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Real-time observation of enzymatic turnovers of single molecules has revealed non-Markovian dynamical
behavior. Although chemical kinetics (such as the MichaeéMenten mechanism) are sufficient to describe

the average behavior of an ensemble of molecules, statistical analysis of the single-molecule fluorescence
time trace reveals fluctuations in the rate of the activation step. These fluctuations are attributed to slow
fluctuations of protein conformations. In this paper, we discuss models of the dynamical disorder behavior
and relate them to observables of single molecule experiments. Simulations based on a discrete multistate
model and a diffusive model are compared with experiment data. The role of various correlation functions,
including higher order time correlation functions, in the interpretation of the underlying dynamics is discussed.

Introduction state jumping model is within the framework of a simple

Recent advances in single-molecule spectroscopy have spurrediéversible kinetic scheme; a more sophisticated two-state
much research on the dynamical behavior of single moleétfes.  jUmping model involving non-Markovian dynamics has also
Chemical dynamics can now be probed on a single-molecule @Ppeared?
basis. For example, enzymatic turnovers of single cholesterol ~Of particular interest is the chemical dynamics of single
oxidase molecules have been observed in real time by monitor-molecules. The first experimental effort in this area was the
ing the emission from the enzyme’s fluorescent active site, flavin ion channels studied by single channel recordfghere has
adenine dinucleotide (FAD) Chemical kinetics (such as the been a large body of work on statistical analyses of the single-
Michaelis-Menten mechanism), can account for the ensemble- channel trajectorie¥. Most of the work has been in the
averaged behaviors; however, statistical analyses of the singleframework of chemical kinetics, analyzing the histograms of
molecule trajectories reveal fluctuations in the rate of the the on- and off-periods of the ion channels. The usefulness
activation step of the reaction. This dynamic disorder behavior correlation functions have not yet been explored on these
is beyond the scope of conventional chemical kinetics and Systems. Yet these early works began the discussion of chemical
originates from slow fluctuations of protein conformatidns. kinetics in terms of Poisson statistics of single-molecules, which
Ensemble-averaged experiments would not distinguish this iS key to the understanding of single molecule experiments.
dynamic variation of reaction rates from static heterogeneity. ~Wang and Wolyné$ first discussed the role of analyses of
In this work, we present theoretical models for statistical single-molecule trajectories in understanding chemical dynamics
analyses of single-molecule enzymatic dynamics. In this section, (as opposed to chemical kinetics). Slow fluctuation of the
we give an overview of recent theoretical work relevant to environment causing the fluctuation of the rate coefficient
single-molecule analyses. (which is no longer constant) results in deviations from Poisson

Skinner and co-worke?< have conducted statistical analyses statistics. A single-molecule experiment would be expected to
of single-molecule spectral trajectories in order to understand show non-Poisson effects causing reaction events to “bunch up,”
a pioneering experiment on single-molecule spectral diffusion an effect called “intermittency*®1°Wang and Wolynes pointed
at cryogenic temperatur@sThe underlying dynamics of that  out that when such non-Poisson statistics are observed and the
system is tunneling of two-level systems, which was described first-order moment of the probability is not enough to character-
by a two-state jump modéf;” and analyzed with autocorrelation  ize the system, higher order moments contain more information.
functions of the transition frequency. Silbey and co-workers Intermittency ratios-defined as the ratio of the average of an
and Klafter and co-worke¥8have also pursued this stochastic nth-order moment compared to the average of a first-order
approach to two-level systems. moment raised to theith power-have been formulated to

Prompted by the room-temperature observations of double characterize the non-Poisson behavfor.
exponential fluorescence decays of single dye molecules in DNA  The non-Poisson statistics resulting from the fluctuating rate
complexes12Geva and Skinner recast a two-state jump model coefficient is related to “dynamical disorder,” a subject reviewed
in terms of population distributions as a function of data by Zwanzig?® The rate coefficient itself can be viewed as
collection times:2 Similar to “motional narrowing” in molecular ~ dependent on a stochastic control variable (such as barrier
spectroscopy; this approach allowed the extraction of the time height). A time-dependent rate coefficient can be described in
scale of conformational transitions of the systems. The two- two ways: in terms of the control variables jumping between
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discrete values according to simple kinetics or in terms of a
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the sum spans the domain of states{1,...,N}. k;(t), is taken

continuum of states undergoing diffusive changes according toto be time dependent in general, allowing for fluctuating rate

a Langevin equation. For the former, transitions of the control

coefficients.Pi(t) represents the dynamic population (or prob-

variable are described by a master equation for the probability ability) of the state at a given timet. As a jump model, the
that the control variable has a specific discrete value. For the current state of the system can be viewed as a dynamical
latter, a Langevin equation characterized by a decay rate andtrajectory between discrete states. We then write the function
fluctuation amplitude describes the time dependence of control I(t) to represent the fact that the system is in stafel,..., N}

variables. The probability distribution for the control variable
obeys the FokkerPlanck equation. Agmon and Hopfield first
introduced this latter approach in the context the ligand rebinding

at time t. A discrete trajectory in timel(t), will represent
“microscopic” realization of the state of the system.
To analyze the statistical behavior kff), we now consider

in myoglobin where the rate constant depends on a proteinan ensemble of trajectories tt). We denote the conditional

