates, allowing the DC d( oL ) oL 0 (A3)

field to vary increases the maximum THz emission by nearly a dt\gy* wy* B
factor of two. Finally, Figure 6 shows a control map of the DC ) _ ) _

field versus the center frequency, with the bandwidth at its FOr & continuous wave function, this procedure leads directly
optimal value. The basin of attraction for the globally optimal 0 & formulation of the time-dependent Sttlirmyer equation
solution is seen to be rather narrow, and well-localized in (TDSE) fory. For a discretized wave function, the procedure

parameter space. This would make it nearly impossible to locatel€@ds to a discretized version of the TDSE that efficiently
with low-level search methods such as conjugate gradient, or@ccounts for the boundary conditions imposed/orespecially

by simply guessing. at smallr. _ _ _ o
The static (atomic) potentials used in this work are of the
V. Conclusions form
In this paper we have investigated one aspect of the V(F) = U(N) + SV, ()l 0| (Ad)
optimization of THz emission from Stark wave packets. In

particular, we have shown that the magnitude of the emission

is extremely sensitive to the excitation conditions and the static where U(r) is a spherically symmetric potential (containing
field, and that the parameters can be optimized with the aid of Coulomb and possibly polarization terms) andr) are angular-

a genetic algorithm. Of course, optimizing the magnitude of momentum-dependent, short-range pseudopotentials for the
the photon emission in a narrow frequency bin is only one of atomic system. The centrifugal teirl + 1)/2r2 is included in
many possible control scenarios. Other possibilities include V,, soT refers to the radial kinetic energy only.

producing optimal trains of pulses, or coherently related bursts  The wave function is expanded in a mixed basis consisting
of radiation that might be then compressed to form ultrashort of a product of discretized radial functions and spherical
pulses, or used in spectroscopy. It may also be possible toharmonics,
optimize additional expectation values to create, for example,

squeezed Stark wave packets, or wave packets localized in both

| andr. 1/)(rja01¢ut) = Z¢Im(rj it)Y{Iﬂn (91¢) (AS)

Finally, it is intriguing, and certainly Wilsonian in spirit, to m
speculate about the prospects of performing similar analyses inq simplify the notation, we assume that the potential is
polyelectron atoms and molecules. The one-electron Stark WaVecylindrically symmetric, which means that the quantum
packets dispussed here display.a remarkgble range of complexity, umber is conserved. For this reason, the labi suppressed
Systems_wnh more electrons will be c_on&derably more complex, i the following equations. The one-dimensional spage =
which WI|| make them even more difficult to_anglyze. At th_e 0 10 rmax = R is divided intoN intervals with knots at{j =
same time, the vast number of states, and intricate coupllngsl__N]h which are not required to be evenly spaced. The wave
will offer potential applications in a wide variety of control  ¢,ction is known at these points only. We assume #héR)
scenarios. =0, r¢ (r) = 0, andrag, /ar = 0 atr = 0. With these boundary
conditions, the equations of motions can be derived for the
coefficientsg| = ¢ (rt).
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in L are discretized as and

|'rj + 1,42 1

5 Imax bmax N [, ¢J’ B 1 f 1
B&D: Z.[(‘) drl" ¢I I_ ZZ[ r (¢J) I_ dl - rj+1 —_ rj—ll, rj —_ rj_ll. 2rj

(A6) (A14)
T= Imaxf A r2 | Here,Hy is the field-free Hamiltonian matrix, which is block-
Z 0 diagonal in thd quantum number and tridiagonal in the radial
1 index. Note that for a uniform grid spacing, far from ther
1 N Mg T 1] 2/¢] ) = 0 boundary, botft; anddj, as defined above, approach the
Z’Z(rﬁl j 2 ro—r (A7) value 1A? and the standard second-order finite-difference
j+1 i

equations are recovered.

To obtain the field-free basis states used in our calculations
we diagonalize separately a symmetric tridiagonal mai-f-l{;x
for each angular momentum value. Since we require only the
lowest few hundred states, this diagonalization can be performed
in O(N) operations, wherBl is the number of radial grid points.

and

Imax

V= z Jodr ePgiuE) + Vi ()¢ ~

Imax N |’
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