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Path integral quantum transition state theory (PI-QTST) and its modified versions are studied for an asymmetric
Eckart barrier and a metastable potential. For low temperatures, it is confirmed that the PI-QTST overestimates
the reaction rate, as do other quantum activated rate theories. A simple correction method which modifies the
product part of the potential such that it is bounded by the potential reactant well bottom energy is then
implemented. The resulting tests for the asymmetric Eckart barrier and a cubic metastable potential demonstrate
that this method gives a reliable estimate of the reaction rate for the model systems considered. For an
understanding of the source of the error in the usual PI-QTST method and of the underlying mechanism of
the correction, a detailed semiclassical analysis is then performed. This analysis demonstrates that the modified
PI-QTST of Cao and Voth [Cao, J.; Voth, G. A.Chem. Physl996 105 6856] becomes equivalent to the
semiclassical bounce theory at low temperature only if a certain subset of classical paths is used. It is therefore
concluded that the errors originate from the inappropriate mixing-in of paths associated with the product
bound states in numerical path integral evaluations. These product paths are eliminated by the suggested
correction method, thus rendering PI-QTST much more accurate for strongly asymmetric or metastable systems

at low temperatures.

I. Introduction

From a molecular viewpoint, activated reaction evértare
rare phenomena, and the probability that the system will visit
the reactive zone, as determined by the free energy barrier,
accounts for the dominant contribution to the reaction rate.
Transition state theory (TSTY,in this sense, amounts to the
simplest approximation. It plays an important practical role in
estimating the reaction rates in various systems and is indee
amenable to further improvemehtin generalizing TST to the
quantum casé, 1113 however, one is confronted with some
conceptual difficulties due to quantum dispersion and tunneling
even in the simplest generic case of a single adiabatic barrier
crossing.

Only in the two limiting cases of high and low temperature
does the quantum description become simplified. In the former

case, one can proceed in close analogy with classical picture

by including a small amount of quantum dispersion and barrier
top tunneling onl\:+15In the zero temperature limit, within the
path integral formalism®1° one can identify with the reactant

state those paths localized near the bottom of the reactant
potential well. Barrier-crossing events are associated with paths

which traverse from the reactant region to the product. Within
the semiclassical approximation, the resulting rate can be
expressed in terms of the properties of one (or more) periodic
orbits on the inverted potentidt. 2’

The approaches used in the two limiting situations above are
rather different, though the two results can be formally unified
in a single mathematical expressi##?In this context, Gillan’s
observatio®® and the ensuing work of Voth, Chandler, and
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Miller (VCM)2°® provided an important contribution. Gillan
found that known reaction rate expressions for a symmetric
double well potential coupled to a harmonic bath can be recast
into classical-like forms employing the path centroid defined
within the imaginary time path integral formalis¥t.1° Later,
VCM carried out a more rigorous analysis, the outcomes of
which are the path integral quantum TST (PI-QTST), a rigorous

OIderivation of some of Gillan’s results, and the idea of supple-

menting the approximate reaction rate with additional exact
guantum dynamics calculations.

Subsequent tests and analysé€s® have shown that PI-QTST
is very accurate in the high temperature limit and near the so
called crossover temperature in which the dynamics begins to
be dominated by tunneling. Below the crossover, it reproduces
the dominant exponential term for symmetric or weakly
asymmetric potentials, and it can be improved with a modifica-
tion of the preexponential facté?:3” Recent work has focused
on finding a more universal expression for this factor and also
on the extension of the theory to nonadiabatic c8%&%2° On
the other hand, applications of the PI-QTST to strongly
exothermic or metastable potentials at low temperature can be
problematic. The reaction rate appears to be overestimated by
orders of magnitude or, in fact, may not be defined in some
cases34142The reason for this has been explained in a way
analogous to classical multidimensional TST. In the general
function space of cyclic paths, the centroid used in PI-QTST,
the zeroth mode of the path, belongs to a specific class of
dividing surfaces. For the case of asymmetric potentials, the
optimal dividing surface seems to be rotdfeth a direction
different from any of the surfaces corresponding to a fixed
centroid and the use of the centroid coordinate results in
overestimation of the reaction rate. On the basis of this idea,
Cao and Voth (C\¥ and Mills et al*2 independently developed
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schemes for identifying the optimum surface in the general

Jang et al.

defined as

function space of paths, one of which has been applied to some

systems'? However, this approach may limit the application of
the theory to small systems, so a more practical solution that
does not abandon the practical merits of PI-QTST is still
desirable.

Recently, two new approaches to a QTST have also
appeared345 These start from an expression for the flux-side
correlation functioff and then invoke mathematically or physi-
cally motivated approximations. These new QTSTs produce
results comparable to those of PI-QTST when tested for the
symmetric Eckart barrier. For the case of asymmetric Eckart

barrier, a detailed comparison has not been made, although the©

new theories have also been reported to perform unsatisfactorily.
The present paper was thus motivated by the incomplete
understanding of the performance of PI-QTST for the cases of

asymmetric and metastable potentials at low temperature. The

first objective is to calculate the reaction rates based on PI-
QTST for the asymmetric Eckart barrier and to compare these
with published results for a collection of different QTSTs. The
results presented show that, although the PI-QTST performs
worse than the semiclassical bounce th&b#f below the cross-
over temperature, it is somewhat better than other simple
QTSTs. However, these data again confirm that one should be
cautious in applying the theory to asymmetric or metastable
potentials at low temperature. The second objective is then to
provide a simple, mathematically motivated, correction proce-
dure to PI-QTST to render it again quantitatively accurate for
such systems.

This paper is organized as follows: In section Il, the PI-
QTST and its improved versions using different preexponential
factors are summarized and the results of their application to
the asymmetric Eckart barrier are presented. In section I, a
practical remedy is suggested for the strongly asymmetric barrier
problem and then tested for the asymmetric Eckart barrier and
for a cubic metastable potential. In section IV, a semiclassical
analysis is made of the centroid density, which illuminates its
relation with the semiclassical bounce theory and the sources
of the errors involved in PI-QTST for strongly asymmetric
system at low temperature. Section V provides concluding
remarks.

Il. Path Integral Transition State Theory Applied to An
Asymmetric Eckart Barrier

A. Formal Expressions.The quantum partition function in
the path integral formalism can be recast into the following
classical-like form?6:47.48

m
27h?B

Z=Tr {e‘ﬁp'} =

J dxpx) @

wheref is the inverse temperature in units of the Boltzmann
constant,m is the mass, and the “excess” centroid density
beyond the free particle limit along the reaction coordinate is
given by the path integration over all constrained cyclic paths
such that

P (XJ — e—ﬂVc(Xc) —
o =

2
A ZEE [ [ Dpx(@)] 8¢, — %) exp{~Sx@VA} (2)

with xo = /5" dr x(2)/(BR). In eq 2,D[x(z)] is the usual path
measur& 19 andgx(z)] is the Euclidean action function&; 19

h
@) = f;" de {550 + Vo) ©)
wherex(7) is the derivative ofx(r) with respect tor. A one-
dimensional notation is used throughout for simplicity. Note
that, as opposed to some of our earlier papers, the centroid
potential of mean forc¥,(x.) is defined here to be the excess
centroid free energy over the free particle limit. The notation
“pc(X%c)” in this paper will also refer to the excess centroid density
beyond the free particle limit, which is the important contribution
the rate constant.
The rate expression in PI-QTS® expressed akp—grst
hereafter, has the following classical form:

1 e PV (zﬂmg)*”?