coordinate described by the Brownian motion of a harmonic
oscillator?! Sumi and Marcus took a similar approach to
electron-transfer reactioddand Bagchi, Oxtoby, and Fleming
had a similar treatment for barrierless reactions in solition.
In the above approach, the dynamical variable of the Langevin
equation is the rate coefficient or its control variable rather than

the nuclear coordinates whose variations ultimately cause the

rate fluctuation. In contrast, rate theories of chemical reactions

in solution take nuclear (reaction) coordinates as the dynamical

variables of the Langevin equation as in Kramer's thédmy,
the generalized Langevin equati$hn?® as in the Grote Hynes
theory?® These rate theories give constant rate coefficients
because the fluctuations of the nuclear coordinates occur at
much faster time scale than that of the chemical reactions.
Molecular dynamics (MD) simulations of biomolectigg!
are single-molecule “experiments” whose trajectory analyses
have yielded detailed information of molecular interactions and
their influence on chemical reactions. Wilson, Hynes, and co-
workers have pioneered MD simulations of solution phase
chemical reaction® Neria and Karplus have done MD simula-

tion of triosephosphate isomerase and shown that small structural

changes have large effects on the rate enhancethéhe MD

trajectories allowed them to obtain the transmission coefficient
correction to transition state theory. Also, Chandler and co-
workers have performed a MD simulation of a photosynthetic
reaction centet* The trajectory of the donor and acceptor energy
gap illustrated the dynamical disorder in rate on a single
molecule. Unfortunately, because of practical restrictions, the

single-molecule experiments have been limited to a much longer

time scale (milliseconds to tens of min), preventing direct
comparison of MD and experimentally measured single-
molecule trajectories.

In this paper we will recast dynamic disorder in terms of
trajectory analyses relevant to single-molecule real-time experi-
ments and compare different theoretical models with experi-
mental results. Dynamic disorder can appear in statistical

analyses of experimental observables but some analyses are

more informative than others. We present simulations of various
correlation functions based on different models. Finally, the

simulation results are compared with experimental results. The

issues of conformational dynamics and its influence on enzy-
matic dynamics are discussed.

Formulation

We consider a generalN-state kinetic scheme for the
population of state, described by the master equation for the
probability densityP;(t),

d
d—tPi(t) = > [ OPO = ki (OP()] )

=l

where the rate of transition from stgtéo statei is k;(t), and

a

probability that the ensemble is in the statd timet, assuming
the ensemble is in staig at earlier timety, by Gj, (t,to). The
dynamics of this quantity is described by

d
d_tG”O (L) = > [1G;, (L) — kNG, (L)) (2)

=l
with initial conditions

G (to, to) = 9 3)
The conditional probabilities satisfy the composition and
completeness relations

ZGizil(th )G (t to) = Gy (t to) (4)

and

> G, (L) =1 )

We will consider the statistical fluctuations &f(t), viewing

them as random variables with respect to the averdge

Because of this, the conditional probabiliti&g, (t,to) must be

viewed stochastic variables themselves, satisfying a stochastic

differential equation. We will assume that the time-independent,

steady-state limit exists and is given by
pri=lim Gi;, (tto) (6)

) - — 00

independent oy andt = 0. This means that the system reaches
equilibrium at and after time zero. Because of this, general
averages are independent of time. ar O,

A= Zmei

[

LOPIT= S APIT= D (7)

lo

whereA is a general observable corresponding to sta@eneral
n-time correlation functions are written as

m\(n)(tn)...A(l)(tl)D: Z m3\1'(:)Ginin_1 (tn’tnfl)Ai(:f_ll)“.

ins**T1io

AYG;; (LAYG (t, 0PI (8)

with t, = t,-1 = *=+ = t1 = 0. In this representation, the time
dependence is contained in the conditional probabilities,
Gij, (t.to).

If the system is ergodic, we may consider a single trajectory
I(t). In terms of the time average of the trajectory, we write the
n time correlation function as
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ﬂ\(n)('[n)"' A(l)(t )D=

I|m fdt

In this representation, the time dependence is containgd)in

(n)
(tn+ t)

(n 1)
(tn 1"’t )

|(t2+t )A| (ty+t) (9)
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In the case of simple kinetic;(t) is independent of time
and no longer considered a stochastic variable. The expressions
for the averages are simplified considerably. For simplicity of
notation, it is possible to define the matix whereK; = k;(t)
wheni = j, andK; = —}=k;(t) for the diagonal elements of
K. The equation for the conditional probability distribution

In the single-molecule enzymatic experiment, the relevant becomes the matrix equation,

observable is the fluorescence signal from one of many different
possible states of the system. A given state is either fluorescent

or not. We choose the observalfieto beé&;, where&; = 1 for
fluorescence “on” states argg= 0 for fluorescence “off” states.
The resulting fluorescence signal may be representéttas

&, since at time, the system is in statgt). In some cases;

= 1 for many different states and there is no means to

distinguish between these “hidden” states. Because of this, a
multi-state system obeying simple kinetics can appear to

%G(t,to) = KG(tty) (16)
with G(to,to)) = 1. In this caseG is no longer a stochastic
variable, and we may writg(t,to) = €<%, Furthermore, with
[Peq; = P9 the vectorP®dis a zero eigenvector of the matrix
K, corresponding to the equilibrium population of the kinetic
scheme.

describe a two-state non-Markovian system. We will expand Two State 1x2 Model

on this point in the flowing discussion.