—AVe(x)
= e 4
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wherex; corresponds to the barrier position\éfandZg is the
reactant state partition function. This rate expression is, in fact,
the variational version of PI-QTST. At high temperature and
for the inverted harmonic barrier, this expression has been shown
to yield the exact high temperature result. Near or below the
crossover temperature, however, eq 4 begins to underestimate
the reaction rate for the symmetric Eckart barrier. Cao and Voth
(CV)% have provided a unified expression for the preexponential
factor which improves on this feature of the theory. They used
Affleck’s well-known correction factéf in a way consistent
with the known high temperature result, and based on the
assumption that the free energy saddle point in the general space
of paths can be well represented by the centroid coordinate
alone. The resulting expression is given by

Koy = min (&

L
wc,b

%bgh)kp.m (5)

wherewy, is the frequency of the inverted harmonic function
fitting the barrier top ofV(x) andwcy is that fitting the barrier
top of Ve(xc).

More recently, RamiréZ suggested a different uniform
expression for the preexponential factor based on an empirical
relation which seems to work well for the symmetric Eckart
barrier. It is given by

12

Ve(xo)
E(%)
wherex; is again understood as the position of the barrier top

of V. andE¢(x:) corresponds to an average energy for a fixed
centroid minus 1/(2), the Virial forn*®-50of which is given by

ke = (6)

kPI—QTST

E0) =5 60 — V@) +Vx@)] (@)

where[d:-[J means average over the centroid constrained path
integral of eq 2.

B. Results. The reaction rates were calculated for the
following asymmetric Eckart barrier:

A
1+e™

B
4 cosli(ax/2)

with V(=) = 0, V(o) = A = =18/, B = 54/r, anda =

V(X) = ®)
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/37/4. Natural units have been chosen such that w, = m o v
= 1. These choices of parameters and units result in a classical [ 1 [ == |-—E
barrier height ofV* = 6/ and a classical barrier location of -y
g* = — In 2/a. The quantity to be compared I§ the ratio of

the quantum rate to the classical rate. Thus, calculation of the
reaction rates requires the determinationvefx,) defined by

eq 2, and the average centroid energy function given by eq 7 if

Ramirez’s expression for the rate is used. These calculations
can be performed using any path integral simulation method,

along with the imposition of the centroid constraint.

The method of staging path integral molecular dynamics
(SPIMD) was chosen in the present wétkThe number of
quasiparticlesP = 253, gave converged thermodynamic data
for all the values off tested. The number of primary quasi-
particles used was 10 for all temperatures, and each intervening
segment consisting d?/10—1 quasiparticles was transformed
into staging coordinate. To ensure canonical sampling, aNose
Hoover chaif? of length 4 was attached to each transformed ‘ . : ‘ . :

; : -4 -3 0 3 6-6 -3 0 3 6
degree of freedom. The use of this thermostat in the presence Centroid (x_)
of the centr0|d constrglnt was made possible using m9d|f|ed Figure 1. Centroid potential of mean forc&/{) and average energy
NHC equations of motiof? which account for th_e constrained  fnction (. as a function of the centroixi compared with the classical
degree of freedom correctly, and by employing one of the potential, for the asymmetric Eckart barrier given by eq 8, at six
corresponding simple reversible velocity Verlet type algorithms, different values of.
VV-3.5% The mass of the primary quasiparticle was chosen to . .
be P/10, the mass of théth (k = 1, -+, P/10—1 ) staging TABLE 1: Ratio of QTSTs to the Classical TST, Denoted as

transformed coordinate was chosen tdBg + 1)/(10%), and I, for the Asymmetric Eckart Barrier of eq 8

Energy

the Nosemass was set to 0.0P2A time step of 6.32 1074P B Terqrs? Tev® T Twa! Tp® Taf Tsd Tl
was used in the simulation. 2 117 123 120 1.2 1.2 1.2 1.2
The centroid mean force was calculated using 4 197 216 209 20 20 20 2.0
6 5.69 6.35 6.58 5.2 5.6 54 5.3
d 8 36.6 30.6 50.9 38 44 31 28.1 26
— —__ Y 10 544 335 925 1100 1100 655 233 250
FC(XJ [E:(X(‘L’)) g dXC VC(X‘) (9) 12 16600 7620 65000 87000 28000 13100 3710 4100

2 Path integral quantum transition state theory (PI-QT80ao and
while eq 7 was used for the average centroid energy. TheseVoth modification of PI-QTST® Ramirez modification of PI-QTST.
guantities were calculated at successive centroid positions from’ QTST2 by Hansen and AndersérQTST by Pollak and Liad.The
—12 to 12, in increments of 0.2. At each given valuegfthe best perturbation expansion result calculated by Shao, Liao, and Pollak.
system was equilibrated for 18teps and then sampled for 2 Sem'CIaSS'CaI bounce theoryExact resu_lt
x 10P steps. The centroid potential of mean folégx,) was It is seen that PI-QTST overestimates the rate at lower
then calculated by the integration of the centroid mean force, témperature, while the CV modification is most successful.

using cubic interpolation and quadratic extrapolation where However, itis still in error by almost a factor of two at= 12.
necessary. These results are in contrast to those of the semiclassical bounce

n theory which somewhat underestimates the exact rate, but
force and the average centroid energies for six different values 2chiéves agreement to within a few percent. This situation seems

of B. As f8 increases (temperature decreases), the maximumt© contradict the analysis by VCRE,which showed that the
value ofV; decreases and its position shifts toward the reactant semiclassical limit of PI'QTST can be made equwalgnt to the
side. Table 1 presents the rafiofor various versions of PI- bounce theory by a modification of the preexponential factor
QTST, identified by subscript. In calculating the reaction rate, °NY- Indeed PI-QTST performs quite well for the case of the
significant figures were kept to three and all the calculates symmetric Eckart barrier, but not as well for the asymmetric
were rounded off up to the second decimal point. The results “@5€:

of other QTSTs are also shown, along with the results due to
the semiclassical bounce method calculated using the standar
procedure®-2454|n this table I'ya represents the QTST2 results The data calculated in section Il are consistent with the
by Hansen and Andersém['p represents the QTST results by  previous findings regarding the performance of PI-QTSTs for
Pollak and Liad®®> andT'sp_ is the best perturbation expansion asymmetric or metastable potenti#id2Makarov and Topalét
results taken from Table 3 of the paper by Shao &P dhe provided an insightful analysis and suggested a simple correction
table shows that PI-QTST gives results comparablEgg, a method where the underlying potential energgx) in the
complicated variational perturbation theory, thus implying that calculation is modified to be m&X(x),Vcud with Vey chosen

the PI-QTST includes a substantial part of the nontrivial to be an arbitrary number smaller than the potential reactant
anharmonic contributions. The expression of CV improves thesewell bottom energy. They tested this method for a cubic
results further, remaining quite close to the exact ones. On themetastable potentidt. Above the cross-over temperature, the
other hand, the expression of Ramirez seems to worsen theresults were in close agreement with the exact one irrespective
estimation of the PI-QTST, which indicates that his present of the choice oV, However, below the crossover, they found
empirical relation may not have much generality beyond the the results become sensitive to the valud/gf and are not as
symmetric limit. reliable as those calculated by the semiclassical bounce tbfeory.

Figure 1 shows the calculated centroid potentials of mea

AII. Simple Correction Method



9530 J. Phys. Chem. A, Vol. 103, No. 47, 1999

-V

3

Energy

B=6

0

-6 -4 2 -6 -4

Centroid (x, )

Figure 2. Centroid potential of mean forc&/{) and average energy
function (&) as a function of the centroid compared with the classical
potential, for the asymmetric Eckart barrier given by eq 8 modified in
the way of eq 10, at six different values pf

TABLE 2: Ratio of PI-QTSTs to the Classical TST for the
Asymmetric Eckart Barrier of Equation 8 Modified by the
Way of Equation 107

B Tei-qrst Tev Ir Tsc Tex
2 1.17 1.23 1.20 12
4 1.97 2.19 2.09 2.0
6 5.36 6.65 6.07 53
8 26.5 30.7 33.1 28.1 26
10 244 287 346 233 250
12 3490 4140 5560 3710 4100

aThe symbols are as described in Table 1. The semiclassical bounc
theory and the exact results for the original potential are provided for
reference.

Jang et al.

Energy

Centroid (x_)

Figure 3. Centroid potential of mean forc&/{) and average energy
function ) as a function of the centroid compared with the classical
potential, for the metastable cubic potential of eq 11 modified in the
way of eq 10, at four different values ¢f below the crossover
temperature.

In this case, the PI-QTST underestimates the reaction rate, a
trend similar to the case of the symmetric Eckart ba#iéf:3”
The CV reaction rate expression corrects the PI-QTST results
in the right direction and provides the best estimates for the
reaction rates below the crossover temperature. The rates
calculated by Ramirez’s expression also differ from the PI-QTST
results in the proper direction, but below the crossover tem-
perature, it results in a much larger overestimation of the rate
cthan the CV result.

As an additional test case, the same approach was imple-
mented for a cubic metastable potential that was previously
treated by Makarov and Topal€r.The explicit form of the

In the present paper, we suggest and more clearly justify the model potential is given by

use of a similar correction method, but with the valuevif;
always fixed to be that of the potential reactant well bottom

energy. That is, given a potential, the reaction rates are

calculated by applying PI-QTST and its modifications to the
following potential:

V(X), V(X) =V,
V, V(X) <V,

r

V() = { (10)

with V; being the reactant well bottom energy.

1o 1

2" 92

with the same natural units as before. For this potentiah 3

V2 andV,, = 3. Sincew, = 1, the crossover value pfis equal

to 2. For the present case alsd, = 0. The potential was
modified in a similar way as before by joining the original
potential with a Gaussian tail at= 6.3. Four different values

of B below the cross-over temperature were considered. For a

V(X) = X (11)

First, the asymmetric Eckart barrier considered in the previous given value of3, the number of path integral quasiparticles was

section was tested, wheké = 0. The potential used in the
simulation was the original potential far< 0.9 and a Gaussian
tail joined atx = 0.9 such that the potential and the first

chosen to be 180(27), and the number of primary quasipar-
ticles was set to 10. The staging transformation was made for
each intervening segment as before. The centroid mean force

derivative change continuously. Since the value of the potential was calculated in the same way as before by varying the centroid
at the joining point is very small (about 0.006 ) and the Gaussian with the interval of 0.2 in the range from3 to 12. Figure 3

tail decays to zero rapidly, this method of modification is shows the centroid potential of mean force, and Table 3
practically the same as the one suggested by eq 10. Numericatompares the calculated reaction rates with the exact %nes.
calculation of the centroid potential of mean foMgwas then The rates based on the semiclassical bounce theory have again
performed as described in section II.B. Figure 2 shows the been calculated according to the standard methétE*For this
potentials for six different values gf. Table 2 shows the case also, the CV theory gives quite accurate results and
calculated values of’, using the three PI-QTST based ap- becomes comparable to the semiclassical approximations in the
proaches with the modified potential. The semiclassical and low temperature limit, except for the caseff 27/0.5, where
exact results given in Table 1 are shown again for reference.the deviation seems simply originate from the breakdown of
As can be seen in Table 2, the modified PI-QTST results all the stationary phase integration approximation in the centroid
show much better agreement with the exact ones. variable space. As can be seen from Figure 3, the centroid
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TABLE 3: Reaction Rate Calculated by PI-QTSTs Modified implies that there can be more than one such trajectory. The
llgthe \_Nla)’foé Equ_atloill;LO for the Cubic Metastable quantity I[x., CI(x)] is a centroid-constrained quadratic path
otential of Equation integral, which depends ax, X, and on the specific classical

B kei-qrst kev ks Kex orbit chosen. This quantity is defined as

27/0.9 1.90 2.16 2.45 1.92(1078)

27/0.7 4.63 6.47 7.26 6.77(10°9) g

27/0.6 3.91 6.24 6.26 5.83«(107°) — © i _

27/0.5 3.97 7.61 6.02 5.60(10°9) X, CIX] 2am f —o 46 OXP{iG00 X} x

2 The reaction rates are denotedkasith the subscripts having the f f D'[6x(7)] exp{— mph dr ph de’ ox() x
same meaning as in Table 1. The semiclassical bounce theory and the 0 2h Jo 0
exact results are for the original potential. For the units, refer to the , , i
main toxt L, ) X(7) + g e ox(0)} (15)

potential of mean force cannot be well approximated by a o
quadratic function down to the energy comparableksd. with Xei0 = fo' Xa(7)/(BR) and
Therefore, the result could be improved by using an effective )
curvature rather than the one at the barrier top. N 0 1., ,
The results of the two test cases show that the CV theory L 7) = {_ 8_12 + EV (XC'(T))} o(r—7) (1)
applied to the modified potential of eq 10 predicts reaction rates
comparable to those based on the semiclassical bounce theor
below the cross-over temperature. This implies that when the
choice ofV¢, = V, is made, the centroid coordinate recovers
its role as the proper reaction coordinate and the action for this
modified potential at the local maximum in the centroid variable
space is very close to the action for the original potential at the
saddle point in the general space of paths. In the following
section, a detailed semiclassical analysis of the centroid density
; : S . . Bh
is provided, which illuminates the source of the error involved jg)
in the original applications of PI-QTST and CV theory to
strongly asymmetric and metastable potentials, as well as the
mechanism of the correction made by the simple remedy
suggested here.