To consider fluctuations about the equilibrium signal, we
define A§(t) = &(t)—&L)whose second-order correlation func-
tion is given by

[AE(AE0)T]
CtH)y=——F—— 10
A1) A0 (10)
and
AEMAEO)D= Y AEG; (LOAEPHD  (11)
with the definition,A&; = & — [E[J Given a stochastic trajectory

of &(t) = &), it is possible to generate a sequence of on-time
durations{ 71,72,...,tm,..}, for £(t) = 1. From this trajectory the
mean on-timelz0may be determined as well as the on-time
autocorrelation function

A, Ar,0

r(m) =
(m) AT?0

12)

where we defineAr, = ©, — @0 A comparison of this
correlation function andC,(t) will be presented in the Result
section.

Higher order correlation functions might contain more
information than the second-order correlation function. In
general, the fourth-order correlation function is

Cylty ta b 1) = DEW)AS(LAE(LAE()IAET (13)

To simplify the analyses of experimental trajectories, we
assumer = t,—t; = t4 — t3, andt = t3 — t, and present the
Ca(tg, t3, to, t1) with two variables,r andt,

AE(t + 20)AE(t + T)AE(T)AE0)D
AED

Cyr,t)= (14)

where

AE(t + 20)A&(t + 1) AE(T)AE(0) =
z A G (t+ 20t + 7)AE G (t+ 7.7) %

Agileilio(TvO)AinPiqD (15)

The analytical solutions and numerical simulations of the

above three correlation functions will be presented based on

three different models.

We will now introduce three different kinetic models and
explore the behavior of correlation functions resulting from the
dynamics corresponding to the models. When ever possible we
include closed-form analytical expressions for the correlation
functions. In a later section we will discuss more complex
models. Initially we choose simple models that have funda-
mentally different structures and compare the qualitative
dependence of the correlation functions. The simplest model
that we consider is the two-state model described by the kinetic
scheme

k
"= g (17)
Where n2" will denote an “on” state£x = 1, andnd" will
denote an “off” statex = 0. In this casef = é andK =
(_k21 Kz ) It follows that
k21 _k12
ki, + k& Ky, — ke
G(t,0)= &' = 1Ko T Ky S IET:
K\Kpy — K Koy 1 ki€

where k = kip + kp1. With p = kiok, we have Ped =

E_ 0) Furthermore[2"= p for all n and[A&20= p — p?,
[AE3T= p — 3p? + 2p3, andAET= p — 4p? + 6p3 — 3p*. For
the correlation functions, it follows that

Cy=e" (19)
and
C4(t1t) =

[(p° — 2p> + p")e " + (p — 5p* + 8p® — 4p’e ™/
(p — 4p° + 6p° — 3p”) (20)

We note thatCy(z,t) has not dependence when the duty cycle
[£00of the &(t) trajectory is 50% f§ = 0.5) because the second
term vanishes. For thex2 model, as a Markovian scheme
(constant rate coefficients), the on time correlatim) is only

a spike at zero timer(m) = 1 for m= 0 andr(m) = 0 form

> 0).

2x2 Model

In this model we have two coupled two-state channels,
represented by the four-state kinetic scheme
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Here we see that the time dependence of the correlation function

1
”clm —k_'_f ”gﬁ is consistent with the rate of transformation between the two
olNg alp schemesa. The following expressions for the correlation
K functions can be explicitly evaluated:
" = ng (21) oy
- . . . C) =S—la@ - ) +yE +1]  (29)
The physical picture of the model is two slowly inter-converting 2y

conformational states of the reactant that have different activa-
tion barriers®® Initially, to limit the number of parameters
defining the model and to allow an analytic solution, we consider 1
the special case whefe= a, K'; = k;, andk'; = kp. In this Cyzt) = -
case, the kinetic scheme reduces to 4

and

202(e %" + e 2 ) —2ay(e X — e &)
A+ (K, — ky)Pe 22T (@ 1)+ (7T + 1)(E + 1))
uI Ia (22) (30)

ff . . . .
ng" = o e Ther(m) of the 2x2 model will be simulated using a numeric
approach to be described later.

It follows that we can write

Introduction of Continuous Stochastic Control Variables

kta) o K 0 A simple model of the statistical fluctuations lgf(t) can be
a —(eto) 0 ko constructed by considering a set of stochastic control variables.
ky 0 “kta) o We will denote them by(t) and assume thd(t) is defined
0 K, a —(k, + o) parametrically through the dependergé&) = Fij(x(t)), where
(23) Fi(x) is a specified function of the control variable We
describe the motion of the control variable by a Langevin
and equation as used in Brownian motion theéty,

K =

. Sty = —Ax(t) + (0 (31)
&=, (24)