Xote that these latter objects also implicitly depend on the value
of x and on the specific classical orbit chosen. The subscript of
0 in the path integral of eq 15 indicates thiaq(z) starts and
ends at zero. For the differential operator of eq 16, the zero
eigenvalue Green functiéh®”-5¢can be defined by the following
relation:

de' L(z, 7) G(r', ") = [I" d¢ G(r, 7) L(¢, 7") =
ot —1") (A7)

which satisfies the same boundary conditiondaér) stated
above. It will be shown later that the explicit expression for
IV. Semiclassical Centroid Density the semiglassicgl ceqtrpid density involves this Green function.
) ) _ For the time being, it is assumed that the operator of eq 16
_A. General Expressionslin the present section, a semiclas- goes not have a zero eigenvalue so that the Green function
sical expression for the excess centroid density is provided. Forgefined by eq 17 is not singular. Later, it will be shown that

this purpose, eq 2 is rewritten as the case with zero eigenvalue can be included as a limiting case
5 in performing the final integration.
[ 27h w A8 e , i i ion i i
pe(X) = B f_w EC f_w dx f L D'[X(7)] x Equgnon 15 can be tra_nsforme_d into an expression |nvolv_|ng
m a solution of the differential equation of eq 16 and an integration

exp{—9x(0)J/h +it(X, — xJ} (12) over the Green function defined by eq 17. The detailed method
of evaluation and the final expression depend on whether or
where the delta function in the integrand of eq 2 has been not the differential operator of eq 16 has a negative eigenvalue.
replaced with its Fourier integral expression. The path integra- Appendix A starts with the discretized approximation for eq
tion is over those paths witk(0) = x(fh) = x as indicated by 15 and then provides a general expression which allows explicit
the subscript of the path integral, and the prime in the path Gaussian integrations. For the case where all the eigenvalues
measure indicates that the integration oxéras been singled  zre positive, the Gaussian integrations over all the fluctuation
integral comes from paths close to the classical paths on thedescribed in Appendix B. The case where there is a single
inverted potential. These paths can be decomposed into negative eigenvalue and no zero eigenvalue is treated in

Appendix C. Here greater care must be taken with the order of

X(7) = %,(1) + 0x(7) (13) integration, and the existence of the result is seen to depend on
wherex(7) is a classical path on the inverted potential satisfying the shape of th.e pgtentlal. ) ) )
the boundary conditione(0) = x(8k) = x, and dx(z) is an The expression in eq 14 shows that a given semiclassical

arbitrary fluctuation away from the classical path with the centroid density, whether it is convergent or divergent, can be
restrictiondx(0) = ox(5h) = 0. Including up to the second order ~ formally decomposed into disjoint components, which we
variation of the action with respect tix(), the semiclassical ~ characterize by the specific classical orbits. All of the nonsta-

approximation for the centroid density of eq 12 is given by tionary classical trajectories m.u.st have at least one turni_ng point
because of the boundary conditiaf{0) = xq(5h). Since a given

SCry, ) —qCIX)A classical trajectory spends a substantial part of its time near the

peX) f o C%) © D, CI (14) turning point(s), the characteristics of each component of the
semiclassical centroid density given by eq 14 can be related to

whereCI(x) is a classical trajectory starting miand ending at ~ the nature of the turning points. Thus it is reasonable to
the same point after an interval= fh, and the summation = decompose the semiclassical centroid density into components
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associated with the location of the turning points of their Then, the classical trajectory on the inverted potential satisfying

underlying classical trajectories, as follows: the boundary condition is given by
SC — scC sc sc COSh@ (ﬂh/Z - ‘L’))
Pe (%) = peAXe) t pepX) T pe %) (18) X((7) = X, + (X — X) cosr:@r T 21)

where the subscripts, b, and p respectively represent the ) ) ) o
reactant, the barrier, and the product parts of the centroid density.The center of this trajectory, the time average, is given by
For more quantitative statement, we temporarily introduce >

dividing surfaces:d, which lies between the reactant bottom Xg0=% T (X—X) —htanh@rﬁh/Z) (22)
and the barrier top, and,, which lies between the barrier top o

and the product bottom. In most situations where the reaction
rate can be defined, although somewhat arbitrary, these dividing
surfaces can always be found such that, in the classical limit,
the reactant region of the configuration space corresponds to
the lefthand side ofl, and the product region of the configu-
ration space corresponds to the righthand side,gf Within

the semiclassical approximation, the turning points of the
underlying classical trajectories can play such roles. That is,
the reactant centroid density;;(x.), is the centroid density P

around the classical trajectories with all of their turning points L(z, ') = (— —t wrz) ot — 1) (24)
at the left hand side ofl, ; and vice-versa for the product o

centroid density. The barrier centroid density is the centroid
density around those classical trajectories with the turning points
in betweend,, anddy,, and around those classical trajectories
with turning points on both the lefthand side df and the
righthand side ofdyp. In the high temperature limit, only the
former contributes to the barrier centroid density, and the latter

and the action along the given trajectory is given by
Si = PRV, + Mo (x — x)’tanh@fh/2)  (23)

For the given trajectory, the second derivative of the potential
is constant and the differential operator defined by eq 16
simplifies to

which is independent ok. This operator does not have any
negative or zero eigenvalues and the centroid-constrained path
integral ofl[x, CI(x; r)] in eq 19 can be calculated as described
in Appendix B. For the present case, the explicit expressions
for egs B3 and B5 can be shown to be

appears only below some temperature in most cases and 1 .

becomes more dominant as the temperature goes down. The f(Bh) = Zsmh(wrﬁh) (25)
details of the decomposition depend on the topology of the '

potential and the temperature. In the following, the simple b2 5 w, BR

generic case is considered where the regions near the reactant y = (—) (1 — tanh( ! )) (26)
bottom and the barrier top can be well approximated by Wy w, fh 2

guadratic functions and where the potential changes in a smooth . . .
and continuous fashion between these regions. Inserting egs 22, 25, and 26 into eq B6, and then using the

B. Reactant Centroid Density.Due to the generic shape of ~ resulting expression in eq 19 along with eq 23 one can obtain
the potential assumed in the analysis, the reactant centroid@" €xpression for the reactant centroid density which involves
density consists of those classical trajectories which have only Gaussian integration ovec Performing this integration, the
one turning point on the reactant side hill of the inverted following high temperature expression is obtained:

potential. Such trajectories, denoted asxClk), start atXx, 2
approach (from either side) the top of the reactant side hill of (x) ~ (o, fRI2) exp{ —pV. — pmo; (x. — )2}
the inverted potential without crossing it, and then after a time Per sinh, ph/2) ' 2 %%

ph, return to their original positiox, with momentum at = @27)
ph equal in magnitude and opposite in sign to that at O.