0 wheref(t) is a Gaussian random variable with white noidg)
= 0 and(ty)f(to) = 2406(t; — to) must be consistent with the
. fluctuation—dissipation theorem. It is possible to generate a
The eigenvalues of the matri are{0,—20, —+, -}, where oo eristic stor():hastic trajectody) by nLFJ)mericaIIy intgtjagrating
ke = ki + ko + o £ y andy = y/a’+(k,—ky)* It follows that  this equation. We represent this as

i; j dx(t) = —Ax(t)dt + ~20Adw(t) (32)
eq
PT= 1/4 (25) wherew(t) is a Wiener proces% 38 satisfying [dw(t)dw(t) =
1/4 dt. For eacht, dw can be viewed as an independent Gaussian
random variable with variancet.dThe conditional probability
If we definek(t) = kg, where density forx, P(x,t;Xo,to), satisfies the FokkerPlanck equation
2
::1 Sp=20xp) + w%zp (33)
k=, (26) 9
1
k, This is an example where a Markovian procesgt(\Weiner)

is used to generate a non-Markovian stochastic varizafh)e
it follows from eqs 7 and 8 that With x(t) characterized, we are in a position to incorporate these
fluctuations in the kinetic model. The simplest way to achieve
1 this is to modify the k2 model to include a time-dependent
KOU= §<k1 thk) @) forward rate.

and Diffusive Model

1 5 2 20t Consider the following two-state model with the stochastic
KOKO)=Z((ky + ko)™ + (ky — k)6 ™) - (28) rate constantk(t) = ke, where x(t) is a stochastic
control variable. Because the control variable at time t will be
k(t) represents the effective rate at any timsince the system  correlated with the value at time 0, the resulting dynamics will
is in one of the four stated(t). The components of vectdr be non-Markovian by construction. The kinetic scheme for this
define the rate constant associated with each state of the systensystem may be represented as
The fact that a nontrivial correlation exists here demonstrates
how a Markovian scheme can generate an effective non-
Markovian scheme when viewed as a collection of hidden states.

kg,e~x®)
e (34)

(0]
ng
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This scheme is called “diffusive” or “AgmonHopfield” 1 — 17—
dynamics?! The rate coefficient matrix can be written as 0.9 ]
—1,e™ K, 08 | -
10 0 0 (35) I ]
k>.€ —ki, 07 —— diffusive 1
. o6Fy | 1x2 .
and the observable parameters are given by = L ]
) & o ]
= 04+ o |
3 (0) (36) - _
03F % .
The control variable is described by a Gaussian random process . "\ ]
characterized by zero medn(t)J= 0, and the correlation time L -._\ = |
1/A and strengtto: 01 N .
a S A oo e repeyevers
X(H)x(0)O= oe (37) 0 1 2 3 4 5
It then follows thatky(t) is a Gaussian random process with !
1 T T T T
0 120 ]
(K, ,(H) = K,€e" (38) ]
and
LGOI CH A (39) SN e
\\ ----- 1x2
The correspondin@x(t), Ca(z,t) andr(m) will be numerically 2 o4l NG i
simulated. Here we see that the rate constant is correlated over © ' . B 3
a “continuum of time scales” because of the exponential of an i N\
exponential occurring in eq 39, in contrast to a few exponen- i AN
tionals for the %2 model. L AN
"\ N\
Numerical Technique I AN
. . . . " N\
Viewed as a Markovian process, the single molecule trajectory 0.01 T
I(t) is simulated using Monte Carlo simulation techniques. This "o 1 2 3 4 5
is achieved by stepping in time in discrete steps of dt. At any t
pom_t In timet, 'f _the system is in the _Sta_iethe prObab'“ty of Figure 1. A. Linear plot of the calculated autocorrelation functions
making a transition to another state in time drjdt, wherer’ of AE, Ca(t), for the 1x 2 model (dotted line, withe:® = ki® = 1), the

= Y j=iKj. A decision to make a transition is determined from a 2x2 model (dashed line, witky = 2, k, = 0.4, anda. = 0.15) and the
uniformly distributed random number. Given that a transition diffusive model (solid line, withk* = ke* = 1,4 = 0.25,6 = 0.5).
has occurred, the probability for the new condition bejing B. Logarithmic plot of the samex(t).
ki/T'i. A uniformly distributed random number again determines i sjve models clearly differ from the single exponential decay,
the choice of this final state. This procedure generates aq gifference between the two is most obvious at long time
trajectory that has statistical time dependence consistent Withintervals Ca(t) < 0.1), as seen clearly in the log plot. We used
that of the distribution given by eq 1. _ ko1 =1 andky, = 1 for the 1x2 model;.ky = 2.0, k, = 0.4,

The incorporation of time-dependent rate constants is straight- ;14 — .15 for the %2 model:A = 0.25 and) = 0.5 for the
forward. While we are stepping in time, we integrate the i,sive model. These parameters were chosen so that the

Langevin equations describing the time dependence of the yecays would be on the same time scale. The multiexponential
control variables x(t) (see eq 31). From the characteristic paracter of the diffusive model relative to the 2 model is

trajectory, we are able to evaluate relevant correlation functions o\ ijent here. To distinguish between the diffusive and2
and averages. If we are interested in quantities that only involve (4ol it is necessary to have an accurate signal at longer times
Gij(t.lo), it is possible to integrate the coupled set of equations, \hare the correlation has significantly diminished in value.

eqs 2 and 31, where the coupling occurs through the rate- , rigyre 2A and B, we display the on-time autocorrelation
constant dependence a(t). function, r(m) for the three models.(m) for 1x2 model is a
spike at zero time. The two other models show similar
dependence for the range okOm < 2, and differ at largem.