Note that there is only one such trajectory for giveand h. As the temperature is reduced, the imaginary {ifidecomes
The stationary trajectory sitting at the top of the hill can be |5rger and the important classical trajectories sample a larger
included as a limiting situation of these trajectories. The general region of the potential, away from the reactant minimum.

expression is given by Eventually, the harmonic approximation for the potential will
break down. However, as long as the curvature of the original
p(x) = J: dx e SN 1y Cl(x; )] (19) potential increases as the trajectories approach the turning point,

all the eigenvalues of the differential operator of eq 16 remain
positive and the semiclassical centroid density can be evaluated
in the same manner of Appendix B. Although it is not in general
possible to find the explicit expressions for the eigenvalue
spectrum and the Green function, one can usually make an
effective harmonic approximation and the final expression can
be brought into the form of eq 27 with the frequengyreplaced
with the x; dependent effective frequen€¥(x;). Note that the
value ofpifr(xc) decreases in a Gaussian fashion as the centroid
Xc is moved away from the reactant minimuxntoward the
barrier top. This feature will be revisited later in the analysis of

wherel[x., CI(x; r)] is the centroid constrained quadratic path
integration defined by eq 15 around the classical trajectory of
CI(x; r). The subscript off denotes that the integration is
performed only forx satisfying the condition ok (8h/2) <

drp. At high enough temperaturgh is small and the starting
pointx should be close to the turning point. Thus, the dominant
contribution to eq 19 is from the reactant bottom region of the
original potential, which can be approximated by the following
harmonic potential:

2 the simple correction scheme.
V) ~ V. + Mo, (x — x)2 (20) C. Barrier Centroid Density. The barrier centroid density
' 2 ' consists of those classical trajectories which connect the reactant
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and the product sides of the potential. At high enough temper-

ature (smallgh), the only possible trajectories of this kind are
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Inserting egs 31, 34, and 35 into eq B6, and then using the
resulting expression in eq 28 along with eq 32, one can obtain

those concentrated near the barrier region. On the other handthe following expression for the barrier centroid density:

at temperatures low enough thit is larger than the period of
the small harmonic oscillation near the barrier region, periodic

orbits with much lower action exist and the paths near these

orbits represent the dominant contribution to barrier crossing.
1. High Temperature Limitin this case there is no periodic
orbit crossing the barrier top of the original potential, and the

only possible trajectories are those which start near the local

minimum of the inverted potential, climb up toward either the
reactant or the product side slightly, and then return to their
original position. The constant trajectory sitting at the local
minimum of the inverted potential is included as a limiting case

of these trajectories. The expression for the barrier region

centroid density, therefore, can be written as

pealx) = f, dxe O I Cl(x; b))

where the subscrigi implies that the integration is done only
for x satisfyingdw < xa(Bh/2) < dpp andI[x., Cl(x; b)] is the

(28)

Pop (%) ~

T ZL 111" AN [ dxx
sin(wfh) 2y —o

exp{ _ R

Wyy
Sincey is positive, the Gaussian integration oveis defined
and the resulting centroid density can be written as

tan(,Bh/2) (x — xc)z} (36)

2
Mo
exp{ — BV, + %’

(w,BhI2)

Pap (%) ~ S Hh2)

m—m%
(37)

This is equal to the exact centroid density for the inverted
harmonic oscillator with frequencyy.

centroid constrained quadratic path integration defined by eq  As has been stated, the derivation of eq 37 is valid only when

15 around the barrier region classical trajectory ofxCH).
Again, it is assumed that the potential in this region can be
well approximated by the inverted parabolic form

2

V) ~ V= 2 (X2 (29

Then, for a giverx, there exists a unique classical trajectory on
the inverted potential satisfying the boundary condition as
follows:

cos,(t — ph/2))
cosShi2)

This expression becomes singular whei = z/wy,. For the
moment, it is assumed thgh < w/wp. The time average of
this trajectory, its centroid, is given by

tan(w,hi/2)

Xoi(7) = X (X = %) (30)

Xg0= Xp T (X = %) —(w BRI2) (31)
and the action along the trajectory is given by
Sy = AV, — Moy(x — x,)* tan(,Bh/2) (32)

For the trajectory of eq 30, the differential operator defined by
eq 16 simplifies to

2
L(z, 7') = (— K- wﬁ) 8 — ) 33)
at

The eigenvalues of this operator are all positive under the
limitation of ph < z/wy as stated above, and the centroid
constrained path integratiofix;, CI(x)] in eq 28, can be
calculated in the manner of Appendix B. The explicit expres-
sions for eqs B3 and B5 can be calculated to be

H(Bh) = wi sin@yBh) (34)
b

(39)

ph < mlwy,. For the case whera/wp < fh < 21a/wp, two
difficulties are encountered in its derivation even though the
final expression of eq 37 can still be used. First, the classical
equation of motion, eq 30 becomes singulaffat= 7/wp. The
reason is that, at this temperature, the classical trajectory starting
atx always ends up at® — x after half the period time, within
the harmonic approximation, and the only solutions satisfying
the given boundary condition are those trajectories starting at
= xp. For values ofgh slightly larger than that corresponding
to the half-period, the classical solution of eq 30 can be used
again. Second, when/w, < ph < 27lwy, there appears a
negative eigenvalue, and one cannot perform the path integral
as described in Appendix B; nor can the approach of Appendix
C be used becausg of the unstable mode appearing in eq C1
vanishes, making the resulting centroid density undefined. In
fact, there exists an anharmonic contribution which was not
considered above but resolves the difficulties stated here. That
is, a small participation of the anharmonicity removes the
singularity atph = w/wy, and allowso; of the unstable mode to
survive. Therefore, the centroid density changes continuously
at the singularity and the method of Appendix C can be used
in the range ofr/wy, < ph < 27/wy, as long as other criteria are
satisfied. Thus, while anharmonic contributions from a realistic
potential become crucial to the definition of the centroid density
in this parameter regime, the qualitative behavior of the solution
seems to remain the same as that for higher temperatures. That
is, the final expression for the centroid density is expected to
be well approximated by the form given by eq 37, with the
barrier frequencywy, replaced with anx.-dependent effective
harmonic barrier frequency2p(Xc).2°