We can now compare analytical and simulation results of It would be difficult to distinguish between ax2 model and
the three models presented above. Our goal is to investigatea diffusive model using this measure. TheZ.model is easily
the qualitative difference between these simple models in hopedistinguished from the others, clearly displaying the non-
that through comparison to experiment, we will be able to Markovian behavior.

Theoretical Results

distinguish between them. Figure 3A and B shows the plots of the fourth-order
Figure 1A and B shows the linear and logarithmic plots of correlation functions o, C4(z,t), for the 2<2 model, as a
the second-order correlation function £fCy(t), for the 1x2, function of = for the values oft = 0, 0.5, 1.0, 1.5, and 2.0.

2x2, and diffusive models. Th€,(t) of the 1x2 model is a Compare this toCy(z,t) for the 1x2 model, which is not
single-exponential decay (eq 19). While thex2 and the dependent ohwhenp = 0.5. Figure 4A and B shows the plots
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AL e T T T T T 7 T
0.9 - _
08 —e—diffusive n i
--R-2x2
07 [~ D 1X2 = 2X2 —
L —e— =0 |
0.6 = —o— t=0.5 |
E o5t £, e 7
B © —— t=2.0 1
04 —ix2 T
03 0.3 -
02 0.2k
0.1 0.1k
0 ol
0 0
m T
1 F T T T T 1 T T T T
2x2
—e—diffusive
—R-2x2 ~—e— =0 |
0 i
t=1:5 7
—e—1=2.0
= = ——1x2
E org £ ooif
r O
0.01 0.01 Lt A
Y 0 1 2
m 1
Figu_re 2. A. Linear plot _of the simulate_d autocorrelation function of Figure 3. A. Linear plot of the simulated fourth order correlation
on-times,r(m), as a function of turnover index numben, The results functions of&, Cy(z,t), as a function of for t = 0, 0.5, 1.0, 1.5, 2.0
are based on thexi2 model (unfilled squares, a spike onlyrat= 0), derived from the 22 model. For comparison, the solid line shows the

the 2<2 model (black squares), and the diffusive model (round dots). (esyit of the &2 model. B. Logarithmic plot of the san@(zt).
B. Logarithmic plot of the sameg(m).

of the C4(z,t) for the diffusive model, as a function offor the Experimental Results

values oft = 0, 0.5, 1.0, 1.5, and 2.0. Theindependent We now briefly describe a single-molecule enzymatic turn-
Cy(z.) for the 1x2 model is also shown for comparison. A gyer experiment. More detailed experimental descriptions have
comparison ofC4(z,t) of the 2<2 model and the diffusive model appeared elsewhe?PeCholesterol oxidase (G from Brevi-
shows similar behavior, especially in the short time range where pacterium sphaeroides a monomeric protein of 53 KDa that
Cy(t) > 0.1. In the long time scale whe@(z,t) < 0.1, we see  catalyzes the oxidation of cholesterol oxidase by oxygen. Flavin
significant differences in the qualitatiiedependence of the  adenine dinucleotide (FAD) is the active site tightly bound to

two models. o S the center of the protein. The oxidized state of FAD absorbs at
From the results presented above, it is easy to identify the 450 nm and emits fluorescence peaked at 520 nm, whereas the
deviation from the simplest»12 model. Although the 22 reduced state of FAD is not fluorescent. During cholesterol

model and the diffusive model appear to be similar on the coarseqyjdation in an enzymatic turnover cycle, FAD is first reduced
scale, they are significantly different on the fine scale, especially {5 FADH,, and then reoxidized by oxygen. The FAD switches
in a longer time scale. The time dependence of the diffusive petween the oxidized form and the reduced form in each

model and the 22 model can be best seen with the t enzymatic turnover cycle described by the Michaehgenten
dependence dt4(z,t). We note that simulation of the<2 model mechanism:

is parameter dependent, and we have only taken an exemplary

set of parameters. One can make the kinetic scheme more K, Kyy

complex by having more channelsx(3 or 4x2 models). The E — FAD + S=—E — FAD-S— E — FADH, + P (40a)
more complex kinetics scheme will of course require more on ) on off

parameters. The>22 and the diffusive model demonstrate two K, Ky

limiting cases. The goal of the statistical analyses of the E — FADH,+ O,==E — FADH,-0, —

experimental trajectories is to gain understanding of qualitative off ) off

features of the distribution of the conformational states pertinent E — FAD + H,0, (40b)
to enzymatic reactions by verifying the validity of these models. on
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———————— been recasted in terms of single-molecule kinetic analyses. The
on- and off-time probability distributions have been derived for
any substrate concentratiSrks;. The on- or off-time histograms

. are scrambled and less sensitive to dynamical fluctuations than
1 correlation functions.