2. Low Temperature LimitBelow the temperature defined
by fh = 27/wy, there appear one or more periodic orbit(s) which
bridge the reactant and the product regions. A feature of these
trajectories is that the action along the trajectory does not depend
on the choice of the initial position. The dominant contribution
comes from the periodic orbit with perigth, and the semiclas-
sical barrier centroid density is approximated to be

i) ~ e 3 [ axllx, Clix po)]  (38)

whereS§,, is the action along the periodic orbit atick., CI(x;
po)] is the centroid-constrained path integral defined by eq 15
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along the periodic orbit. The integration subscript of po implies  D. Product Centroid Density. The product centroid density
that integration ovex are performed along the points in the consists of the classical trajectories which have all the turning
given periodic orbit. points on the product side hill of the inverted potential.
For the special case whexecorresponds to a turning point, Representing these trajectories axQb), the centroid density
Xpo(T), becomes the zero eigenvalue solution of the differential can be expressed as
operator of eq 16 satisfying the given boundary condition of
Xpo(0) = Xpo(fh) = 0. Otherwise ¥po(7) does not vanish at the PE%) = f dx e SCPIR 1y Ci(x p)]  (43)
boundary and the true solution should be obtained through a ' P C%p)
perturbative correction. This correction forces the solution to
vanish at the boundary and the resulting eigenvalue becomeswhere all the symbols have meanings analogous to those in the
slightly larger than zero in a way analogous to a free particle reactant centroid density of eq 19 and a general situation is
confined to a one dimensional box with an infinite WIlOn considered such that the product region can have an arbitrary
the other hand, this (almost) zero eigenvalue mode has one nodeshape allowing multiple classical trajectories and the product
which implies that there should be a solution without any node side of the original potential can be either bounded or
which has a negative eigenvalue. unbounded. While a formal definition of this product centroid
Given the qualitative feature above, the calculatior [, density has been possible, there is no guarantee that it can always
Cl(x; po)] can be made as described in Appendix C, except for have a convergent value for the case of an unbounded product
the case wherk,o(0) = X,o(81) = 0, which will be included as  state. If the potential decrease is steep, either the path integration
a limiting case later. Sincky(0) = Xpo(bh) and the period of  or the final integration ovexin eq 43 can be divergent. On the
the orbit is independent of the initial poirt eq C8 simplifies ~ other hand, if the product side of the original potential is

to°® bounded or it decreases less steeply than a quadratic function,
it always has a convergent value.
, d(Bh) For the purpose of the analysis to be made in the following
f(Bh) = mx,0) — =~ (39) section, an approximate explicit form for the product centroid

density (when it converges) is useful. Again an effective
harmonic expression is used for this purpose. In analogy with

whereE is the negative of the energy of the periodic orbit on . . . o7
. . . the reactant centroid expression of eq 27, the final result is given
the inverted potential. In the present case, the existence of a

negative eigenvalue is equivalent to the condition thghj( by

dE < 0. Inserting the expression of eq 39 into eq C6 and then (Q,(x)Bh/2)
using the resulting expression in eq 37, the barrier centroid picp(XJ A PO
density can be written as ’ sinh(@(x.)ph/2)

SCiv ) @ S [ dis 1 _dE ph exp{ e
pepx) ~ e 3" [ dx.(0) % O) \/d(ﬂh)izw .

5 If the value of Qu(X.) is real, the centroid density of eq 44
MB(Xp0.0 — %) represents a bound state case. An imaginary valu@k.)
exp| — 2 (40) with its absolute value being smaller tham/2h can represent
the moderately steep unbound state where the centroid density
with y defined by eq C14 having the following form for the S still defined. On the basis of the above expression and the
present case: similar expression for the reactant centroid density in eq 27,
the primary factor determining the relative values of these two

Q 2
i S xp>2} (44)

md@BR) [ 3 o terms is the differenc®; — V,. If this is much different than
Y= 3h TdE {— 0 dr X7 ﬁh)2 - zero and positive, the product centroid density will be signifi-
2 d(5h) cantly larger than the reactant contribution for any value of the

( d fﬁh de X (; ﬁh))z} (41) centroid constrainxc near the Ioca_ltion _of the bqrrier top.
o(Bh) YO po E. Analysis.One of the assumptions involved in the PI-QTST
and its improved versions is that the path centroid is a natural
Since dfh)/dE is negative, the condition gf < 0, a necessary  variable that can differentiate the reactant, the barrier, and the
condition for the existence of the semiclassical barrier centroid product parts of the partition function. As we shall see, this
density, is equivalent to the condition that the quantity within assumption is at the heart of the problem when applying PI-
the curly bracket of eq 41 is positive, which seems to be satisfied QTST to strongly asymmetric or metastable potentials at low
in most cased? temperatures using numerical path integral methods to compute
Equation 40 can be simplified furthét The differential of the centroid density. Indeed, in the semiclassical approximation,
dXy0(0)/[%p0(0)| can be replaced withwithereby also including  such an assumption is not necessary if one decomposes the
the limiting case ofk,(0) = 0. The rest of the integrand is  centroid density into its constituent components as in the
independent of. Therefore, after the integration over the preceding sections. One can then apply the unified theory of
final expression for the barrier centroid density is given by  CV using the semiclassical expressions for the centroid densities
from the previous subsections. Defining the reactant partition

2 function as
o) ~ phe S [-GE_ R {_ M}
pe,%;) ~ phe G 21y &P 5y ) .

SC

(42) A 2R

J7E ax px) (45)

where both &/d(fh) andy are negative. with piﬁ(xc) the reactant centroid density defined in section
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I11.B, the rate expression is given by

Dc b wc,bg

1 peX)
R| 27ph 7

kv =

(46)

where p2i(X) is the value of the barrier centroid density
defined in section 11I.C evaluated at its minimum value.

At high temperatures, the barrier centroid density can be
expressed as eq 37 or its variational version withreplaced
with Qu(X;). Therefore,

1 (0, Bh12)
27ph sin@yu () ARI2) Z°5,,

e*ﬁVb

K& . Bh < 2l (47)
where Qu(X) is the frequency of the effective inverted har-
monic function fitting the maximum of the effective barrier
centroid potentiaVq(xc) and is seen to be equal &g p, defined

in section Il. In the low temperature limit where there appears
a periodic orbit, the barrier centroid density of eq 42 can be
used. The resulting expression is

kéc 1 | dE 1172 e_sjdh

v ,_ZJI‘hl d(ﬂh)' chr .
This is of the same form as the Affleck’s rate expression below
the crossover temperatuf®2® That is, within the semiclassical
approximation, the unified theory of CV is equivalent to the
bounce theory below the crossover temperatasdpng as the
correct barrier part of the centroid density is used

In actual numerical path integral simulations, different parts

ph = 27lw,  (48)
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possible and the analysis becomes unclear. However, such a
semiclassical perspective provides a framework in which to
understand the simple correction method presented in section
[ll. That is, within this simple scheme, the lower bound\6f

in eq 10 seems to be an optimal choice because it does not
change the barrier contribution to the centroid density but
minimizes the spurious product contribution to this quantity
described in the preceding paragraph. Thus a numerically
determined path integral centroid density for the modified
potential becomes much closer to the barrier part of this quantity
as identified semiclassically. The modification procedure there-
fore results in an improvement in the estimation of the reaction
rate using PI-QTST or CV theory in conjunction with numerical
path integral methods. This approach also allows for the
computational benefits of PI-QTST to be preserved in a
straightforward manner. It should be noted that all of the analysis
presented until now assumed that the product state potential
bottom lies lower than that of the reactant state, which
corresponds to an exothermic reaction. In the opposite situation
of an endothermic reaction, similar analysis and conclusion are
possible by reversing the role of the reactant and the product
states. This is discussed in Appendix D.

V. Concluding Remarks

The PI-QTST and its variarits36:3’were tested in this paper
for an asymmetric Eckart barrier and compared with other recent
QTSTs*4555The results show that all the theories overestimate
the reaction rate as has been reported befoteThe CV
theory?® is shown to be better than the other approaches in the
low temperature limit. On the other hand, the CV theory is worse
than the semiclassical bounce the&ty*54This is in contrast

of the centroid density cannot be separated and the calculatedo the case of symmetric Eckart barrier, where the CV theory

numerical value at a given centroid is the summation from all

gives results comparable to the bounce thébkghen a simple

the contributions. To better understand this issue, eq 18 can becorrection method is employed which modifies the potential such

rewritten as

P8 N PorfX0) o
per%) (%)

Note that this expression in this case is to be evaluated at or
near the barriert = x7). On the basis of the analysis of this
section, one would clearly wish to have the term in brackets as
close to unity as possible in order for any centroid-based
approach such as PI-QTST or CV theory to be accurate for the
rate constant. The first term inside of the bracket should always
be quite small, essentially because this is what defines an
activated rate process. Even in the classical limit, the intrinsic
nonlinearity of the potential in the barrier region caup?&x’é)

to be much larger tham;(x;) which, according to eq 27,
effectively corresponds to the density from a cusped barrier at
X = X¢. By contrast, the second term in the bracket in eq 49 is
larger than the first term by a factor of®6=V, though it will

still be quite small in the classical, or nearly classical, limit.
On the other hand, for strongly exothermic systems at low

P 00) = Pep%) (49)

that the product part of the potential never lies lower than the
reactant well bottom potential energy, both PI-QTST and CV
theory again are seen to give results comparable to those based
on the bounce theory.

The present semiclassical analysis of the centroid density has
provided two important findings. First, if only the barrier part
of the centroid density is used, which is possible within the
semiclassical approximation, the CV theory becomes equivalent
to the bounce theory in the low temperature limit. Second, the
effect of the simple correction mechanism to PI-QTST and CV
theory presented in section lll can be understood. The correction
does not change the barrier part of the centroid density, but it
reduces the spurious product contribution to the centroid density
which arises in numerical path integral calculations. In this
regard, the choice o¥, as the cutoff value seems to be the
optimal choice because it is the value that makes the contribution
from the product part minimal without affecting the barrier part
[cf. eq 49 and the subsequent discussion].

For multidimensional cases, the correction method and the
semiclassical analysis can be generalized in a straightforward
way as long as the additional nonreactive degrees of freedom

temperature, the second term begins to be much larger andare coupled linearly. If there is nonlinear coupling, the semiclas-

creates the sitgatiqm»ic()(if) > o), thus leading to the
serious overestimation of the rate when PI-QTST is used with
a numerically determined centroid density. A similar situation
occurs ifQy(X%)? in eq 44 becomes effectively negative, as can
be the case for metastable potentials.

The analysis presented above is only valid within the

sical analysis becomes more complicated. Although the cor-
rection method of section Il may become less straightforward
in this case, the reaction rate calculated by such a method is
still expected to be much closer to the exact one. Further analysis
is needed and this will be the topic of future research. From
the practical perspective, the correction method of section Il

semiclassical approximation. For the more general situation seems not to have any difficulty associated with multidimen-
where one should go beyond the semiclassical limit, the sional situations. However, only applications of this approach
separation of the centroid density into different parts is not to realistic situations can shed the appropriate light on this issue.
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Appendix A

Centroid Constrained Quadratic Path Integration. In the
discretized path approximation, eq 15 can be written as

2
1%, CI00] ~ A/ 2L [ i expfic(xgo — X)) x
(%)P/Z f dy; *** f dyp_4 eX[{ - %yT-Dp_l'y +

Bty ) (AD

with
Y = o Vo) (A2)
and
62
2+S vy -1 0 0
m
2
-1 2+Svy —1 0
Dp_1=|. : m : (A3)
0 0 0 - —1
2
6 I
0 0 0 = 24V,

There areP — 1 eigenvalues and eigenvectors which satisfy
Dp,l'u(k) — lku(k), k=1, P—1 (A4)

along with the normalization condition

P—1
Z uful =6, (A5)
&
Then, introducing the following unitary matrix,
U= (u(l), . U(Pfl)) (AB)
and the relevant coordinate transformation
z=Uly (A7)

Equation Al can be simplified to

2
I[x,, Cl()] ~ ;‘ﬂ—fn (%)m S dE exp{it(xy 0 —

)} [ dz - [ dzpy exp{— %(1154_ -t
Apoy Zo_g) TiC (g7 + + + ap 4 zp_l)} (A8)

where

1 P—-1 1 P-1

w=—9 U,=—F5 u¥ (A9)
“ P,Z K P,Z'

into independent Gaussian integrations. However, if there is a
negative eigenvalue, the integration over the unstable mode
diverges and the centroid constrained path integration may not
be defined. In this case, in fact, the centroid constraint should

be imposed before integrating over the unstable mode. With

some restrictions, this makes the originally unstable mode stable
and a convergent expression for the centroid density can be
obtained. The case where all the eigenvalues are positive is
treated in Appendix B, and the case where there is one negative
eigenvalue is considered in Appendix C.