0.9

0.8

0.7

L diffusive o] Under the condition that the concentration of the substrate is
061 - %:8.5 - high, and/or the substrate is slowly reacting (such as 5-pregene-
= i —— t=1.0 ] 3p-20a-diol, a derivative of cholesterol) so that the activation
£ 05 15 . ;>
%) A —1=2.0 ] steps k1 andki») are rate limiting, the kinetic scheme reduces

0.4} —1x2 . to the two-state (¥2) model in eq 17. This is the situation in

which dynamical changes of protein conformation directly

03 A influence the activation of the enzymatic reaction, a situation
0.2 on which we want to focus.
0.1 . The CQ molecules at low concentration (10 M) are
confined in agarose gel containing 99% buffer solution contain-
00 ' ing 2mM of 5-pregene{3-20a.-diol. The COx molecules were

tumbling freely, but the gel restricted their translational diffusion.
The single-molecule enzymatic turnovers are observed in real

D e e —— time by monitoring the emission-intensity of the FAD in a single
L ] COx moleculé. Figure 5 shows a portion of a typical single
diffusive 1 COx emission-intensity trajectory. The trajectories were suf-
—e =0 1 ficiently long with more than 500 hundred turnovers, permitting
- i:?:g 3 detailed statistical analyses. The trajectories were converted to
t=1.5 | guantized data by removing the measurement noise. Correlation
- j—_};go functions were derived from these filtered trajectories.
€ o4l Figure 6A and B shows experimentally determir@dt) of
o o a COx molecule (molecule A). To compare the experimental
- data with the theoretical results, we must find the error bound
L in the measured correlation functions (dashed lines in Figure
6). It is important to note that the error bars result not from the
measurement noise but from the finite lengths of trajectories.
I At short times, the error bars are smaller because of more
averaging along the trajectory. In the appendix, we present the
0.01 analytical expressions of the standard deviation (s.d.) of the
< correlation functions as a function of time that were used to
Figure 4. A. Linear plot of the simulated fourth order correlation generate .the error bo.undﬂ‘:i.d.). .
functions of&, Cy(zt), as a function of for t = 0, 0.5, 1.0, 1.5, 2.0, According to the simple two-state ) model, a single-
derived from the diffusive model. For comparison, the solid line shows €xponential decay (dotted line) is expected with a decay rate
the result of the X2 model. B. Logarithmic plot of the san@(z.t). being the sum of the forwardkf;) and backward ratesy’).

However, we found that the measurglt) is clearly not single-
where S and P represent cholesterol substrate and oxidizedexponential. The multiexponential decay of the autocorrelation
product, respectively. The Michaelidlenten mechanism has function can arise from the dynamic disorderkef or kj».

-t
&

-
N

-t
o

@

Photocounts (ct/ch)

E-N

[«

5 10 15 20
| Time (sec)

Figure 5. Real-time observation of enzymatic turnovers of a single @0lecule catalyzing oxidation of sterol molecules. This is a portion of an
emission intensity trajectory recorded in 13.1 ms per data point. The emission exhibits stochastic blinking behavior as the active site FAD toggles
between oxidized (fluorescent) and reduced (not fluorescent) forms, eaaffaycle corresponding to an enzymatic turnover. The substrate is
cholesterol at 0.2 mM concentration. Quantized trajectories are obtained by removing the shot noise before correlation functions are evaluated.
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Figure 6. A. Molecule A’s Cy(t) (dots) determined experimentally.
The error bounds (dashed line) were obtained with the procedure in
the Appendix. For comparison, ti&(t) of the 1x2 model is plotted

on the same scale (dotted line). B. Logarithmic plot of the s&xa(#.

To find out whether the dynamic disorder iskf or ki, we
evaluate the autocorrelation function, introduced previotisly,
of the on-times or off-times(m). The advantage of(m) of
on-time (or off-time) is that it is only sensitive to forward (or
backward) reaction. Figure 7 shows then) of moleculeA’s
on-times. If there is no dynamic disorde(m) is expected to
be only a spike am = 0. The fact thatr(m) > 0 atm > 0
indicates the fluctuation oky;. In contrast,r(m) for the off-
time of molecule A (not shown) is a spike et= 0, proving
that there is no dynamic disorder for the backward reaction.
Ther(m) in Figure 7 is similar to the simulated results in Figure
2. Althoughr(m) is sensitive to identifying any non-Markovian
behaviors, it is not particularly sensitive to distinguishing
different models of dynamic disorder. Higher order correlation
functions have the potential to distinguish different models.

Figure 8A and B shows the experimentally determined
Cy(z,t) of molecule A with its error bounds (see Appendix) for
t = 0, clearly deviating from the 2 model. Figure 9 shows
thet dependence d€4(z,t). For comparison, th€u(z,t) of the
1x2 model is also shown. Thedependence oE4(z,t) for the
1x2 model arises when the duty cycle of the trajectory is not
50% @ = 0.25 for moleculed) (eq 20). Simulations (Figures
3B and 4B) show that th€(z,t) has stronget dependence for
the diffusive model than thex22 model. The experimentél,-

(z,t) is not capable of distinguishing between the two models.

Schenter et al.
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Figure 7. Molecule A’s

autocorrelation function of on-timeém) as

a function of turnover index numben. This result proves that there is

dynamic disorder irkps.
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Figure 8. A. MoleculeA’s Cq4(7,0) (dots) determined experimentally.

The error bounds (dashed line) were obtained with the procedure in

the Appendix. For comparison, ti@&(z,0) of the 1x2 model is plotted
on the same scale (dotted line). B. Logarithmic plot of the s@ne

(7,0).

Every molecule in the same system showed similar correlation

functions, although we have observed static disotdear

example, Figures 10

and 11 show Bgt) andCy(z,t) att =0
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TABLE 1: Resulting Values of y? from Data Fitting
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Figure 9. Logarithmic plot of moleculeA’s Cy(z,t) att = 0, 100,
200, and 300 ms. simulations @f(z,t) for the 1x2 model are also
shown. The duty cycle of moleculs is p = 0.25.
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Figure 10. A. Molecule B's Cy(t) (dots) with error bounds(dashed

lines). For comparison, th€,(t) of the 1x2 model is plotted on the
same scale (dotted line). B. Logarithmic plot of the sa@#t).

[
900 1200

for moleculeB, respectively. The error bounds are wider because
of the shorter trajectory. Figure 12 shows thdependence of
Cy(z,t) for molecule B. With the duty cycle close to 50% €
0.45), there is littlet dependence for thex2 model.

molecule model 22
A 2x2 0.479
A diffusive 0.925
B 2x2 0.338
B diffusive 0.432

TABLE 2: Fitted Rates for the 2x2 Model in Units of s™1

molecule
A B
ka1 9.00 10.9
ko 1.36 1.30
K 1.03 4.43
o 0.130 0.610
B 0.0417 0.370

Fitting of Experimental Results

Having established the qualitative behavior of @eandC,
correlation functions corresponding to various models, in this
section we demonstrate the ability to fit the experimental data
directly. As a measure of fit, we define the goodness of fit
parameter,

1N
¥ =—Y (CI*iAt,) — CI°%(iAt,)%/03(iAt,) +

21=
Naz Nat

(CT®NiAT,jAt) — CI%liAT jAY)) Y02 AT jAY)
N41N4t;; ’ ! !

(41)

where the “meas” refers to measured to correlation functions
determined from measured values, while the “model” refers to
correlation functions determined from models. We take=

200, At = 10 ms,Ng = 200, At = 10 ms,Ng = 10, andAt

= 20 ms. These values are chosen to cover the time range where
the correction functions show significant structures. We consider
three models whose parameters we adjust to miniydz&he

first is a 2x2 model of the form

g5 g
olNs olNs
g = ngf (42)

Here we setk; = k'> = K, corresponding to no dynamical
disorder in the reverse reaction rate.

The next model is the diffusive model defined in the previous
section by eq 34. Using an automated nonlinear least squares
minimization algorithm for the finite 2 models, and varying
parameters by hand to minimizé for the diffusive model, we
find values fory? displayed in Table 1. The corresponding
parameters for the 222 model are displayed in Table 2, and
for the diffusive model in Table 3.

For comparison, if we use ax2 model to fit the short time
behavior ofC, to determinec and the measured value @fto
determine an estimate of the forward and backward rate
constants, we obtain a value ¥ = 23.95 for moleculéA and
a value ofy? = 6.21 for molecule B. The poor fit proves the
presence of dynamic disorder.

For both moleculesA and B, the 2x2 model generates
significantly differentk; andk; (more than factor of 5 differ-
ence). Similarly, the fittings with the diffusive model result in
standard deviations dfy; being 110% and 190% df,; for



10486 J. Phys. Chem. A, Vol. 103, No. 49, 1999 Schenter et al.

1 ’ T T T T T T T
0.9 B
L Molecule B 1
0.8 1y t=0 .
\% s Experiment 1
0.7-%, ~ — -error bounds -
U A 1x2 4
0.6F W B
= Y 1 =
£ o5l - <,
O § ‘.\ | &)
\
0.4+F \1 \ E L
F BN 1 F Molecule A
0.3} RN . .
L T - ——experimental error bounds
0ol ENNR PSS, ] r — -2x2 model
. NN '.._"::“. ___________ diffusive model
0.1 \\\\“:'—'uu:’:u.:
0 . : o e teoee. s L 00t e b
0] 100 200 300 400 0 500 1000 1500 2000
T (msec) t (msec)
1 T T T T T L A E— L LA
A Molecule B ]
L '\i\ t=0 ] [ Molecule B
o\ * Experiment I r ——experimental error bounds
RO — — -error bounds 1 r — -2x2 model
N N 1x2 1 A\ diffusive model
DN N
,:: . ~ o - .. .= — \
£ oo} . ~~_ . = - e .
&) L \\'\"'"‘0.,.-_: &) 0'1: e e, b
-~ 1 e
~< L h C d
\~\ ]
L ~
1 ~
0.01 . L . L . — L [0 | S S I S RSN SV R
0 100 200 300 400 0 500 1000 1500 2000
T {msec)
t (msec)