Appendix B

All Positive Eigenvalues.In this case, the integrations over
eachz in eq A8 can be made by completing the squares. The
resulting expression contains an exponential of a quadratic
expression in terms df, which can again be integrated over,
leading to

PR e [T
LCII~ A/ — | A
X CI(¥)] \/:!] K 27wpx

MB(Xe10 — Xc)2
expy ——  (Bl)
2yp
where
GO O
VP - =) ;{1 + + }'Pfl (82)

The exact value of[x., CI(x)] is obtained in the limitP — .
In this limit, according the theorem of Gelfand and Ya-
glom 18:19,60

P-1

lim ¢ !:l A, = f(8h) (B3)

where f(r) is the homogeneous solution of the differential
operator of eq 16

[ de Lz, v)i(@) =0 (B4)

satisfying the boundary condition &D) = 0 andf'(0) = 1. On

the other hand, in the same continuum limit, the quantity of eq
B2 becomes the following integration of the Green functiéa
defined by eq 17:

— h _i 'Bh ﬂh ! !
y:rmyp—ﬂhfo dr [7dr' G(r,7)  (B5)

which is positive for the present case. Then, the exact expression
of the centroid constrained path integral of eq B1 is given by

Y
1%, CI] = 4 /% exp{ - W} (B6)

Appendix C:

One Negative Eigenvalue.The case where there is one
negative eigenvalue and all other eigenvalues are positive is
considered here. Let the negative eigenvalug;b&he Gaussian



Asymmetric and Metastable Potentials

J. Phys. Chem. A, Vol. 103, No. 47, 1998637

integrations over other modes with positive eigenvalues can be0 and that (ii))y < 0. Note thatf(5h) is negative due to the

made first in eq A8. The resulting expression is

u&wmw—J_d (ﬂa%fdu“

dzlexf{_ﬂ‘ﬂé(xdo Xc+alzl)__zz] (C1)

where

2
Op_

lP—l

. _ (B’
Yp= P

(C2)

(/12+ -+

In eq C1, the integration ovérshould be performed first, which
is equivalent to imposing the centroid constraint first. The
resulting expression is

lmmw~Jhd (Ha%x
1/2

e—nﬁ(xd,o X)(2yp) fim le mB %
2myp
MyYp al(ﬂh)z(xcm =X ?
exp — z (C3)
2ehiyp PL1ye

where it has been assumed thatis nonzero angp = yp +
(Bh)20u/(PAy) is the same quantity previously defined by eq B2.
Sincel; is negative and/, defined by eq C2 is positive, the
integration overz; in eq C3 can be performed only when the
following condition is satisfied:
7p <0 (C4)

Performing integration over; in eq C3 assuming the

condition of eq C4,

1/2

ms
27yp

A P-1
u&mwwééipﬁ

B MB(Xei0 — Xc)2

ex (C5)

=}

condition that there is only one negative eigenvalue and no zero
eigenvalue. The condition of (i) implies that motion along the
unstable mode should accompany a change in the centroid
position.

The quantities off(5h) and y appearing in eq C6 can be
expressed in terms of the underlying classical trajectory. First,
f(Bh) is considered. One can show that the differential operator
of eq 16, along the given classical trajectagyr), hasx,(z) as
its homogeneous solution, although this may not satisfy the
given boundary condition. In terms of the linear combination
of this solution and the second independent solution generated
from this, one can construct the following homogeneous
solution8:19.57-59

(1) = %O, (@) [ 2 (C7)

|()

One can show that this is the solution of the differential operator
of eq 16 satisfying the boundary conditi§i®69of f(0) = 0
andf(0) = 1. Special care should be taken in performing the
integration over’ in eq C7. Wherr = 1 with Xy(t0) = 0, the
guantity of eq C7 can be defined as the limiting situation. When
T > 19, the integration can be defined only on a contour which
goes around the singularity & by gaining a small imaginary
term. Due to this nature of the integration contour, the integral
in eq C7 can have a negative value. With this point being
clarified,

i cl(E X)

f(Bh) = %ai(0)%/(BR) f (07 > = M (0)x(BR)

(C8)

where the second equality is the special cdse=(0) of the
following general identity:

Je

with Tg(E, X) = ph and E being the negative of the classical
energy for the motion on the inverted potential satisfying the
following relation:

Xcl(T)
%o(7)?

8 cl(E,X)
Mz [0 oy E 06 (C9)

— Vxy(1) = —E (C10)

gxd(f)z

where the quantity within the square root of the preexponential The verification of eq C9 can be made through a change of

factor is positive. In the limiP — o, as is the case of Appendix
B, this becomes

b, CI00) = o g 4 @%Lﬁq (c8)

integration variable fromr into x and then performing a partial
integration. Care should be taken in taking the limit such that
the divergent quantities cancel out.

Second, the quantity of can be expressed in a similar way.
For this purpose, the Green function defined by eq 17 should
be obtained first. Through the Wronski constructi®f?-5° one

which has the same form as eq B6 with the same definitions of can show that

f(fh) and y given by egs B3 and B5. The difference here is
that bothf(sh) andy are negative.

It is important to clarify the conditions of existence of eq C6
again. The derivation of eq C3 required that bpttando,; are
nonzero. In fact, as long as, is nonzero, the integration over
71 can be made even jf; is zero, which has the same form as
eq C5. Therefore, the only required conditions are that (k¢

dry o dr, g g
Gz, T) = %(2)%(7') .
@) fo K0 R0 wole
(C11)
wherer< = min(z, ') andt- = max(, 7). The integration of
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this Green function given by eq C11 oveandt' leads to

o Xq(1)?
L’Bh dr L/;ﬂh dv'G(z, 7') = Oﬂh dr XC:(‘L')Z —
sn . X V[ on dr
C12
° TXc|(T)2 / 0 Xc|(T)2 ( )

Using eq C9 withk = 1, 2, one can show that eq C12 can be
written as

f/gh 3TC|(E, X)
0
dr Xy (T: T,y x))z} (C13)

oE

. 2 0 Tel
dz Xy(7; Te X)° — (ﬁd 0

R

dr foﬁh dv'G(z, ) = m a1 Jo
d

Therefore,y defined by eq B5 is given by

aT, (E, X) 0 T
_ m cl _o0 cl . 2 _
Y= ﬁh 9E {aTcl 0 dr XCl(T’ TC|’ X)
0 (M drx (r: T, 9|} (Cl4
at, Jo T xy(7; T, X)) ¢ (C14)
Appendix D

Case of an Endothermic Reactionln this case, a similar

analysis can be made by reversing the roles of the reactant and

the product states in the semiclassical analysis of section IV.
Then, in the strongly endothermic case, the following situation
can occur:

Pea(%) > pe(X)

so that p; () > pay(Xs) according to eq 49. That is, the
mixing-in of the reactant part and the barrier part of the centroid
density can lower the effective barrier, which can result in the
overestimation of the reaction rate when using numerical path
integral methods to calculate the overall centroid density in the
barrier region. This error can be corrected in the following way.
For the calculation of the reactant partition function, the centroid
potential of mean force for the original potential would be used.
For the calculation of the centroid density in the barrier region,
however, the simulation would be performed for the following
modified potential:

(D1)

V(X), V() =V,

Voo V(X <V,

V(X) = { (D2)

whereV, is the bottom value of the product part of the potential.
The PI-QTST or CV theory given by eq 5 can then be applied
using the reactant partition function calculated from the original
potential with the centroid potential of mean force for the barrier
contribution to the formula calculated with the modified potential
of eq D2. This procedure will result in a reaction rate which
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