Figure 11. A. MoleculeB’s Cq(z,0) (dots) with error bounds (dashed ) o )
lines). For comparison, th&4(z,0) of the 1x2 model is plotted on the Figure 13. A. Logarithmic plot of the fittedC,(t) for moleculeA based

same scale (dotted line). B. Logarithmic plot of the satag,0). on the 22 and diffusive models. The error bounds are drawn from
the experimental data plus/minus the standard deviation. Both models
1 . . : T . T : : . fit the data well. The fitted parameters are in Tables 2 and 3. B. The
[ ] same for moleculd.
i Molecule B | 1= jo meeq 1 TABLE 3: Fitted Rates for the Diffusive Model in Units of
— — -t= 200 msec st
) \ ----- =300 msec} |
| N | molecule
- TN A B
Eooal Y N ] K12 1.20 4.73
o ¥ W ] Koy 3.80 3.87
v TTreee R \; A 0.100 86.0
Experiment™ ~~ 0 0.80 1.50
1x2 We have also tried to fit the data with a«2 model:
kl
g g g
0.01 . ! : ! . 1 . :
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7 (msec) k,
on = off
Figure 12. Logarithmic plot of moleculeB’s Cy(z,t) att = 0, 100, n, k Ns (43)
200, and 300 ms. Simulations @f(z,t) for the 1x2 model are also N N
shown. The duty cycle of molecuR® is p = 0.45. vivy yivg

ks

on = Off
N3 % Mg

molecules A and B, respectively. The fittings show the The 3x2 fits havey? < 1, similar to the situations of thex22
significant influence of conformations on the rate of the and diffusive models, but not significantly better. There is a
activation step. large uncertainty of the fitted rate coefficients as expected.
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With %2 < 1 for both the %2 model and the diffusive models,  Appendix
fitted correlation functions fall well within the statistical error
bars of the experimental correlation functions. This is graphically
shown in Figures 13A and B. The fittings by both the 2
model and the diffusive model are equally good. Because of
this, we cannot distinguish which model is more appropriate.
To do so, we must have longer trajectories and/or more
sophisticated analyses of trajectories.

Here we discuss how to obtain the error bounds for the
experimentally determine@,(t) and Cy(z,t). For a trajectory
of &(t) with a finite length of T, we estimate the two-time
correlation functionF,(t) = [A&(t)A&(0)Dand the four-time
correlation functiorF4(z,t) = [A&(2t + t)A&(T + t)AE(T)AE(0)T
using the mean estimators:

= T—t
Conclusions FA) == [0 dASC+OALE)  (44)
The Michaelis-Menten mechanism, although correct in g4
describing the averaged behaviors of large ensembles of
molecules, does not provide a precise real-time picture on a= = 1 T—zr-tdt,
single-molecule basis for cholesterol oxidase and perhaps otherF“( ) = T—2r—tJo
enzymes. Statistical analyses of the single-molecule measure- AEQRT + t+ t)AE(T + t + )AE(T + )AL (45)

ment have revealed dynamic disorder in the rate of the activation

step. This was attributed to slow conformational fluctuations For the purpose of estimating the errors in these quantities, we

otherwise hidden in conventional measurements done on largeconsider the standard deviation of the mean given by

ensembles of molecules. Such a slow conformational fluctuation _

was also directly observed by spectral diffusion of the FAD on 4S,(t)

a similar time scalé. o) = (T—1) (46)
We have presented a general methodology for simulating

single-molecule trajectories with either Markovian or non- and

Markovian behavior. We have presented three theoretical models _

and relate them to the observables of single-molecule experi- 4S,(z1)

ments. The simulations of correlation functions based on o (Th) = A W(T—20—1) (47)

different models have been compared with the experimental

results. The simple two-state model, corresponding to the for the two- and four-time correlation functions, respectively.

Michaelis Menten mechanism with saturation of substrate, is In these expressions we define the variance estimators

inconsistent with the experimental observations. We conclude

that there must be more than one conformer involved. It has S(t) = 1 T’tdthg(t + t)2AE(t)* — F,(t)? (48)
been well established that proteins have many conformational T—tJo

substated%41 The question is, what are the distribution of the and

functional important conformational states and the distribution

of their rates? We have presented two non-Markovian models _ 1 T—2r—t

for two limiting cases, with either two conformations (2 S(.h) T2 —tJo dt’

model) or a continuous distribution of conformations (diffusive N2 N2 N2 N2 _E 2
model). Although there are noticeable differences in the AS(@2r + U AL(r + ) AL(r + ) AL() — Fy(r.)

autocorrelation functions derived from the two models, we are (49)

not yet in a position to determine which one of the two models

or an intermediate between the two models is the underlyin The expression for the standard deviation of the mean is
. . . erlying dependent on the number of independent samplég)iih the
mechanism. The answer to this issue requires longer trajectories

and/or more sophisticated analyses of trajectories. For example,mterval (07— in the case oF(t) and (OT—27~1) in the case

. . . of F4(r,t). To estimate this quantity, we use a correlation time
the replica correlation functions have been put forward for a . ; .
o 5 scale of 4#, where ¢ is determined from the short time
similar purposé:

Th f tional fluctuati infl ing th . i dependence df,(t). The number of independent samples is then
becorlt:)rmal '%n‘? u? ua |onsf|n uet_ncmtl_zj he reaction Ira el given by« (T—t)/4 for the case oF,(t), and«x(T-2z-t)/4 for the
canf € elt' er Ig Oh al pro eltntﬁon ortr_na |o!:a c%hange_s orlocal o550 ofF4(z,t). The error bounds in Figures 6, 8, 10, and 11

conformational changes at the active site. The miCroscopic \are generated in this manner.
details of the conformational states are unknown, except that
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